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Captive animals and wild animals may exhibit different characteristics due to the
heterogeneity of their living environments. The gut microbiota play an important role in
the digestion and absorption, energy metabolism, immune regulation, and physiological
health of the host. However, information about the gut microbiota of captive and
wild Gekko gecko is currently limited. To determine the difference in gut microbiota
community composition, diversity, and structure between captive and wild geckos,
we used the Illumina miseq platform to conduct high-throughput sequencing and
bioinformatics analysis of the v3–v4 hypervariable region of 16S rRNA in 54 gecko
samples. Our results showed that Proteobacteria, Firmicutes, Bacteroidetes, and
Actinobacteria were the dominant gut microbiota phyla of the gecko. The dominant
genera comprised mainly Pseudomonas, Burkholderia-caballeronia-paraburkholderia,
Ralstonia, Romboutsia, and Bacteroides. Captive geckos had significantly higher
alpha diversity and potential pathogenic bacteria than wild populations. Moreover,
significant differences in beta diversity of gut microbiota were observed between two
populations. Functional prediction analysis showed that the relative abundance of
functional pathways of wild geckos was more higher in metabolism, genetic information
processing and organismal system function than those in captive geckos. Total length
significantly affected gut microbial community (R2 = 0.4527, p = 0.001) and explained
10.45% of the total variation for gut microbial community variance between two groups.
These results may be related to differences in diet and living environment between two
populations, suggesting that the management of captive populations should mimic
wild environments to the greatest extent possible to reduce the impact on their
gut microbiota.

Keywords: Gekko gecko, captive population, 16S rRNA, gut microbiota, wildlife, conservation, microbial
community diversity

INTRODUCTION

The gut microbiota has symbiosis and coordinated evolution with the host, forming an overall
system of interaction (Nicholson et al., 2012; Tremaroli and Bäckhed, 2012; Flint et al., 2015). The
gut microbiota plays important roles in host growth and development (Egert et al., 2006; Sommer
and Bäckhed, 2013), impacting energy budget (Semova et al., 2012), nutritional metabolism (Cani
and Everard, 2016; Greer et al., 2016), vitamin synthesis (LeBlanc et al., 2013), digestion and
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absorption, colonization resistance and immune homeostasis
(Hooper et al., 2012; Bengmark, 2013), and behavior and emotion
(Heijtz et al., 2011; Ezenwa et al., 2012). At the same time, various
factors also affect the gut microbiota, including host diet (Ley
et al., 2008; De Filippo et al., 2010; Muegge et al., 2011; Wu et al.,
2011), genetic and environmental history (Moeller et al., 2013),
physiological status (Amato et al., 2013; McCord et al., 2014), and
external environmental factors. Studies on human gut microbiota
have identified the relationship between gut microbiota disorders
and host infections with opportunistic pathogens (Shin et al.,
2015), allergies (Bisgaard et al., 2011), and diseases (Ley et al.,
2006; Sobhani et al., 2011; Vaarala, 2011).

Currently, the gut microbiota has been widely studied in
invertebrates (Clark and Walker, 2018), amphibians (Bletz et al.,
2016) and reptiles (Trevelline et al., 2019; Zhang et al., 2019
Eliades et al., 2021), mammals (Hu et al., 2017; Song et al., 2017; Li
et al., 2021), and birds (Ryu et al., 2012; Waite et al., 2012; Grond
et al., 2018). In recent years, research into the gut microbiota
in captive animals, such as Takydromus septentrionalis (Zhou
et al., 2020), Neotoma albigula (Martínez-Mota et al., 2020), and
Macaca mulatta (Chen et al., 2019) has also attracted extensive
attention. The gut microbiota of captive animals may differ
from those of wild animals due to dietary differences, antibiotic
treatment, human activities, and exposure to other species in
captivity (Alfano et al., 2015; Clayton et al., 2016; Chen et al.,
2019; Eliades et al., 2021). Studies on mammals and reptiles—
such as Hydrorga leptonyx (Nelson et al., 2013), Peromyscus
maniculatus (Schmidt et al., 2019), Macaca mulatta (Chen et al.,
2019) and Shinisaurus crocodilurus (Jiang et al., 2017), Crocodylus
siamensis (Lin et al., 2019), and Brachylophus vitiensis (Eliades
et al., 2021)—have confirmed that captivity may change the
composition and abundance of the gut microbiota. Moreover,
captivity may lead to an increase in potential pathogens in
the animal gut microbiota, leading to an increased incidence
of disease (Berry et al., 2012; Amato et al., 2016; Kohl et al.,
2016; Xie et al., 2016). Conversely, a few studies reported that
captivity may improve host immune status (Montalban-Arques
et al., 2015), and even have beneficial effects on the development
and behavior of the host (Heijtz et al., 2011). Therefore, an
evaluation of the effects of captivity on the gut microbiota of
wild animals in conservation and rescue breeding is necessary
(Eliades et al., 2021).

In China, Tokay geckos are distributed mainly in Guangdong
province, Guangxi Zhuang autonomous region, Yunnan
province, Fujian province, and Taiwan (Huang et al., 1995; Tang
et al., 1997). Geckos are used in traditional Chinese medicine
(Li et al., 1996; Bauer, 2009). While medical demand for geckos
is increasing, the captive breeding population cannot meet the
market demand (Li et al., 1996). In addition, the natural habitat
of geckos has been destroyed and gradually reduced, affecting
their survival (Zhang et al., 2015). These factors have caused a
decline in wild gecko populations, rendering ex-situ conservation
the effective conservation approach for this species. Due to the
heterogeneity of captive and natural environments, however,
captive and wild geckos may differ greatly in diet composition.
Moreover, captive populations are exposed to a greater extent
to human activity than wild populations. The effect of different

living environments on the gut microbiota of geckos remains
unclear. We therefore analyzed the gut microbiota community
of captive and wild geckos by 16S rRNA gene sequencing
technology, and compared the microbial community diversity,
richness, structure, and function of the two groups. Considering
the differences in living environment between wild animals and
captive animals, we propose the following predictions: (1) wild
geckos have a higher diversity of gut microbiota than captive
geckos and (2) the gut microbiota of captive geckos include more
opportunistic pathogens.

MATERIALS AND METHODS

Sample Collection
We collected a total of 54 samples, including 24 from wild
geckos (18 males and 6 females) and 30 from captive geckos (22
males and 8 females). We captured the wild geckos in Jiangzhou
District, Chongzuo City, Guangxi, and acquired the captive
geckos from Nanning Junhao Wildlife Science and Technology
Development Co., Ltd. Wild geckos eat mainly insects and
moths from their natural environment (Liu et al., 1981; Tang
et al., 1997). Captive individuals are fed on Zophobas morio
and Tenebrio molitor and kept in temperature conditions of
about 20◦C. Average total length (TL) of wild and captive geckos
is 233.92 ± 38.93 mm and 266.38 ± 32.82 mm, respectively.
All Tokay geckos were healthy during the sampling period
(Supplementary Table 1).

We used cloacal swabs—an acceptable source for non-
destructive sampling of the gut microbiota of reptiles (Colston
et al., 2015; Jiang et al., 2017)—to collect the gut microbiota
of geckos. After sampling, we released all individuals back into
the site of capture. We stored samples in a thermal insulation
bucket with ice bags and transported them to a refrigerator at
–20◦C for storage.

DNA Extraction, PCR Amplification, and
Sequencing
We extracted the total gut microbiota community genomic
DNA from all samples using the FastDNA R© Spin Kit for Soil
(MP Biomedicals, United States) based on the manufacturer’s
instructions. We detected the extraction quality of DNA
by 1% agarose gel electrophoresis and determined the
concentration and purity of DNA with a NanoDrop 2000 UV-vis
spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE, United States). We amplified the hypervariable region
v3–v4 of the bacterial 16S rRNA gene with primer pairs
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) by an ABI GeneAmp R©

9700 polymerase chain reaction (PCR) thermocycler (ABI, CA,
United States) (Mori et al., 2014; Chen et al., 2019). Our PCR
reaction parameters included initial denaturation at 95◦C for
3 min, followed by 27 cycles of denaturation at 95◦C for 30 s,
annealing at 55◦C for 30 s and extension at 72◦C for 45 s,
and ended with a final extension at 72◦C for 10 min. For the
PCR test we used TransGen AP221-02: TransStart Fastpfu
DNA Polymerase with 20 µL of reaction system containing
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5 × FastPfu Buffer 4 µL, 2.5 mM deoxy-ribonucleoside
triphosphates (dNTPs) 2 µL, Forward Primer (5 µM) 0.8 µL,
Reverse Primer (5 µM) 0.8 µL, FastPfu Polymerase 0.4 µL,
bovine serum albumin (BSA) 0.2 µL, template DNA 10 ng, and
finally ddH2O up to 20 µL. We performed PCR reactions in
triplicate. We extracted the PCR product from 2% agarose gel,
purified it using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, United States) according to
manufacturer’s instructions, and quantified it using QuantusTM

Fluorometer (Promega, United States). We pooled purified
amplicons in equimolar and paired-end sequenced them
(2 × 300) on an Illumina miseq platform (Illumina, San Diego,
CA, United States) according to the standard protocols by
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

Processing of Sequencing Data and
Quality Evaluation
We demultiplexed the raw 16S rRNA gene sequencing reads,
quality-filtered them by Trimmomatic, and merged them by
FLASH with the following criteria: (i) we truncated the 300 bp
reads at any site receiving an average quality score of <20 over
a 50 bp sliding window, and discarded both the truncated reads
shorter than 50 bp and reads containing ambiguous characters;
(ii) we assembled only overlapping sequences longer than 10 bp
according to their overlapped sequence; we adopted a maximum
mismatch ratio of overlap region of 0.2; we discarded reads
that could not be assembled; (iii) we distinguished samples
according to the barcode and primers, and adjusted the sequence
direction, exact barcode matching, and 2 nucleotide mismatches
in primer matching.

We obtained a total of 2,603,017 raw sequences from the
v3–v4 region of the hypervariable region of 16S rRNA gene
in 54 samples. After quality control, 2,504,574 sequences were
effective (average ± SD = 48,204.02 ± 9,796.15 for each sample),
and the average length of the sequences was 420.66 ± 7.13 bp
(Supplementary Table 2). Our rarefaction curve tended to be flat,
indicating that the amount of sequencing was reasonable, and the
sequencing depth was sufficient (Supplementary Figure 1). The
Good’s coverage estimates of the 54 samples ranged from 98.89%
to 99.91%, indicating that we had identified almost all bacterial
communities in the samples (Table 1).

Bioinformatics Analysis
We clustered operational taxonomic units (OTUs) with 97%
similarity cutoff (Edgar, 2013) using UPARSE (version 7.0.10901)
and identified and removed chimeric sequences using UCHIME.
We analyzed the taxonomy of each OTU representative sequence
by RDP Classifier (version 2.112) against the 16S rRNA database
(for instance, Silva Release1383) using a confidence threshold of
70%. We used rarefaction curves to reflect whether sequencing
data was reasonable, and the coverage index to indicate the real
situation of sequencing results. We used the Mothur program to
calculate the alpha diversity index to reflect community diversity

1http://www.drive5.com/uparse/
2http://sourceforge.net/projects/rdp-classifier/
3https://www.arb-silva.de/

(Shannon index and Simpson index) and community richness
(Abundance-based Coverage Estimator (Ace) and Chao index)
(version v.1.30.24). We used the Bray–Curtis distance algorithm
for sample hierarchical cluster analysis of gut microbiota of
captive and wild geckos and assessed beta diversity by principal
coordinate analysis (PCoA) based on weighted and unweighted
UniFrac distance metrics using QIIME (version 1.9.15). Adonis
permutational multivariate analysis (Adonis/PERMANOVA)
was performed to evaluate the dissimilarity among samples with
permutation set at 999. We used the Wilcoxon rank-sum test to
analyze gut microbiota diversity differences between wild and
captive groups and adjusted the p values under the control of
FDR level at 0.05. We performed linear discriminant analysis
(LDA) effect size (LEfSe) analyses to identify potential microbial
biomarkers between groups.6 For the LDA interpretation, we
considered differences as significant for a p < 0.05 and an
LDA score >4. We predicted functional profiles of microbial
communities using PICRUSt2 (phylogenetic investigation of
communities by reconstruction of unobserved states 2; Langille
et al., 2013) (version 2.2.07). We performed the Wilcoxon rank-
sum test to test the differences of functional pathways between
the two groups in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) using IBM SPSS (version 23.0), and the threshold on
the p value was set at 0.05. Detrended correspondence analysis
(DCA) was conducted to obtain the length of first axis (R
version 3.3.1, vegan package), RDA (Redundancy analysis), or
CCA (Canonical correlation analysis) was chosen based on the
value of DCA 1 (>4, CCA; <3 RDA; 3–4 RDA/CCA). The
DCA analysis showed that the length of DCA 1 was 6.05,
indicating a unimodal-model-based CCA analysis was more
suitable than RDA analysis to test the effect of geckos’ total
length and sex on microbial community at OTU level. A variation
partitioning analysis (VPA) was conducted to examine the
contribution of total length and sex factors in influencing
microbial community structure as determined by CCA analysis
(R version 3.3.1, vegan package). Further, the partial Mantel test
was used to detect the Bray–Curtis distance matrix correlation
between total length and sex and microbial community with
999 permutations [QIIME version 1.9.1 (see footnote 5)]. We
used the non-parametric Spearman correlation test to analyze
the correlation between total length and sex of geckos and the
relative abundance of the top 50 microbial genera (R version
3.3.1, pheatmap package).

RESULTS

Differences in Alpha and Beta Diversity
of Gut Microbiota
Alpha diversity analysis showed that there were significant
differences in community richness and diversity (p < 0.05;
Table 1); captive geckos had higher Ace, Chao, and Shannon

4https://www.mothur.org/wiki/Download_mothur
5http://qiime.org/install/index.html
6http://huttenhower.sph.harvard.edu/galaxy/root?tool_id=lefse_upload
7https://github.com/picrust/picrust2/
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TABLE 1 | Alpha diversity index of the gut microbiota in Tokay gecko.

Estimators Captive Wild p value

Shannon 2.686 ± 0.603 1.930 ± 1.240 0.004

Simpson 0.207 ± 0.088 0.398 ± 0.278 0.025

Ace 494.530 ± 111.510 401.820 ± 304.350 0.001

Chao 497.870 ± 109.330 383.370 ± 301.540 <0.001

Good’s coverage 0.998 ± 0.001 0.997 ± 0.002 0.577

indices and a lower Simpson index than those of wild geckos
(Table 1 and Figure 1).

Hierarchical cluster analysis based on Bray–Curtis distance
algorithm showed that the wild and captive geckos divided
into five small branches in total, without making two specific
clusters according to groups (Figure 2). Our analysis clustered
captive geckos in two branches, and wild geckos in three
smaller branches. PCoA based on unweighted and weighted
UniFrac distances revealed high clustering of the gut microbiota
according to group, highlighting a significant separation between
captive and wild geckos (Unweighted UniFrac: R2 = 0.2023,
p = 0.001; Weighted UniFrac: R2 = 0.2177, p = 0.001;
Figure 3).

Differences in the Composition and
Abundance of Gut Microbiota
We obtained 4,851 OTUs at 97% sequence similarity and
classified them into 52 phyla, 153 classes, 353 orders, 586 families,

and 1,320 genera. Of the 4,851 OTUs, 1,290 OTUs were shared by
captive and wild geckos, whereas 2,130 OTUs and 1,431 OTUs
were unique to captive geckos and wild geckos, respectively
(Figure 4A). At the genus level, a total of 685 genera were shared
by captive and wild geckos, with 358 genera specific to the captive
group and 277 genera specific to the wild group (Figure 4B).

At the phylum level, Proteobacteria were the predominant
phylum in two groups (captive: 63.88% ± 22.99%; wild:
50.67% ± 36.90%), followed by Firmicutes (captive:
15.29% ± 11.18%; wild: 31.45% ± 33.94%), Bacteroidetes
(captive: 14.55% ± 22.11%; wild: 6.90% ± 9.90%), and
Actinobacteria (captive: 3.51% ± 2.96%; wild: 8.87% ± 10.41%),
respectively; Wilcoxon rank-sum test showed that the relative
abundance of Acidobacteriota, Chloroflexi, Deferribacterota,
and Patescibacteria was higher in the captive geckos than those
in wild geckos (Figure 5A; Supplementary Table 3).

At the genus level, the main gut microbiota included
Burkholderia-caballeronia-paraburkholderia (captive:
27.77% ± 13.56%; wild: 6.73% ± 8.94%), Ralstonia
(captive: 23.05% ± 11.21%; wild: 0.59% ± 0.47%), Pseudomonas
(captive: 0.41% ± 0.76%; wild: 25.40% ± 38.72%), and
Bacteroides (captive 8.59% ± 18.71%; wild: 4.16% ± 6.38%);
Wilcoxon rank-sum test showed that the relative abundance
of Romboutsia and Rhodococcus was higher in wild geckos,
and the relative proportion of Burkholderia-caballeronia-
paraburkholderia, Ralstonia, Salmonella, Staphylococcus,
Citrobacter, and Mycoplasma was higher in captive geckos
(Figure 5B and Supplementary Table 4).

FIGURE 1 | Alpha diversity of gut microbiota between captive and wild geckos. (A) Shannon index; (B) Simpson index; (C) Ace index; (D) Chao index. Significant
difference 0.01 < p ≤ 0.05 was marked as “*”, 0.001 < p ≤ 0.01 was marked as “**”, and p ≤ 0.001 was marked as “***”.
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FIGURE 2 | Hierarchical cluster analysis based on Bray–Curtis distance algorithm at the OTU level.

LEfSe analysis (LDA score > 4.0) showed that the order
Burkholderiales, the family Burkholderiaceae, and the
class Gammaproteobacteria were the most important taxa
contributing to gut microbiota differences between captive and
wild geckos (Figure 6).

Gut Microbiota Functional Profile
Prediction
Our results identified significant differences between two
groups in three pathways at the KEGG pathway level 1
(Wilcoxon rank-sum test, p < 0.05), including those in
metabolism, genetic information processing, and organismal
systems, with a greater relative abundance in wild geckos
than in captive geckos (Figure 7A). We detected 46
functional pathways at the KEGG pathway level 2, among
which we identified significant differences in 27 pathways
between captive and wild samples. The relative abundance
of amino acid metabolism, energy metabolism and lipid
metabolism in the gut microbiota of wild samples were
higher than those of the captive population. However, we
detected significant enrichment in global and overview maps,
carbohydrate metabolism, and membrane transport in captive
samples (Figure 7B).

Effects of Total Length and Sex on Gut
Microbiota of Tokay Gecko
Canonical correlation analysis results showed the first two axes
explained 5.42% of total variance (CCA1: 4.04%; CCA2: 1.38%).
Total length (R2 = 0.4527, p = 0.001) and sex (R2 = 0.3705,
p = 0.001) significantly affected gut microbial community
(Figure 8A). VPA demonstrated that total length of Tokay
geckos explained 10.45% of the total variation for gut microbial
community variance (Figure 8B). A partial Mantel test showed
that total length was weakly and positively correlated with gut
microbial community (r = 0.147, p = 0.019, conditioning on sex),
whereas no significant correlation was observed between sex and
gut microbial community (r = 0.004, p = 0.421, conditioning
on total length). Spearman correlation showed that total
length was significantly positively correlated with Burkholderia-
Caballeronia-Paraburkholderia (r = 0.558, p < 0.001), Ralstonia
(r = 0.478, p < 0.001), and Staphylococcus (r = 0.309, p = 0.023)
(Supplementary Table 5).

DISCUSSION

In terms of microbial composition, Proteobacteria, Firmicutes
and Bacteroidetes were the most dominant phyla in both
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FIGURE 3 | Difference in gut microbiota community structure between captive
and wild geckos using Adonis test (permutation = 999). (A) A principal
coordinate analysis of unweighted UniFrac distances; (B) A principal
coordinate analysis of weighted UniFrac distances.

FIGURE 4 | Venn diagram of gut microbiota in Tokay gecko at the OTU (A)
and genus (B) level.

captive and wild geckos, suggesting these microbes may play
an important role in maintaining relative stability of gut
microbiome. Other studies have also shown these microbes to
be the main dominant phyla among vertebrate gut microbiota,
including Moschus berezovskii and Moschus chrysogaster (Hu
et al., 2017), Ciconia boyciana (Wu et al., 2021), Naja atra,

Ptyas mucosus, Elaphe carinata, and Deinagkistrodon acutus
(Zhang et al., 2019). However, we observed significant differences
in microbial community structure between the captive and
the wild geckos (Figures 2, 3). We also discovered a higher
alpha diversity of gut microbiota in captive geckos than that
in wild geckos, which was inconsistent with our prediction 1.
Similar results have been found in several species, including
Takifugu bimaculatus (Lei et al., 2020), Shinisaurus crocodilurus
(Tang et al., 2020), Psittaciformes (Xenoulis et al., 2010),
and Macaca mulatta (Chen et al., 2019). Moreover, captive
geckos contained a larger total number of OTUs and a
greater abundance of unique OTUs. The captive environment
increased human contact, individual interaction, and drug
use (McKenzie et al., 2017), which might allow a greater
microbial diversity and more distinct taxa to colonize the
intestinal tract of captive geckos. In addition, differences
in dietary composition and quantities may also play an
important role (De Filippo et al., 2010; Jiang et al., 2017).
Captive geckos feed mainly on locusts, woodlouse worms
and barley worms, whereas wild geckos eat mainly insects
and moths (Liu et al., 1981; Tang et al., 1997). Moreover,
captive geckos are fed adequate food at regular intervals,
but wild geckos have erratic diets because of their need to
search for natural food and the fluctuations in weather or
habitat conditions. Therefore, although the gut microbiota of
geckos inhabiting different living environments did not differ
in their most dominant phyla, the diversity and structure
of the microbial community differed significantly, indicating
that the captive environment had an obvious influence on
gecko gut microbiota.

At the genus level, we detected a higher relative abundance
of Burkholderia-caballeronia-paraburkholderia, Ralstonia, and
Staphylococcus in captive geckos. Many of the species in these
genera have been confirmed to be pathogenic in humans
and animals; for instance, Burkholderia pseudomallei was
known to cause melioidoisis (Price et al., 2010); Ralstonia was
proinflammatory during Parkinson’s disease (Keshavarzian
et al., 2015). The higher abundance of opportunistic pathogens
in captive geckos was consistent with our prediction 2. In
captivity, both dietary shift, constant cohabitation with other
congeners, limited range of activity, increased exposure to
human-related microbes, and medicine intervention provide
pathways for transmission of opportunistic pathogens,
leading to differences in the gut microbial communities of
captive and wild populations (Jiang et al., 2017; McKenzie
et al., 2017). Nonetheless, the causes of differences in the
gut microbiota between wild and captive geckos were
unknown, since environmental microbes and dietary data
were not collected. In addition, our result found total
length was significantly positively correlated with these taxa
(Supplementary Table 5). Thus, it is difficult to determine
whether these bacteria, which are pathogenic to other animals,
have an adverse effect on the geckos. More data are needed
for further study.

Firmicutes and Bacteroidetes have an impact on the host’s
metabolism and immune function mechanisms (Thomas et al.,
2011; Zhang et al., 2019). Firmicutes can help to digest
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FIGURE 5 | Differences in gut microbiota composition between captive and wild geckos at the phylum level (A) and genus level (B) of the top 15 taxa. Significant
difference 0.01 < p ≤ 0.05 was marked as “*”, and p ≤ 0.001 was marked as “****”.

and absorb proteins and other nutrients (Kaakoush, 2015;
Bernini et al., 2016; Berry, 2016). Most species of Bacteroidetes
contribute to the degradation of carbohydrates and proteins
(Fernando et al., 2010; Jami et al., 2014). The Firmicutes to
Bacteroidetes (F/B) ratio has been studied in both humans
and animals and appears to be related to host obesity (Ley
et al., 2006; Turnbaugh et al., 2006; Vebo et al., 2016). An
increased F/B ratio in gut microbiota indicates a greater energy
harvesting capacity for hosts (Turnbaugh et al., 2006; Murphy
et al., 2010). In our study, the F/B ratio in the gut microbiota
of wild geckos was higher than that of captive geckos. While
the diet of captive geckos includes Z. morio and T. molitor,
with high protein and fat content, the diet of wild geckos
remains unclear due to limiting conditions in the field. The
higher F/B ratio in the wild geckos indicates gut microbiota

more efficient at digesting food to help hosts obtain energy in
wild populations—a favorable adaptive strategy for wild geckos
that survive in harsh natural environments (Jami et al., 2014;
Wu et al., 2021). Furthermore, the KEGG pathway analysis
revealed that metabolism, genetic information processing, and
organismal systems pathways were significantly enriched in wild
geckos, providing further evidence that wild geckos may improve
adaptability through the strong metabolic potential provided by
their gut microbiota.

In summary, there were significant differences between
captive and wild geckos in their respective gut microbiota
community structures and diversity. Captive geckos had a
higher diversity of gut microbiota, but more pathogenic
bacteria, while wild geckos had a higher F/B ratio and more
metabolism, genetic information processing, and organismal
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FIGURE 6 | LEfSe (LDA Effect Size) analysis of the gut microbiota in Tokay gecko (LDA score > 4.0).
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FIGURE 7 | Differences in the functional profiles in level 1 (A) and level 2 (B) pathways of the gut microbiota in Tokay gecko. The p value was represented by
asterisks. Significant difference 0.01 < p < 0.05 was marked as “*”, 0.001 < p < 0.01 was marked as “**”, and p < 0.001 was marked as “***”.

FIGURE 8 | Effects of total length and sex on gut microbiota of Tokay gecko (A). Canonical correlation analysis of the microbial community on OTU level and
physical parameters of Tokay gecko (B).

systems pathways. These differences are probably related to
differences in living environments and diets of the two gecko
populations. Our results could inform researchers in their
efforts to further understand the relationship between the
gut microbiota of geckos and their living environments and
contribute to the comprehensive protection and management of
this species in the future.
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