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Abstract: Image analysis is widely used for accurate and efficient plant monitoring. Plants have
complex three-dimensional (3D) structures; hence, 3D image acquisition and analysis is useful
for determining the status of plants. Here, 3D images of plants were reconstructed using a
photogrammetric approach, called “structure from motion”. Chlorophyll content is an important
parameter that determines the status of plants. Chlorophyll content was estimated from 3D images
of plants with color information. To observe changes in the chlorophyll content and plant structure,
a potted plant was kept for five days under a water stress condition and its 3D images were taken once
a day. As a result, the normalized Red value and the chlorophyll content were correlated; a high R2

value (0.81) was obtained. The absolute error of the chlorophyll content estimation in cross-validation
studies was 4.0 × 10−2 µg/mm2. At the same time, the structural parameters (i.e., the leaf inclination
angle and the azimuthal angle) were calculated by simultaneously monitoring the changes in the
plant’s status in terms of its chlorophyll content and structural parameters. By combining these
parameters related to plant information in plant image analysis, early detection of plant stressors,
such as water stress, becomes possible.

Keywords: azimuthal angle; chlorophyll content; growth monitoring; image analysis; leaf inclination
angle; plant; remote sensing; structural parameter; structure from motion; three-dimensional
(3D) imaging

1. Introduction

Accurate monitoring of plant growth and structural parameters is important for crop yield
estimation, species identification, determining vegetative growth, tracking illness, and monitoring
insect infestation [1–3]. Two-dimensional (2D) imaging techniques have been utilized for obtaining the
structural parameters of plants [4]. However, a 2D image is obtained by projecting the corresponding
three-dimensional (3D) object in one direction; thus, because plants have complex 3D structures,
it becomes difficult to accurately estimate their structural parameters. Thus, because 2D projections
filter out potentially important information and fail to exploit the full potential of shape analysis,
measurement of 3D plant architecture has become very important in plant biology and plant
breeding [5–8]. Many efforts have been made to develop methods for 3D plant structural parameters
estimation using 3D image acquisition methods; these methods use a 3D scanner (LIDAR; Light
Detection and Ranging) and a photogrammetric approach called “structure from motion” (SfM). Using
these methods, plant structural parameters, such as the leaf area index, leaf inclination angle, location,
height, and volume, can be estimated [9–28]. The SfM methods are especially useful as they offer
detailed 3D models of small plants with affordable cameras if the sample image is clearly taken.

In addition to these structural parameters, estimating those parameters that are related to the
plant physiology is also important. Chlorophyll content is one widely known example of such a
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physiologically relevant parameter. Chlorophyll is a basic component of plants and plays a vital role in
the plant photosynthesis process. Its content is closely related to the photosynthetic capacity and the
foliar nitrogen content [29,30]. Thus, chlorophyll is a good indicator of the vegetative growth status,
plant damage, and plant aging. Furthermore, accurate determination of the plant chlorophyll content
has important implications for crop growth monitoring, fertilizer regulation, herbicide application, the
diagnostics of plant stress and activity, and yield assessment [31–33].

Previous studies have attempted to estimate the plant chlorophyll content from 2D images [34–37].
However, chlorophyll is usually 3D-distributed, to optimize the light acquisition for photosynthesis.
Therefore, monitoring of the 3D distribution of chlorophyll is important. Furthermore, analysis that
combines information about both the chlorophyll distribution and plant structure is likely to yield
more detailed information about plants.

Estimations of the plant structural parameters and physiological parameters are often performed
independently; thus, the methodology for exploring the relationship between the plant structural and
physiological properties has not yet been sufficiently developed.

Previously, plant chlorophyll content has been measured using chemical analysis; however, this
process is destructive, laborious, and time-consuming. Alternatively, the plant chlorophyll content can
be estimated using a SPAD meter, which is a handy and lightweight sensor. Yet, using this method, the
chlorophyll distribution along the entire leaf surface cannot be obtained and the spatial 3D distribution
of chlorophyll cannot be obtained [33,38–40].

A previous study utilized a 3D scanner (LiDAR) to measure canopy structures. Subsequently,
some vegetation indices related to the plant chlorophyll content were calculated using the reflectance
information obtained from a simulated forest canopy [41]. Eitel et al. [42] estimated the plant
chlorophyll content using LiDAR with green laser intensity. These authors utilized 3D imaging;
thus, they were able to observe the spatial distribution of chlorophyll. However, LiDARs with green
lasers are not widely available. Additionally, LiDARs are relatively expensive.

In contrast, 3D images can be reconstructed from multiple 2D images, using the SfM approach.
It is possible to estimate the 3D distribution of chlorophyll from the color information. In this study,
the plant chlorophyll content was first estimated using color information from 3D images that were
reconstructed using the SfM methodology. Subsequently, the time series data of the chlorophyll content
and structural parameters were observed and an integrated analysis of the plant 3D structure and
chlorophyll distribution was performed.

2. Materials and Methods

2.1. Plant Material and Its 3D Reconstruction

For the experiments, eggplant plants (Solanum melongena) with height of ~40 cm and six leaves
each were used. The experiment was conducted indoors and a lamp was positioned at a height of
80 cm. It was desired that the target leaves would be illuminated by the light. Firstly, to obtain the
plant 3D images, 2D images were acquired from multiple views. The camera used for the acquisition
of these images was a Canon EOS M2 (Canon Inc., Tokyo, Japan). The camera was handheld and
moved around the sample in a circular fashion. Fifty images were recorded for one sample in order to
obtain clear 3D models. The distance from the camera to the plant ranged from 30 cm to 100 cm. It is
desirable to obtain more than 20 images. If the sample is not too large, 50 images will be enough to
reconstruct a detailed 3D image. In the present study, the images were taken from an oblique angle.
The resolution of the images was 3456 × 5184 pixels. Lower resolutions, such as 2000 × 2000 pixels,
would also be acceptable. The resolution used should be determined based on the sample and
environmental conditions. For the camera calibration and 3D point cloud image construction using the
SfM approach [43–45], the software Agisoft Photoscan Professional (Agisoft LCC, Russia) was used.
To assign a spatial scale and coordinates to the reconstructed 3D models, a cube-shaped box (13 cm ×
12 cm × 9 cm) was positioned next to the plant [46].
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2.2. Chlorophyll Content Estimation from Reconstructed 3D Images

The experimental workflow of the plant chlorophyll content estimation is shown in Figure 1.
After the 3D reconstruction of the prepared sample, its chlorophyll content was estimated using the
normalized Red value (R/(R+G+B)). Chlorophyll absorbs red light; hence, as the plant chlorophyll
content increases, the reflectance decreases and a correlation between the plant chlorophyll content and
the normalized Red value is observed. Other parameters related to plant physiological information,
such as the plant carotenoid content, could potentially be estimated using color information and other
invisible ranges. For this estimation, five potted eggplants were used. A total of 30 points were selected
at random and the normalized Red value for each point was obtained. For the actual chlorophyll
content measurement, the areas on the leaves corresponding to the selected points in the 3D images
were hollowed using a hole punch. Next, the chlorophyll content in these areas was extracted using
80% acetone for 2 days. The amount of extracted chlorophyll was measured using a spectrometer
(Jasco V570, Tokyo, Japan) and the actual chlorophyll content was obtained using the formula reported
by Porra (1989) [47]. The relationship between the normalized Red value and the corresponding
actual chlorophyll content value was calculated. Subsequently, a regression formula obtained from the
relationship was applied to all of the points in the 3D models and the spatial distribution of the plant
chlorophyll content was obtained. To evaluate the chlorophyll estimation accuracy, cross-validation
was performed.
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Figure 1. Flowchart of the validation of chlorophyll estimation from the plant 3D images.

2.3. Observations of the Alternation of Temporal and Spatial Plant Parameters

To monitor changes in the plant chlorophyll content and other plant structural parameters, the
plant samples were kept in a dark room at 20 ◦C. The samples were put under a lamp once a day and
their 3D images were obtained using the SfM method. After the 3D reconstruction, the chlorophyll
content, leaf inclination angles, and azimuthal angles of the samples were calculated. By observing
changes in the leaf inclination and azimuthal angles at different points of the leaves, structural changes
in the different areas of the samples could be observed. During this experiment, water was not
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provided to the samples. To estimate the leaf inclination angle from the 3D images, a plane was fitted
around a target point and its neighboring points [23]. The points used were the ones located within a
cube whose centroid was the target point and the length of one side of the cube was 0.5 cm. Next, the
zenith angle and the azimuthal angle of the vector normal to the fitted plane were calculated for all of
the samples. The zenith angle corresponds to the leaf inclination angle.

3. Results and Discussion

3.1. Estimation of Chlorophyll Content from 3D Images

Figure 2 shows the relationship between the normalized Red value of the plant 3D images
and the plant chlorophyll content (n = 30). The normalized Red value and the plant chlorophyll
content were correlated, with a high R2 value (0.81). In the cross-validation study, the absolute
error was 4.0 × 10−2 µg/mm2, implying that the plant chlorophyll content was estimated accurately.
Figure 3 shows a reconstructed 3D image and the corresponding distribution of the chlorophyll
content. Figure 3a,c shows the same 3D images viewed from different angles. Figure 3b,d shows the
corresponding distributions of the chlorophyll content. The surrounded leaf in Figure 3b is larger and
well-grown; accordingly, its chlorophyll content is higher. In contrast, the encircled leaf in Figure 3d is
comparatively young and its chlorophyll content is comparatively low, because of the leaf immaturity.
The leaf on the bottom right in Figure 3b,d is the oldest and its chlorophyll content is the lowest.
As mentioned above, the chlorophyll content differs across leaves; in addition, the content also varies
across individual leaves. Chlorophyll is heterogeneously distributed within a leaf [48,49]. Other
2D-based imaging methods (such as hyper-spectral imaging) also estimate the chlorophyll content
distribution within leaves [50,51]. However, it is desirable to observe the spatial distribution of the
plant chlorophyll content along with the 3D positional information. The method proposed in this
study enables detailed monitoring of the plant chlorophyll content at different points in 3D images.
Detailed 3D distributions of the plant chlorophyll content and other plant structural parameters can be
measured and analyzed simultaneously, as shown later. The chlorophyll content estimation with green
and blue value was also conducted, however, a good correlation could not be obtained.
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Figure 4. Examples of temporal snapshots of chlorophyll content, inclination angle, and azimuthal
angle distributions within one leaf. Histograms (a–c), (d–f), and (g–i) capture the information for days
1, 3, and 5, respectively.

3.2. Time Series Observations of Chlorophyll Content and Structural Parameters within One Leaf

Figure 4 shows typical distributions of the plant chlorophyll content, leaf inclination angle, and
azimuthal angle, for a sample leaf. The first, second, and third lines represent the profiles for day 1,
day 3, and day 5, respectively. The values of chlorophyll content, leaf inclination angle and azimuthal
angle among those days were significantly different (P < 0.05). This histogram was obtained from the
first leaf from the bottom of the plant. From these histograms, it is clear that these parameters vary
within a leaf. From day 1 to day 5, the chlorophyll content decreased; accordingly, the peak shifted
to the left. The averages for day 1, day 3, and day 5 were 12.9, 11.7, and 7.0, respectively. In addition
to the reduction in the chlorophyll content, the leaf inclination angle increased as the water stress on
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the leaves increased, as shown in the histograms in panels (b), (e), and (h) of Figure 4. The average
values are 23.7◦, 33.1◦, and 33.9◦, respectively. At that time, after being subjected to water stress, the
leaves inclined with twisting, resulting in a change of the azimuthal angle. This is indicated by the fact
that the peaks of the histograms in panels (c), (f), and (i) of Figure 4 shifted to the right. The average
values were 88.6◦, 119.3◦, and 156.9º, respectively. For determining the leaf status (e.g., its chlorophyll
content), detailed analysis was possible using these histograms, rather than using only averages.

3.3. Time Series Data of Physiological and Structural Parameters from 3D Images

Figure 5 shows the time series data for the chlorophyll content, leaf inclination angle, and
azimuthal angle for three leaves in one sample. Each figure includes data for different parts (leaf
centroid, right edge, and left edge). Leaves 1, 2, and 3 correspond to old-age, middle-age, and
young leaves, respectively. Their location in the sample was at the bottom, in the middle, and at the
top, respectively.Sensors 2019, 19, 413 7 of 11 
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Figure 5. Time series data of chlorophyll content, inclination angle, and azimuthal angle, at a small
point (leaf centroid, left edge, and right edge) within one leaf. The profiles of three leaves are illustrated.
Panels (a–c), (d–f), and (g–i) capture the information for leaves 1, 2, and 3, respectively. Circles, squares,
and triangles show the results for the leaves’ centroids, left edges, and right edges, respectively.

As shown in Figure 5a, the chlorophyll content of leaf 1, the oldest leaf, decreased strongly during
the five observation days. In contrast, the rate of the chlorophyll content decrease was smaller for
Leaves 2 and 3 (Figure 5b,c), which were also younger than leaf 1. For leaf 2 (Figure 5d), the chlorophyll
content captured by the right edge (triangles) decreased compared with the leaf centroid and left edge,
on days 2 and 3. The alterations of physiological parameters were different for different parts. As leaves
get older, the role they play and their relative location in the plant change [52]. The level of chlorophyll
increases in young expanding leaves, reaches the highest value when the leaves are mature, and then
decreases substantially during senescence [53]. In previous studies of eggplant plants, chlorophyll
content increased with leaf growth, was maximal at the 8- to 10-leaf stage, and then decreased [54].
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In individual plants, the lower leaves are the first to senesce [55] and chlorophyll, protein, and RNA
are moved and recycled in other developing sinks, such as new leaves [56]. In this study, water was not
provided to samples and they suffered from water stress. As a result, stomatal closure and decreased
photosynthetic functions were observed on the leaves as water stress developed [57]. When plant
resources are limited, leaf senescence is important for increasing the dry matter production [58]. Thus,
it is suggested that water stress accelerates the physiological and structural changes in the stressed
plants. Using the current 3D imaging method, physiological and structural changes reflecting those
biological phenomena can be monitored.

For leaf 1 (the oldest leaf), the absolute value of the leaf inclination angle increased as the leaf
weakened, as is shown in Figure 5b. Leaf 1 inclined downwards, whereas leaves 2 and 3 inclined
upwards. To distinguish the difference, the value for leaf 1 was represented as a negative number.
For leaf 1, the inclination angle was different across the different points (leaf centroid, right edge, and
left edge), although those values increased similarly. For leaves 2 and 3, the values of these angles
fluctuated, as is illustrated in Figure 5e,h. As for the azimuthal angle, leaf 1 inclined with twisting as it
was subjected to water stress, so that its azimuthal angle changed significantly (Figure 5c). In contrast,
leaves 2 and 3 shown in Figure 5f,i inclined in the vertical direction. Consequently, the distribution of
the azimuthal angle did not change considerably. As for leaf 2, the leaf was folded at the center and
the azimuthal angle varied strongly, even within the same leaf.

As mentioned above, the rates and/or the starting points of changes in the chlorophyll content,
leaf inclination angle, and azimuthal angle differed across the leaves. In addition, these parameters
varied across the area of individual leaves.

This method enables the observation of changes in the structural and physiological parameters in
different areas of individual leaves. The leaf shapes are different in the small areas in the leaves and, in
many cases, these variations can be related to stress. For example, citrus leaves are curved when the
plant is subjected to water stress. This change can be tracked by observing changes in the azimuthal
angles of leaves in different areas. Therefore, taking these small-area changes into consideration, early
detection of plant stressors, such as water stress, becomes possible. Using this method, changes in
the chlorophyll content and structural parameters can be tracked at the same time and it becomes
possible to collect different data indicative of plant stress. This could help us with determining the
structural and physiological properties of a target sample and it could be widely used, for example,
in phenotyping. Moreover, by connecting the plant physiological and structural parameters, deeper
knowledge about plant traits can be generated.

4. Conclusions

In this study, 3D images of eggplants were obtained using the SfM method. Chlorophyll content
in small areas of leaves was estimated from color information of the 3D plant images and the
obtained values were compared with actual values. The normalized Red value and the chlorophyll
content were correlated; a high R2 value (0.81) was obtained. To better generalize this method for
its application, more leaves should be examined and the same experiment should be repeated in
the future. With additional plots, a more reliable calibration curve could be created and this would
lead to its application. At the same time, this method allows the estimation of structural parameters,
due to the 3D image acquisition. To observe changes in the chlorophyll content and plant structure,
a potted eggplant was kept for five days under water stress and its 3D images were taken once
a day. The chlorophyll content in the oldest leaf of the sample decreased and its leaf inclination
angle increased as the leaf became weaker. The azimuthal angle also changed because it inclined
with twisting. In addition, the chlorophyll content and structural parameters (leaf inclination angle
and azimuthal angle) were different not only across other leaves, but also within individual leaves.
The method used in the current study allows a better understanding of plant traits and improved
plant monitoring, based on essential plant traits. In the future, plants other than eggplants should be
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examined. Furthermore, other parameters related to plant physiological information, such as the plant
carotenoid content, should be estimated using color information and other invisible ranges.
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