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Abstract: Genome editing (GE) has revolutionized the biological sciences by creating a novel ap-
proach for manipulating the genomes of living organisms. Many tools have been developed in
recent years to enable the editing of complex genomes. Therefore, a reliable and rapid approach for
increasing yield and tolerance to various environmental stresses is necessary to sustain agricultural
crop production for global food security. This critical review elaborates the GE tools used for crop
improvement. These tools include mega-nucleases (MNs), such as zinc-finger nucleases (ZFNs), and
transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short
palindromic repeats (CRISPR). Specifically, this review addresses the latest advancements in the role
of CRISPR/Cas9 for genome manipulation for major crop improvement, including yield and quality
development of biotic stress- and abiotic stress-tolerant crops. Implementation of this technique
will lead to the production of non-transgene crops with preferred characteristics that can result in
enhanced yield capacity under various environmental stresses. The CRISPR/Cas9 technique can be
combined with current and potential breeding methods (e.g., speed breeding and omics-assisted
breeding) to enhance agricultural productivity to ensure food security. We have also discussed the
challenges and limitations of CRISPR/Cas9. This information will be useful to plant breeders and
researchers in the thorough investigation of the use of CRISPR/Cas9 to boost crops by targeting the
gene of interest.
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1. Introduction

The global population continues to grow at an alarming rate [1], but there is an
arithmetic increase in the number of food materials available [2]. The global population
is expected to increase to 10 billion by 2050 [3,4]. The global population and the negative
impact of climatic conditions may eventually create issues regarding food security. The
condition may be further aggravated by a decline in the productive areas and reduced yield.
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Recent estimates from the International Rice Research Institute (IRRI) have indicated that
every 7.7 s, one hectare of the fertile area is lost, and the effect may be more pronounced if
the global temperature acceleration rate persists [5]. To maintain food security, crop yield
capacity must nearly double, and highly tolerant cultivars against various stresses must be
developed to achieve this goal [6].

An increase in agricultural crop production using the latest breeding techniques [7] is
the primary concern regarding global food security [8]. However, conventional breeding
techniques cannot ensure food safety and maximum food production [9–12]. Varietal
improvement and crop development have been accomplished using traditional breeding
techniques, such as hybridization, which to some extent, has enhanced the production
of crops [13–15]. Genetic engineering has been the focus of research for several years in
determining the function of genes. This involves using physical and biological mutagenesis
and identification of biological contrivances to boost crop production. Owing to several
issues, a 100% success ratio cannot be achieved [16]. In recent years, the actual yield has
been recorded for the major cereal crops, such as rice in East Asia and wheat in Northwest
Europe [17]. Additionally, aspects of the introduction of transgenes into the plant host
genome raise public concerns regarding edible crops and are not always appreciated, owing
to a lack of clarity on the methods used and consequent benefits. Therefore, the use of
biotechnological tools for crop enhancement is of ultimate significance in overcoming these
limitations [17].

Genetic engineering includes several methods, such as zinc-finger nucleases (ZFNs),
transcriptional activator-like effector nucleases (TALENs), and CRISPR/Cas9 (clustered
regularly interspaced short palindromic repeats) [18]. ZFNs are defined as DNA cleavage
proteins designed to split DNA structures at a given location. Second, TALENs generate
breaks in double strands of targeted structures, activating the DNA response pathway
that leads to genome breakage [19]. Although ZFNs and TALENs are commonly used for
genome alterations in plants and animal cells (since 2002 and 2011, respectively), a few
limitations exist that impede their successful use. The specificity of ZFNs is small and often
results in off-target changes [20]. Construction of vectors is time and laborconsuming for
ZFNs and TALENs [21]. Therefore, continuous progress in crop breeding programs would
be vital in addressing these tasks and for developing food crops [22]. Recent developments
in CRISPR/Cas9 tools have rendered directed and accurate genetic alteration of crops
possible, increasing the speed of transition to crop improvement [23]. Only a few species
have been studied thus far using this approach [24]. Since 2013, the focus shifted to the use
of CRISPR/Cas9 and its variants. CRISPR is a DNA fragment that includes non-contiguous,
small DNA repeats interspaced by variable sequence fragments or spacers. Therefore, this
finding indicated that CRISPR/Cas9 could be responsible for the elicitation of adaptive
immunity in prokaryotes [25,26] ISPR/Cas9 has the potential to cure diseases [27], and
the use of this technique has a huge impact on plant biology [28]. The first reported
application of CRISPR/Cas9 is an adaptive immune mechanism described in an experiment
in 2007, wherein investigators considered the phenotype to be phage-resistant, and the
addition or removal of specific spacers could alter the bacterial phenotype [29]. In the
future, it will be easy to genetically alter plants for crops improvement [30]. The use
of Cas9 (a protein known as biological scissors) sets new standards and revolutionizes
genome editing, which will lead to new insights into agricultural crops improvement [31].
Here, we briefly reviewed the role of CRISPR/Cas9 applications in crop improvement,
its limitations, and future prospects. CRISPR/Cas9 is currently being used for different
aspects in plant breeding like, diseases resistance, drought resistance, salinity tolerance
and genetic improvement of crops for various aspects. The grain yield and quality of crops
is also improved by Cas9. The production of biomass has also been improved by using
Cas9. Likewise, nutrients use efficiency and enhancement of morpho-physiological traits
has been done using Cas9. Role of genome editing is shown in Figure 1.
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Figure 1. Application of genome editing in crops improvement. CRISPR/Cas9 is used for genetic 
improvement, increasing nutrients use efficiency, biomass production, and increasing disease re-
sistance. 
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[33] were the first tools used for genome editing and have been classified by the presence 
of an approximately 12–40 bp recognition site. They are often known as the most defined 
restriction enzymes because of their precise nature and broad recognition site [34]; hence, 
they are also called homing endonuclease enzymes. Research studies have shown that the 
repair process of double-stranded breaks is caused by non-homologous end joining 
(NHEJ), responsible for the knockout of genes present in Arabidopsis and tobacco [35,36]. 
As DNA binding domains are attached to a catalytic area of meganucleases, separation is 
not possible, and therefore it is practically impossible to alter the meganucleases with 
other genome editing techniques [37]. There are several examples of studies in which me-
ganucleases (MNs)were exploited in cotton [38] and maize [39] using alerted MNs; how-
ever, studies are warranted to enhance the methodology. 

The second gene-editing tool includes ZFNs, which are more efficient and reliable 
owing to the generation of double-stranded breaks (DSBs)[40]. ZFNs were used as the first 
genome manipulation approach developed by the application of engineered nucleases. 
Detection of the Cys2-His2 Zinc-finger domain made this approach possible [19]. The 
structure of ZFNs consists of the following two main domains: (1) the DNA-binding do-
main containing 300 to 600 zinc-finger repeats [41]. Individually zinc-finger repeats can 
be observed between 9–18 bp; and (2) the DNA slice domain, considered a nonspecific 
domain of type 2 restriction endonucleases [42]. ZFNs comprise two monomers accredited 
to their particular object sequences reversely adjoining 5- and 6-bp DNA targets [43]. DNA 
is sliced by dimer enzymes comprising the FokI domain. The specific order of 24 to 30 bp 
is read by a zinc-finger domain that contains particular or occasional directing positions 

Figure 1. Application of genome editing in crops improvement. CRISPR/Cas9 is used for ge-
netic improvement, increasing nutrients use efficiency, biomass production, and increasing disease
resistance.

2. Genome Editing Tools

Genome editing aims to revolutionize plant breeding and could help safeguard the
global food supply chain [32]. Meganucleases are first-generation gene-editing tools and [33]
were the first tools used for genome editing and have been classified by the presence of
an approximately 12–40 bp recognition site. They are often known as the most defined
restriction enzymes because of their precise nature and broad recognition site [34]; hence,
they are also called homing endonuclease enzymes. Research studies have shown that
the repair process of double-stranded breaks is caused by non-homologous end joining
(NHEJ), responsible for the knockout of genes present in Arabidopsis and tobacco [35,36].
As DNA binding domains are attached to a catalytic area of meganucleases, separation
is not possible, and therefore it is practically impossible to alter the meganucleases with
other genome editing techniques [37]. There are several examples of studies in which
meganucleases (MNs)were exploited in cotton [38] and maize [39] using alerted MNs;
however, studies are warranted to enhance the methodology.

The second gene-editing tool includes ZFNs, which are more efficient and reliable
owing to the generation of double-stranded breaks (DSBs) [40]. ZFNs were used as the
first genome manipulation approach developed by the application of engineered nucleases.
Detection of the Cys2-His2 Zinc-finger domain made this approach possible [19]. The
structure of ZFNs consists of the following two main domains: (1) the DNA-binding
domain containing 300 to 600 zinc-finger repeats [41]. Individually zinc-finger repeats can
be observed between 9–18 bp; and (2) the DNA slice domain, considered a nonspecific
domain of type 2 restriction endonucleases [42]. ZFNs comprise two monomers accredited
to their particular object sequences reversely adjoining 5- and 6-bp DNA targets [43]. DNA
is sliced by dimer enzymes comprising the FokI domain. The specific order of 24 to 30 bp
is read by a zinc-finger domain that contains particular or occasional directing positions
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in the genome [44]. The genome-editing field has shown success and advancements in
acquiring the capacity to control and alter the basic genomic marks.

TALENs have been widely used for many years. TALENs were developed by consoli-
dating the FokI slice domain to the DNA-binding domains of the TALE proteins. These
TALEs contain complex duplications of 34 amino acids for the effective alteration of a single
base pair [45]. TALENs also cause modifications by creating DSBs that trigger initiation
of pathways where editing occurs [19]. The central domain and the nuclear localization
sequence are present in the TALEN system [46]. The proficiency of proteins to alter DNA
was studied for the first time in 2007. Nevertheless, the DNA-binding domain comprises 34
amino acid repeat sequences, and a single nucleotide is detected in the DNA target region
by each repeat, whereas individual constant sequences of ZFNs are observed as three
nucleotides in the targeted DNA [47]. Few studies have been conducted using TALENs and
ZFNs in plants; although these studies favor the application of TALENs, their gene-editing
effectiveness is usually low. TALENs are more effective and reliable for genome editing
programs [44]. A list of different crop traits improved by the usage of MNs, ZFNs, and
TALENs is shown in Table 1.

Table 1. Use of MNs, ZFNs, and TALENs for crops improvement.

Crop Tool Gene Trait Reference

Rice TALEN OsBADH2 Fragment rice [48]

Rye Cas9 TrpE Fungal resistance [49]

Wheat TALEN TaMLO Resistance to powdery resistance [50]

Maize MNs LGI Targeted mutagenesis [51]

Cotton EMNs EPSPS Tolerance to herbicide [38]

Tobacco TALENs Sur A Directed mutation [52]

Barley TALENs Transgene Resistance to powdery resistance [53]

Maize TALENs ZMIPK Phytic acid biosynthesis Liang [54]

Potato TALENs StGBSS Quality of tuber starch [55]

2.1. CRISPR/Cas9 and Its Brief Overview

CRISPR/Cas9 genome editing technique is definedas clustered regularly interspaced
short palindromic repeats, short, repeating variants of genetic material and found in
most archaea as well as in many bacterial species. CRISPR/Cas9 and its related proteins
develop a very strong protective system that safeguards plants against foreign agents
like viruses, bacteria, and other elements. CRISPR/Cas9 is often used to mutate the
targeted genes within the system [56] ISPR/Cas9 was discovered in DNA cleavage systems
programmed by RNA, which has been found in bacteria and archaea. CRISPR/Cas9
is the most commonly used and well-studied CRISPR/Cas9 system [57,58]. Current
recognition of the researchers for the development of a genome editing method using
CRISPR/Cas9 by the Nobel Prize committee is an additional step nearer to developing
and cultivating novel varieties of crops [59]. The system comprises two constituents,
namely an endonuclease DNA (Cas9) and a target-specific RNA, called the single guide
RNA (sgRNA) [57,58]. The basic steps to use Cas9 involves the existence of a protospacer
adjacent motif (PAM) sequence near and directly pointed to a given target. Various spacer
sequences are necessary for the application of Cas9 as a target; therefore, CRISPR/Cas9
is fast, effective, cost-effective, and adaptable. Parts of CRISPR/Cas9, either in DNA or
RNA, are administered to plant cells for the CRISPR/Cas9-mediated manipulation of
genomes to cut plant DNA in a predetermined series. In this manner, plant cells initiate
processes to “patch” the break to maintain genome integrity, and this hints at the generation
of numerous forms of alterations in the directed sequence. When the break is fixed via
NHEJ/homology-directed repair (HDR), small deletions or insertions occur that can lead
to the mutation of genes.
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Otherwise, the accessibility of a homologous DNA template present around the
targeted point can cause an HDR, which results in the insertion of a DNA template, thereby
allowing accurate gene replacement or insertion [60]. Base manipulation is the newest
addition to the features of this tool [61,62]. Until now, changes in A–G or C–T have been
attained through the application of base manipulators [61,62], which has sparked significant
interest in food crop improvement-related gene editors. The CRISPR/Cas9 technology
can also be used with the dead Cas9/Cas12 a for gene control, epigenetic alteration, and
chromosome imaging [23]. A comparison of the functions of different GE tools is described
in Table 2.

Throughout the characterization of spacer absorption, motifs related to spacer pre-
cursors (protospacers), an invading bacteriophage, were isolated from DNA [25,63]. Such
motifs are small extensions of trinucleotides, situated directly after the protospacers, which
have a significant function in recognizing particular protospacers and in guiding the loca-
tion of the spacers inserted in the protospacer repeat arrays [63]. Brouns, et al. [64] showed
that a CRISPR RNA precursor transcribed from a CRISPR site was split into mature RNA
molecules inside the repeated chain of proteins of Cas (to crRNA). Every crRNA comprises
a spacer flanking short duplications of DNA and acts as a small RNA guide that helps
proteins elicit an antiviral action [64]. CRISPR/Cas9 in Streptococcus thermophiles have
been shown to slice plasmid DNA [65]. Such results support the molecular origin of
adaptive immunity facilitated by the CRISPR/Cas9 system. Each of the genome-editing
techniqueshas its advantages and drawbacks, as shown in Figure 2.
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Table 2. Differences in functions of genome editing tools.

Role ZFNs TALENs MNs CRISPR/Cas9 References

Efficacy of target
recognition Higher Higher Higher Higher [66]

Kind of Action Double-stranded
break in target DNA

Double-strandedbreak
in target DNA

Direct conversions
in targeted regions

Double-stranded
break in target DNA [67]

Mutagenesis Higher Middle Middle Lower [66]

Multiplexing Difficult Difficult Difficult Possible [68,69]

Target range Unlimited Unlimited Unlimited Limited by PAM [70]

Effects Lower Lower Lower Lower [71]

Cost Higher Higher Higher Low [72]

Crop
Improvement Low Low Low Higher [72]

Range Narrow Narrow Narrow Broad [72]

Dimerization Required Not required Not required Not required [71]

Types One One One Many [71]

Future use Medium Medium Medium High [72]

2.2. CRISPR/Cas9 Mechanism and Function

Makarova, et al. [73] suggested that the immunity process comprises three phases
facilitated by the CRISPR/Cas9 system, including adaptation, expression, and interference.
In the adaptation phase, short plasmids are inserted as new spacers into the CRISPR/Cas9
series, whereas in the expression phase, crRNA transcription and maturation processes
occur. Ultimately, the crRNAs direct Cas proteins in the interference process to match
the splitters. Makarova et al. [73] suggested the hierarchical grouping of CRISPR/Cas
into three main groups, namely I, II, and III, as described in a study on the origin of Cas
proteins and CRISPR/Cas9. Type I and III systems involve the application of a complex
of multiple Cas proteins as sign proteins, whereas Cas9 is a large multifunctional single
sign protein in the Type II system and is accountable for both the development of crRNA
and slicing of the target DNA [73]. The Type II system has a relatively easy architecture
compared to that of the other systems and can be developed more effectively to act as a
genome editing method. Mechanisms of genome editing using CRISPR/Cas9 involves,
sgRNA and Cas9 make a complex, sgRNA unwinds DNA, and Cas9 cut the DNA, genome
analysis, cloning of sgRNA, transformation and selection of plants, regeneration, extraction
of genomic DNA and final step is analysis of sequence to confirm the results Figure 3.

Regarding the Type II system, a small trans-noncoding RNA (transactivating CRISPR/Cas9
RNA) was discovered in S. pyogenes, and it has been shown to direct the development of
crRNAs through the pairing of bases with duplicated regions of transcripts of pre-crRNA
via the action of RNase III and Cas9 [74]. Jinek et al. [57] found suggested application
of a Type II system and synthesized a sgRNA via the fusion of crRNA and tracrRNA.
The 5′ end 20-bp sgRNA sequence, a target binding DNA sequence, may be converted
into any sequence [57]. The analysis described above indicated that three pairs of PAM
bases [57,65] could be programmed with a sgRNA to produce DSB at a point from the
nuclease of Cas9 from Sogenes (SpCas9). The sequencing and location of PAMs vary across
various CRISPR/Cas systems [63]. A canonical PAM related to SpCas9 is 50-NGG-30 (N
exemplifies one of the four nucleotides), and a 20bp target DNA sequence was accompanied
by a PAM [57,63]. Cas9 nuclease comprises two domains identical to HNH and RuvC [73].
Jinek et al. [57] also found that the HNH and RuvC-like domains could complement the
DNA strand and not the RNA reference, respectively. Therefore, this system is effective and
programmable and acts similar to a model CRISPR/Cas9 system, which is most frequently
used to alter genes, with the alterations facilitated by NHEJ/HDR. Single-guided RNA
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bioinformatics tools developed for CRISPR/Cas9 are listed in Table 3. The role of different
RNAs in CRISPR/Cas9 is varied and highly studied. The guided RNA (mgRNA) is
a particular RNA sequence thatidentifies the targeted regions of the DNA region and
regulates the Cas9 nuclease enzyme for gene editing. Hence, it unwinds the DNA and
aligns the gene with Cas9 protein, and causesdouble-stranded breaks. The second type
of RNA is crRNA which describes the targeted DNA for Cas9protein, whereasthe role
of tracrRNA is to work asa scaffold linking the crRNA molecule with Cas9 protein and
assist insorting out of mature crRNAs from the pre-crRNAs developed from CRISPR/Cas9
arrays Table 3 [75].
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3. Application of CRISPR/Cas9 for Crop Improvement

CRISPR/Cas9 technique has become the most widespreadand has many advantages,
like time effectiveness, low cost of editing, extraordinary adaptability, and the ability for
directing multiple genes reproductions instantaneously [86]. This gives extraordinary
worth for breeding of numerous polyploid species of crops species, which are problematic
to progress using classical approaches, and lets the group of a range of monoallelic as well
as biallelic mutants, and a resulting allelic sequence of phenotypes, in the first generation,
something that is characteristically not possible using classical breeding approaches. This
technique is a more efficient and versatile technique of genome editing [87]. This technique,
i.e., CRISPR/Cas9, is simple, efficient, and cost-effective relative to TALENS, ZFNs, and
MNs, and it is used to edit multiple genomes at the same time [88,89]. Owing to its positive
features, the CRISPR/Cas9 system has been used for several plant species [90,91], and its
application provides the best solution to multiple issues encountered in plant breeding [92].
The CRISPR/Cas9 has been used to improve the monocots and dicots crops for a variety
of traits like yield, quality, disease resistance, and resistance to climatic variations [93].
The CRISPR/Cas9 technique has been used to edit the genomes of cereal crops, such as
wheat, maize, rice, cotton, and vegetables like tomatoes, and potatoes and fruits like banana
and apple [94,95]. The most common use is the knockout of target genes that have been
gained by induction of indels that result in a frameshift mutation. A large number of
important traits have been introduced in crops using Cas9 and have been discussed in
many reviews [96–99].

3.1. Use of CRISPR/Cas9 for Improvement of Yield and Quality

CRISPR/Cas9 creates revolutionary changes in crop species [100]. Several laboratories
in the world have been established that use this powerful technique because of its potential.
Here, we listed some of its uses that have been considered in the improvement of the yield
and quality of crops. CRISPR/Cas9 is used to develop cultivars with high nutritional
values and resistance characteristics and to create the largest milestone of genome editing
in modern technology. A commercial oil was obtained from the crop seedsof Camelina
sativa, which is widely cultivated because of its higher percentage of fatty acids. Moreover,
the JAZI, a jasmonate-zim-domain protein, BRII brassinosteroid insensitive 1, and GA-
insensitive genes were also altered, and CRISPR/Cas9 resulted in a 26% to 84% mutation
frequency [17]. In the same species, a squamosal promotor binding protein and a flowering
locus were manipulated using Cas9, and at the late flowering stage, the plants showed
approximately a 90% mutation frequency [101]. A multiple CRISPR/Cas9 system combined
with other tools was engineered and applied for the manipulation of six altered PYL genes
of ABO receptors with a 13%–93% mutation frequency in the first generation [102]. The
green fluorescent gene present in Nicotiana benthamiana with RNA-facilitated endonucleases
was altered [90]. Later, this was delivered through the tobacco rattle virus to modulate the
instructions to the plant genes to manufacture and manipulate transcriptional features [103].

The progenies of homozygous rice species were altered using CRISPR/Cas9, and the
results showed a deletion in the gene cluster on the chromosome with heritable variations
in genetic makeup [104]. Mutagenesis in three individuals in the aldehyde oxidase gene
family of rice, OsAox1b, OsAox1a, and OsAox1c, in addition to the (abbreviation) OsBEL
gene mediated by CRISPR/cas9, was observed. Subsequently, inherent alterations of genes
in successive progenies were studied [105]. An ABA-inducible protein encoded by the
barley gene HvPM19 was responsible for the upregulation of genes responsible for grain
dormancy. As a result of mutations induced by CRISPR/Cas9 in HvPM19, a 10% mutation
frequency was generated [106]. The role of two QTLs, Gn1a and GS3, for rice grain number
and size, were also investigated by Cas9 [107]. Usman, et al. [108] studied the editing
of OsSPL16 gene in rice by Cas9 and found an improvement in rice grain yield. CLBG1
mutagenesis by Cas9 in watermelon significantly reduced seed size and enhanced seed
germination [109]. Cas9 can be used to improve every trait in crops, and this could lead
to a green revolution in time. The base editing of the WAXY allele of granule bound
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starch synthase improved the cooking quality of rice using Cas9 [110]. Zhang, et al. [111]
studied the disruption of MIR396f and MIR396e,which improves the yield of rice under
low nitrogen conditions. The grain yield modulator miR156 regulates the seed dormancy
in rice as studied in an experiment [112]. In a recent study, new rice mutants with high
yield and aroma were generated by editing of three homologs (GL3.2, Os03g0568400, and
Os03g0603100) of P450 and OsBADH2 using CRISPR/Cas9 in rice [113]. A high content
of protein often reduces the rice cooking quality. By targeted mutagenesis of transporter
genes of amino acids could bring significant variation among the mutants. The OsAAP6
and OsAAP10 are two mutants generated in rice high-yielding cultivars by Cas9, and these
mutants showed significant improvement in the yield and cooking quality of rice [114].
From the above findings, we have reached a conclusion that further mutagenesis of amino
acid genes could lead to the production of more high-yielding and good quality cultivars
in rice. Several rice mutants with high-yielding attributes were generated by editing of
GS3 gene by using Cas9. This study showed that complex traits of rice could be improved
using CRISPR/Cas9 in rice [115]. Targeted mutagenesis of TaSBEIIa using CRISPR/Cas9
successfully produced high amylose wheat with a meaningfully improved resistant starch
content [116]. Alteration of the composition of starch, its structure, and properties via
editing of TaSBEIIa was studied in spring wheat using CRISPR/Cas9 [116].

The CRISPR/Cas9 technique was used for high-quality oil production, such as oleic
acid from Brassica napus [117]. CRISPR is used in Camelina sativa by changing the function
of the ALCATRAZ INDEHSCENT and JAGGED genes to increase pod shattering resis-
tance [118,119]. In another study [120], the function of INDEHSCENT and ALCATRAZ
genes were affected, which are essential to the dehiscence of fruits in Brassica species.
Likewise, Zaman, et al. [121] studied the genome editing of JAGGED using Cas9 in Brassica
napus and revealed that this gene was involved in the development of pod shattering
resistance. Similarly, the role of ALCATRAZ in pod shattering resistance in Brassica napus
was studied [86]. In vegetables, CRISPR/Cas9 was mainly used in tomatoes because of
their economic significance and easy transformation capability. Targeted changes of the
engineered gene SP5G in tomatoes resulted in early flowering and several brushes, which
indicated an early harvest [122]. Liang et al. [54] reported the selective knockout of genes,
including ZmIPK1A, ZmIPK, and ZmMRP4, which are involved in the synthesis of phytic
acids in maize. The CRISPR/Cas9-based impediment of the SISG07 gene was studied, and
the phenotype of the needle structure in tomatoes was observed [123]. The CRISPR/Cas9
also used to edit the apple protoplast for better taste and quality [124]. CRISPR/Cas9 was
used to produce steroidal glycoalkaloids in certain varieties of potatoes to affect St16Dox.
The study led to the generation of two lines of potatoes free of SGA with a deletion in
the St16Dox gene [125]. Likewise, the GBSS gene that is responsible for the synthesis of
starch was mutated using Cas9 in potatoes. An increase in amylopectin levels was ob-
served in mutant lines [126]. The SnLazy1 locus, known as the Lazy1 ortholog in tomatoes,
was manipulated by CRISPR/Cas9 with effective heritability of the snlazy-1 allele, and
mutants showed a downward pattern of stem development [127]. Many techniques have
been developed to improve their yield and quality regarding staple and fruit plants, such
as citrus, grapes, and tomatoes, but CRISPR/Cas9 is the most useful and latest method.
Earlier studies showed that Xanthomonas citri, which advanced the agro infusion method
to deliver CRISPR/Cas9, affects the CsPDS genetic factors in leaves of sweet oranges [128].
Because of the greater efficiency of genome manipulation, the consumer can now eat edited
fruits because this technique does not permit the entry of foreign genes into the genome.
Previously, it was reported that the Cas9 technique could be used to edit genes in apple
protoplasts, which has been applied in some other crops [124]. A ground cherry of a
wild variety of tomatoes yielded higher and larger fruits [129]. Additionally, in apples,
a mutation of PPO was reflected as transgene-free using Cas9, which is appropriate for
human consumption [126]. The production of seedless fruit is always the primary goal
of any breeding plan. In tomatoes, the targeting of SIAGL6 and SIIAA9 was studied, and
parthenocarpy was achieved using Cas9 [127]. The MaGA20ox2 gene was knocked out
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in bananas, and the resulting mutation produced dwarf banana genotypes [130]. There
are many uses of CRISPR/Cas9 for quality and yield enhancement, which are shown in
Table 4.

Table 4. Uses of CRISPR/Cas9 for quality and yield enhancement in crops.

Gene Crops Trait Technique Reference

CLE Maize Grain yield CRISPR/Cas9 [131]

SLIAA9 Tomato Seedless fruit CRIISPR/Cas9 [132]

OsTB1 Rice High grain yield CRIISPR/Cas9 [114]

GmFT2a Soybean Delay in flowering time CRIISPR/Cas9 [133]

BnITPK Rapeseed Low phytic acid CRIISPR/Cas9 [134]

Bolc.GA4.a Cabbage Dwarf plant CRIISPR/Cas9 [106]

OsAAP10 Rice Good cooking quality CRIISPR/Cas9 [114]

RVE7 Chickpea Grain quality CRIISPR/Cas9 B [135]

BnaMAXI Rapeseed Yield CRISPR/Cas9 [136]

Wholek1gene Sorghum Increase lysine content CRIISPR/Cas9 [137]

TaSBEIIa Wheat High amylose content CRIISPR/Cas9 [116]

GBSS Potato Enhance amylose content CRIISPR/Cas9 [138]

P450 Rice High grain yield CRIISPR/Cas9 [113]

IPA Rice Enhanced yield CRIISPR/Cas9 [139]

CIPDS Watermelon Albino phenotype CRIISPR/Cas9 [140]

GS3 Rice Grain yield CRIISPR/Cas9 [115]

ANTI Rice Fruit color CRIISPR/Cas9 [141]

OsSPL16 Rice Grain yield CRIISPR/Cas9 [108]

lncRNA1459 Tomato Prolong shelf life CRIISPR/Cas9 [142]

PRL Maize Reduction in zein content CRIISPR/Cas9 [143]

GASR7 Wheat Grain weight CRIISPR/Cas9 [144]

PDS Banana Albino phenotype CRIISPR/Cas9 [145]

CsFAD2 Camelina Oleic acid CRIISPR/Cas9 [146]

FaTM6 Strawberry Flower development CRIISPR/Cas9 [147]

GmFATB1 Soybean Low saturated fatty acid CRIISPR/Cas9 [148]

3.2. Development of Disease Resistant Varieties Using CRISPR/Cas9

Plant diseases severely affect crop yields and quality [149];the primary causal agents of
diseases are viruses, fungi, nematodes, insects, and bacteria, which cause severe reduction
in crop yield. CRISPR/Cas9 is ow widely used for the development of disease-resistant
crops [150]. The appearance of deadly outbreaks of these insects and other biotic stresses
has become a major issue [151]. Understanding plant and pathogen relationships or
interactions are of considerable importance in the defense of plants from these attacks [152].
In the wheat crop, there is an increasing demand for coeliac-safe wheat-based products.
Coeliac safe wheat leads to reducing the risk of chronic disorders. These traits cannot be
improved by traditional breeding methods. Recently, CRISPR/Cas9 has been used to edit
the glutenins genes and produce coeliac safe cultivars. These techniques generate offspring
with silenced and deleted gliadins, which may decrease the patients exposure to coeliac
disorders (CD) epitopes [153]. Likewise, in another study, Verma, et al. [154] reviewed
the role of CRISPR/Cas9 in developing strict-gluten free wheat, which can reduce the risk
of coeliac disease (CD). They have concluded that CRISPR/Cas9 has been successfully
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edited the wheat genome. In the future, this technique would be more useful to develop
coeliac-safe wheat rice, the gene Elf4g was mutated to increase resistance to thetungro
spherical virus in rice [155]. In rice, bacterial leaf blight is a severe problem that causes
huge losses in yield. This gene OsSWEET14 was targeted by Cas9 to induce resistance to
the pathogen [156]. This shows that targeted mutagenesis of any susceptible gene could
bring significant variation in plant resistance to any pathogen. For instance, the knockout
of the OsERF922 gene was conducted by using Cas9, resulting in increased resistance
against blast produced by Magnaporthe oryzae [157]. Similarly, the targeted mutation of
SWEET1E has been performed using Cas9 to produce plants resistant to blight [158].
Therefore, genome editing has been successfully applied to investigate the plant and
pathogen relationship, and CRISPR/Cas9 is a potent tool to develop disease-resistant
cultivars by mutating the disease-causing gene. For instance, Cas9 was applied to create
mutations in the promoter region of the gene CsLOBI, which causes citrus canker, and
consequently, mutations would result in enhanced resistance to citrus canker. Two mutant
lines, DLoB10 and DLoB9, exhibited higher frequencies of mutations. Frameshift mutations
and changes in the function of CsLOBI resulted in increased resistance to Xanthomonas
citri [159]. To increase the resistance of citrus against Xanthomonas, editing of the effector
binding element using Cas9 in the promoter area of the CsLOBI gene was performed [160].
The Cas9 technique has been applied to edit the gene TaMLO [104] in wheat protoplasts,
resulting in the development of enhanced powdery mildew resistance [50]. Similarly,
powdery mildew resistance in wheat was developed by targeting EDRI homologs using
Cas9 [161]. Likewise, MLO gene variants were generated in tomatoes, which increased
powdery mildew resistance [162]. It was predicted that half of the plant diseases are caused
by viruses, which cause substantial losses in crop yield and quality [163]. DNA virus
amplicons considerably enhanced the targeting efficiency of the genome. In hexaploid
wheat, replicons of geminivirus were used for Cas9 transient expression to counter dwarf
virus, and approximately a 12-fold upregulation was noted in gene expression [164]. The
geminivirus genome has been targeted by CRISPR/Cas9 and has been used to prevent
viral growth [165,166]. Cas9 can be used to edit the viral DNA rather than cure the diseases
caused by them [163]. Cas9-mediated alteration of the viral genome can be enhanced
by using virus promoters to control sgRNA cassata expression [166]. Recently, a novel
ortholog of Cas9 was found in Francisella novicida, which was used to manipulate the
genome of RNA-based viruses. The FnCas9 gene helped to halt the replication process
of TMV and the cucumber mosaic virus, conferring resistance against them [167]. The
targeted mutagenesis of SIPeLo and SIMIO1 was done for trait introgression of tomato
using Cas9 to confer resistance against leaf curl virus and powdery mildew [168]. Targeted
mutagenesis of OsPETI in rice by Casp to improve the resistance to rice sheath blight was
studied [169]. A novel diseases resistance paralog using Cas9 has been created in soybean.
These novel paralogs confer diseases resistance [170]. Tobacco, an important cash crop, is
severely affected by potato virus Y, which is due to the susceptibility of gene Ntab0942120.
Through the use of CRISPR/Cas9 technique, this gene was knockout and transgene-free
homozygous edited plants were generated which showed resistance to PVY [171]. In
brassica. In an experiment,5genes were knocked out for resistance to Phytophthora in
potatoes [138]. Thus, Cas9 is a powerful tool to enhance the genetic makeup of crops to
increase their resistance against viruses and other casual agents. A list of crops developed
using Cas9 against different diseases is shown in Table 5.
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Table 5. A list of diseases resistant crops varieties made by using CRISPR/Cas9.

Gene Chromosomal
Position Locus Pathogen Crop Function Trait Repair Tool Editing

Results Reference

SIPeLo and SIMIO1 Tomato Enhance resistance to leaf
curl virus

Enhance resistance to leaf
curl virus [168]

OsSWEET14 Rice Bacterial leaf blight Bacterial leaf blight
resistance [156]

CsLOB1 N/A N/A Xanthomonas citri Citrus Susceptibility to citrus
canker Resistance to citrus canker NHEJ Knockout [159]

Gh14-3-3d

https:
//www.ncbi.nlm.nih.gov/

nuccore/164652939
(accessed on 15 October

2020)

N/A Verticillium dahliae Cotton Negative controller of
resistance to disease Verticillium wilt resistance NHEJ Knock-in [172]

Ntab0942120 Tobacco Resistance to potato virus
Y Resistance to potato virus Y [171]

eLF4G chr07:22114961..22123061
(+ strand) Os07g0555200 Tungro spherical

virus Rice Starting factor for
initiation

Resistance to tungro
spherical virus NHEJ Knock out [155]

Rpsl Soybean Diseases resistance Diseases resistance [170]

Rp and Cp sequences N/A N/A Yellow leaf curl virus Tomato Negative controller of
resistance

Enhanced resistance again
leaf curl virus NHEJ Knock out [173]

OsSWEET11 chr08:26725952..26728794 Os08g0535200 Bacterial blight Rice Resistance to bacterial
blight

Resistance to bacterial
blight NHEJ Knock out [174]

OsSWEET14 chr11:18171707..18174478 Os11g0508600 Bacterial blight Rice Resistance to bacterial
blight

Resistance to bacterial
blight NHEJ Knock out [175]

SiMLOl N/A N/A Tomato Powdery mildew
resistance gene

Resistance to powdery
mildew NHEJ Knock out [162]

Jaz2 Chr12: 2502581..2504643 N/A Pseudomonas
syringae Tomato Bacterial speck resistance Bacterial speck resistance NHEJ Knock out [176]

WRKY70 LK032201:212360-212875 BnaA09g35840D Brassica Resistance to pathogens NHEJ Knock out [177]

MYB28 Brassica Glucoraphanin
accumulation NHEJ Knock out [178]

S-genes N/A N/A Potato Resistance to
Phytophthora Resistance to Phytophthora NHEJ Knock out [138]

TaMLO-A1 Chromosome 4A:
519,570,414-519,575,284 TraesCS4D02G318600 Wheat Resistance to mildew Resistance to mildew NHEJ Knock out [50]

RGA2, Ced9 3:6700445-6700466 GSMUA_Achr3G09290_001 Fusarium oxysporum Banana Resistance to fusarium wilt Resistance to fusarium wilt NHEJ Knock out [162]

Mlo-7 Chr13: (5335059..5339258 VIT_00016304001 Grape Resistance to mildew Resistance to mildew NHEJ Knock out [124]

PpalEPIC8 N/A N/A Phytophthora
palmivora Papaya Resistance to Phytophthora Resistance to Phytophthora NHEJ Knock out [179]

https://www.ncbi.nlm.nih.gov/nuccore/164652939
https://www.ncbi.nlm.nih.gov/nuccore/164652939
https://www.ncbi.nlm.nih.gov/nuccore/164652939
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3.3. Development of Climate-Smart Crops Using CRISPR/Cas9

Various abiotic stresses have been tackled in major crops, such as rice, wheat, maize,
cotton, and potatoes using Cas9. The plant breeding system has been modernized by
developing climate-smart or abiotic stress-resistant crops. CRISPR/Cas9 has been used
to modify any sequence and to bring any character to crops. Molecular breeders discov-
ered many genes related to abiotic stress tolerance and engineered them into crops [180].
CRISPR/Cas9 generated slmapk3 protein gene mutants improved defense response to
drought stress in tomatoes [181]. Two genes, TaDREB3 and TaDREB2, linked to abiotic
stress resistance in wheat protoplasts, have been studied using Cas9. Using the T7 endonu-
clease assay, mutant gene expression was observed in approximately 70% of the transfected
wheat protoplasts. Thus, all mutant plants showed tolerance to drought compared with
wild-type plants [182]. A comprehensive review on improvement of drought stress tol-
erance in plantsusing Cas9 [183]. In rice, two mitogen-activated genes, OsMKP2 and
betaine aldehyde dehydrogenase OsBADH2, were manipulated using the Cas9 approach.
These genes were delivered into the host genome by protoplast transformation and the
particle bombardment technique, which conferred resistance to various stresses [91]. The
OsAnn3 gene of rice was edited against cold stress, and the role of this gene was studied in
genome-edited plants [184]. The gene SAPK2 was altered to examine the stress mechanism
in rice. A previous study showed that this gene enhanced drought and salinity tolerance in
rice [185]. Drought tolerance has been developed by targeting the ARGOS8 gene to create
new variants, and this is of remarkable significance in maize [186]. Cas9 induced mutagen-
esis of Leaf1,2 conferred drought tolerance by affecting the expression pattern of proteinand
scavenging of ROS in rice [187]. Zhang et al. [188] enhanced the salinity tolerance in rice
via targeted mutagenesis of OsRR22 gene. Chickpea is an important legume crop that
is largely affected by drought stress. Previously only one study has been conducted to
bring mutation in genes using CRISPR. Two genes 4CL and RVE7 were targeted by Cas9 to
increase drought stress tolerance in chickpea. The knockout of these genes using Cas9 is
a novel approach that led to the development of drought-tolerant varieties in Chickpea
in the future [135]. Recently, de Melo, et al. [189] stated that AREB-1 activated Arabidop-
sis by CRISPR presented an enhanced drought tolerance than wild-type plants. CRISPR
has also been used to introduce herbicide tolerance in crops. Kuang, et al. [190] studied
the base-manipulation facilitated artificial evolution of OsALS1 in planta to develop new
herbicide-tolerant rice germplasm.

Similarly, the Cas-based mutation of two genetic factors, Drb2a and Drb2b, was studied,
and these genes controlled drought and salt tolerance in soybeans [191]. The mitogen-
activated protein kinase gene that counteracts drought stress by safeguarding its membrane
from oxidative stress and controlling the transcription of genes has been studied to reduce
drought stress. The relationship of SIMPAK3 in drought stress has been studied in tomatoes
by producing knockout variants in the SIMPAK3 gene for the development of drought
tolerance via the Cas9 technique [181]. Many genes govern crop yield and stress tolerance.
Several studies have been conducted to identify QTLs that govern significant characteristics
in crop development systems. Such QTLs have been pyramided into superior lines; how-
ever, this is a complex methodfor QTLs closely linked and can produce deleterious effects
if non-target regions are transferred. Cas9 can be applied to produce targeted mutagenesis.
Using Cas9-based QTL editing approach, two QTLs, Gn1a and GS3, were investigated in
rice varieties [107]. These studies indicate that the CRISPR/Cas9 technique has enormous
potential for developing climate-adapted crops. The above studies showed that Cas9
could alter genes to facilitate resistance against many abiotic stresses, e.g., drought, high
temperatures, heavy metals, as well as nutrient deficiencies [180]. A list of climate-smart
crops is shown in Table 6.
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Table 6. Development of climate smart crops using CRISPR/Cas9.

Gene Chromosomal Position Locus Crop Traits Repair
Pathway

Editing
Results References

OsMYB30 Rice Cold tolerance [115]

slmapk3 Tomato Drought tolerance [181]

OsALS1 Rice Herbicide tolerance [190]

4CL, RVE7 Chickpea Drought tolerance [135]

SAPK2 chr07:25717837..25722009 (+strand) Os07g0622000 Rice Tolerance to salinity
and drought NHEJ Knockout [185]

TaDREB3 7D:27470774-27471448 TraesCS7D02G052600 Wheat Tolerance to drought NHEJ Knockout [182]

NPRI 3:3740543-3741413 Solyc03g026270.2 Tomato Tolerance to cold and
drought stress NHEJ Knockout [142,192]

ZmHKTI N/A N/A Maize Tolerance to salinity
stress NHEJ Knockout [193]

Drb2a 12:5797459-5798459,
11:11249371-11250406

GLYMA_12G075700
GLYMA_11G145900 Soyabean Tolerance to drought

and salinity stress NHEJ Knockout [191]

OsRR22, OsPDS chr10:17076098..17081344(- strand)
chr03:4410090..4414779 (+ strand)

Os10g0463400
Os03g0184000 (OsPDS) Rice Tolerance to salinity

stress NHEJ Knockout [188,194]

OsAOX1a, chr04:30287197..30289860 Os04g0600200 Rice Drought resistance NHEJ Knockout [104]

OsBADH2 chr08:20379823..20385975 Os08g0424500 Rice Abiotic stress
resistance HDR Knockout [91]

ALS1 chr3:8175606-8177917 PGSC0003DMG400034102 Potato Resistance to
herbicide HDR Knockout [195]

MIR169a Chr03:4358994-4359219 AT3G13405 Arabidopsis Drought resistance HDR Knockout [196]
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4. Novel Breakthroughs
4.1. Production of Mutant Libraries

The efficient, practical investigation of all genetic factors of the genome of a sequenced
crop is a considerable challenge. The construction of mutant libraries is an effective and
reliable method [197,198]. CRISPR/Cas9 is a powerful technique for developing mutant
libraries, and its targeting capability can be changed by altering the 18–20 bp target binding
order in sgRNA. CRISPR/Cas9 application renders forward genetic screening studies
possible. Development of mutant libraries using CRISPR/Cas9 was first reported in
human cell culture [198], and this set the basis for CRISPR/Cas9 application to advance
plant mutant libraries for high-throughput selection. In an experiment, pooled sgRNA was
transformed into tomato plants, and mutants were developed [199]. In rice production,
mutant libraries were constructed by two research groups, with loss-of-function mutants
generated during the transformation of synthesized sgRNA libraries [197,200]. Certain
phenotypic alterations, such as sterility and lethality, were observed when cultivated in
the field [197,200]. The general use of CRISPR/Cas9 is valuable for constructing mutant
libraries to study the genetic mechanism behindcrop improvement.

4.2. Base Editing

CRISPR/Cas 9 is now used to edit a single base, which is accountable for genetic
variations in novel traits of crops, as shown by genome-wide association studies [201].
Hence, gene-editing techniques for point mutations are necessary. Without using a DNA
repair template, one DNA base can be accurately changed into another DNA base using
the CRISPR/Cas9 technique [62]. Cas9 should be fused with an enzyme with conversion
capability for base editing. Imidazolinone-resistant rice was produced by base editing,
and it is one of the best examples of this technique [202]. In the same manner, Arabidopsis
was produced [203] by changing ALS and a cytidine amino acid-base changer. Similarly,
multiple bases were changed in rice [204]. In this approach, the base change tool provides
a novel direction for genome editing, widening its potential with specific nucleotide
alterations at precise genomes.

4.3. Prime Editing

CRISPR has great efficacy to mutate genes but despite its ability to produce accurate
base edits outside the four alteration mutations is still the main restraint. Prime editing
is another technique of DBS, and it is used to enlarge the area and efficiency of genome
editing [205]. This technique hires an engineered reverse transcriptase fused to Cas9 and a
prime manipulating guide RNA [205]. This pegRNA varies from sgRNAs as it includes not
only the guide order that can identify the objective spots but also a reverse transcriptase
template spelling the preferred genetic deviations. Li, et al. [206] newly modified prime
editors to bring point alterations, insertions, as well as deletions in rice. By using this
method, all 12 kinds of base-to-base replacements, and numerous base replacements,
insertions, as well as deletions, were noticed. They stated that the occurrence of prime
editing brought by this prime editor was up to 21.8% [206]. Comparable conclusions have
been stated by molecular breeders [206,207].

4.4. Transgene Free Editing of the Genome

Traditional techniques of genome alterations require the transfer and combination of
DNA cassettes encoding altered parts into the host genome. DNA fragments are usually
degenerated but produce harmful effects [208]. This technique increases the issues with the
regulation of GM plants. Prolonged expression of editing enzymes and systems increases
the number of off-target functions because of the greater number of nucleases in these
organisms. DNA-free genome editing was first reported in Arabidopsis in the same manner
as in tomato and rice via delivery of CRISPR/Cas9 RNPs into plant protoplasts [209].
However, methods for effective regeneration of protoplasts do not exist for maximum
crops, which leads to the application of particle bombardment and thus facilitates DNA-
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free genome alteration approaches. In wheat embryos, CRISPR/Cas9 RNAs have been
transferred by the particle bombardment technique [144].

4.5. Multiplex Genetic Engineering

Using multiple sgRNAs, multiple genomes can be affected simultaneously in any crop.
Multiple traits can be incorporated into novel cultivars [210], and multiple individuals from
multiple families can be targeted using this technique. This can be attained by combining
various sgRNAs into one vector [211]. Clonal reproduction of rice hybrids was previously
reported [211]. Hybrid heterozygosity was often fixed via CRISPR/Cas9 genome editing
of three genes in three meiotic genes, namely REC8, PAIR1, and OSD1, to generate clonal
tetraploid seeds. Hence, multiple GE approaches will provide a more rapid method of
creating novel variations in varieties.

5. Utilization of CRISPR/Cas9 for Crop Domestication

Domestication of crops and plant breeding led to the development of crops with
a high yield that is adjusted to native growing circumstances. Nevertheless, the rising
human population faces a number of agricultural challenges, comprising climate alteration,
variations in abiotic and biotic stresses, and damage of arable land, alongside a claim for
more maintainable and defined agricultural practices. Relatives of modern cultivated and
orphans’ crops are considered as an important source of novel variation. However, their
low yield and undesirable look prevent their commercial cultivation [212]. Newly, the
idea ofde novosubjugation via gene manipulation has been sightseen as a mechanism to
bring the wild and orphan crops under domestication rapidly, and therefore advantage
from recalled genetic difference and from the features of domesticated plants [213]. This is
mainly promising; meanwhile, many classical domesticated genes are perfect candidates for
Cas base editing of genes: they are well categorized, have simple genetic architecture, and
are monogenetic in nature [214] milarly, ground cherry has alot of unwanted characteristics,
like small fruit and a strong stem, which cause fruit dropping. CRISPR base gene-editing
technique was used to mutate the gene SP5G, which caused a large number of fruits [129].
These studies prove that Cas-based gene editing can increase the speed of domestication
and increase the worth and use of orphan crops.

CRISPR/Cas9 is now being used to domesticate wild plants to serve human needs.
Ancient farmers began domesticating all main crops, including rice, wheat, and maize.
Nevertheless, our descendants used only a restricted number of originator species during
domestication and simply selected plants with better characteristics, such as high yield and
ease of breeding, which resulted in a decline in the natural variability of plants. Recalling
that genetic diversity is a main concern in the selection process, domestication of wild
crops or plants may preserve this diversity. The CRISPR/Cas9 tool has been used to
domesticate wild tomatoes, which are tolerant to stress but present with many defaults in
fruit production [213]. Six QTLs that were significant for yield were manipulated in one
study, and all lines showed enhanced fruit size and fruit number [213]. Many other crops,
such as potatoes, bananas, and quinoa, are important locally, have good nutritional value,
and are well adapted to local habitats. Despite these features, their low yield and fruit drop
prevent their cultivation at larger scales. CRISPR/Cas9 is a powerful tool for manipulating
genes and creating desirable crop features. This technique was recently applied to increase
flower production and fruit size in ground cherries [129]. With the discovery of genes
governing the domestication process, we are confident that we can engineer the genome
and increase global food security. To improve the efficiency of genome editing using
CRISPR/Cas9, here are the novel techniques by which we can improve it. The first step
is we need to do an efficient screening of our desired traits that need to be edited. The
knowledge of genetic information about desired traits is a prerequisite in genetic editing,
whether it is polygenic or monogenetic. The selection of an efficient tool is important to
get good results for editing. Off-target effects should get noticed, and it can be done by
designing those sequences which have a close affinity towards each other. The challenges
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in the agricultural sector are posing a serious threat to crop production. There are many
sources of genetic variation which can be utilized and explored using knockout methods
to bring desirable changes to meet the need of agricultural crops. The more the efficacy
of CRISPR/Cas9, the more the chances of efficient editing will increase, and the greater
the desirable results. Novel strategies to improve genome editing using CRISPR/Cas9 are
illustrated in Figure 4.
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Figure 4. Novel strategies to improve genome edit using Cas9. The editing efficiency of Cas9 could
be enhanced by an efficient screening of targeted characters, exploration of genetic material via the
knockout of genes, and the use of an ideal gene transformation system.

Domestication of crops and plant breeding led to the development of crops with
high yields, which are adjusted to native growing circumstances. Nevertheless, the rising
human population faces a number of agricultural encounters, comprising climate alteration,
variations in abiotic and biotic stresses, and damage of arable land, alongside a claim for
more maintainable and defined agricultural practices. Relatives of modern cultivated and
orphans’ crops are considered as an important source of novel variation. However, their
low yield and undesirable look prevent their commercial cultivation [212]. Newly, the
idea ofde novosubjugation via gene manipulation has been sightseen as a mechanism to
bring the wild and orphan crops under domestication rapidly, and therefore advantage
from recalled genetic difference and from the features of domesticated plants [213]. This is
mainly promising; meanwhile, many classical domesticated genes are perfect candidates
for Cas base editing of genes: they are well categorized, have simple genetic architecture,
and are monogenetic in nature [214].

6. Challenges and Limitations of CRISPR/Cas9 Application

CRISPR/Cas9 has several applications in plant breeding, but there are certain lim-
itations. The main challenge is the availability of a small gene pool of important traits;
hence, gene availability is important for this tool. Therefore, it is crucial to decode genomic
sequence evidence and to investigate valuable genetic resources to improve major crops.
It is important to remember that other challenges associated with this technique include
the lack of efficient transformation techniques and plant regeneration from cultures that
are complex and time-consuming processes. Biosafety issues hinder its application in crop
development. Owing to improvements in identification methods, plant mutants with off-
target properties can be recognized and detached by separation during successive crosses.
In the future, off-target effects using these techniques may be overcome by sgRNAs with
high attraction for directed sequences and the choice of Cas9 with high fidelity, comprising
good experimental measures. The other chief concern is the issues related to the com-
mercialization of genome-amended crops because these conditions are not encouraging.
Recently, the Court of Justice of the European Union stated that genome-amended crops
should focus on the same principles as other genetically improved crops [215]. This ruling
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may delay investment in this technique in the EU. CRISPR has many drawbacks as it does
not occur naturally in plants, which means that CRISPR/Cas9 proteins must be moved
into plant cells which is a time-consuming process [216] and occasionally needs optimiza-
tion of codon if Cas9 is from dissimilar backgrounds [217]. The incompetent transfer of
CRISPR/dCas9 into the plants is the main obstacle to understanding the prospective of this
tool. This is mostly due to the resistance of plant tissue and the incapability of plant tissue
to redevelop. Therefore, a new transfer technique like direct transfer of Cas9 constructs
into plant apical meristem to circumvent tissue culture is needed [218].

With more comprehensive research and more developments in this genome expur-
gation tool, the CRISPR/Cas9 system may play a significant role in breeding new crop
plants for progress toward a sustainable agricultural system that may support a rapidly
increasing global population. The efficiency of this technique is restricted because of its
large size; thus, it is not suitable for packing into viral vectors for delivery into somatic
tissues. For efficient genome editing, the application of CRISPR/Cas9 would yield the best
results. CRISPR/Cas9 application can induce numerous accidental off-target changes in
the genome [219]. Nevertheless, new CRISPR/Cas9 variants have improved the editing
effectiveness of target bases in the sequence desired by the identification of dissimilar
PAMs [220]. Problems occur in the commercialization of transgenic crops, thus articulating
challenges with CRISPR/Cas9 application in several countries, mainly because of the costs
and restrictions imposed by the regulatory system for the field release of genetically altered
organisms. Some of the main challenges of CRISPR/Cas9 delivery system are a lack of
efficacy or lower efficiency of the delivery system, which limits its use on a larger scale
of genome editing. CRISPR/Cas9 based bystander mutations can cause several dysregu-
lations in plants, so this is a huge challenge that needs to be addressed. The presence of
off-target effects can minimize our editing efficiency, and this should be reduced using a
careful selection of off-target sequences. The off-target effects consist ofunplanned points
mutations, deletions, insertions inversions, as well as translocations. Multiple studies using
early CRISPR/Cas9 agents revealed that larger than 50% of RNA-guided endonuclease-
induced mutations were not generating on-target. Several techniques have been developed
to reduce these off-target effects including, biased and unbiased off-target identification,
cytosine adenine base manipulators, prime editing as well as truncated called gRNAs [221].
The inefficient Cas9 protein delivery system makes it difficult to reduce the duration of
genomic DNA. The unequal molar ratio of sgRNA and CRISPR/Cas9 hinders the use of
/CRISPR/Cas9, which is a major limitation as shown in Figure 5.

 

 

Fig 3 

Figure 5. Challenges of CRISPR/Cas9 gene editing. Cas9 has low efficiency of transformation
methods, lack of efficiency of the delivery system, and difficultyin achieving an equal molar ratio of
Cas9 and sgRNA. These challenges hinder its use for further crops improvement on a larger scale.
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7. Conclusions and Future Prospects

The goal of producing safe and low-cost crops to meet the increasing global demands
of food using various practices may pose challenges. The use of modern techniques to
boost crop varieties will be an essential feature. The use of advanced breeding methods
allows scientists to rapidly manipulate genes and insert the gene of interest into the genome
compared to classical breeding methods. CRISPR/Cas9 is an essential revolutionary tool
for gene editing. Therefore, in the future, the use of this technique to enhance yield, quality,
and disease resistance in crops may be a significant field of research. During the last
5 years, it has been applied dynamically in myriad plant systems for conducting practical
studies, combating stress-induced responses, and increasing significant agronomic charac-
teristics. However, multiple modifications to this tool should lead to an increase in target
effectiveness, and most studies are introductory and warrant development. Nonetheless,
CRISPR/Cas9-based genome manipulation will attain a reputation and will be a critical
method to attain the generation of “suitably manipulated” plants to help achieve the zero-
starvation objective and to realize sustainable food production for the increasing human
population. The progress in modern breeding methods has been remarkably accepted as a
novelty in our capability to alter genomes and has consequently confronted our considera-
tion of existing regulatory rules. As GE tools are widely used in plants, the protection of
GE plants is a problem that warrants discussion worldwide. The regulatory rules for new
crop novelties must be multidimensional, precise, and capable of differentiating between
GE and genetically modified (GM) crops. Innovative systems biology, next-generation
sequencing, and the newest advances in functional genomic methods, cohesive with in-
novative CRISPR/Cas9 tools, will allow smart crop development with greater yield and
enhanced features. The CRISPR/Cas9 tool and speed breeding programs can be used to
ensure global food security. CRISPR/Cas9 based genome editing system has the advantage
of mixing it with next-generation sequencing. Now researchers can conduct comprehensive
mutational screening. Optimization and proper designing of gRNAs are very important at
each phase to avoid or reduce the deleterious effects while doing off-target gene editing.
Therefore, the use of the CRISPR/CAS9 library has several advantages like high multiplex-
ing, specificity as well as high throughout targeting of a gene. To reduce or nullify negative
results, it is important to do a quality check of the CRISPR library at each point during the
screening procedure. Analysis of gene function by the above method is critical to recognize
the function of genes. Newly exposed CRISPR/Cas9 methods and the development of
novel tools are being uninterruptedly described, signifying that CRISPR/Cas9 toolbox
for plant engineering will increase further in the future. This set of tools will deliver new
methods to achieve defined genome editing without any bits of transgenes residual in
genome-edited plants.
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