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Collective behaviours are frequently observed to self‑organize
to criticality. Existing proposals to explain these phenomena
are fragmented across disciplines and only partially answer
the question. This primer compares the underlying, intrinsic,
utilities that may explain the self‑organization of collective be‑
haviours near criticality. We focus on information‑driven ap‑
proaches (predictive information, empowerment and active in‑
ference), aswell as an approach incorporating both information
theory and thermodynamics (thermodynamic efficiency). By
interpreting the Ising model as a perception‑action loop, we
compare how different intrinsic utilities shape collective be‑
haviour and analyse the distinct characteristics that arise when
each is optimized. In particular, we highlight that thermody‑
namic efficiency—measuring the ratio of predictability gained
by the system to its energy costs—reaches its maximum at
the critical regime. Finally, we propose the Principle of Super‑
efficiency, suggesting that collective behaviours self‑organize to
the critical regimewhere optimal efficiency is achievedwith re‑
spect to the entropy reduction relative to the thermodynamic
costs.

1. Introduction
Self‑organization is a process where a system spontaneously de‑
velops new structured patterns or functions, without being ex‑
plicitly controlled by an external force. This process is observed
in a wide range of natural and artificial systems, where local

© 2025 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.241655&domain=pdf&date_stamp=
https://doi.org/10.1098/rsos.241655
mailto:qianyang.chen@sydney.edu.au; qche8799@uni.sydney.edu.au
mailto:qianyang.chen@sydney.edu.au; qche8799@uni.sydney.edu.au
https://doi.org/10.6084/m9.figshare.c.7819463
https://doi.org/10.6084/m9.figshare.c.7819463
https://orcid.org/
http://orcid.org/0000-0001-5382-1396
http://orcid.org/0000-0002-4215-0344
http://creativecommons.org/licenses/by/4.0/


2
royalsocietypublishing.org/journal/rsos

R.Soc.OpenSci.
12:

241655
.............................................................................................................

interactions among components generate global order. As a fundamental concept in complexity sci‑
ence, self‑organization is extensively studied in various disciplines, including systems theory, condensed
matter physics, systems biology, and social sciences. From a physics perspective, self‑organization is gen‑
erally viewed as entropy reduction or increase in order in an open system ‘without specific interference
from outside’ [1,2]. From a biological perspective, self‑organization is typically defined as a pattern‑
formation process that relies entirely on interactions among the lower‑level components of the system
[3]. There are three key aspects to self‑organization [1–5]:

(i) Spontaneous order: the system evolves into a more organized state without external control.
(ii) Emergence of coherent global behaviour: there is an observable transition to a more coherent

collective behaviour.
(iii) Local interactions and long‑range correlations: system components operate on local information

but exhibit long‑range interaction and connectivity.

One of the underlying principles for the spontaneous order created in self‑organization, as suggested by
Kauffman [4], is the ‘constraint closure’, which means that the system carries out some work to create
constraints on the release of energy, and those constraints, in turn, channel the energy to perform
more useful work. Thus, a successful framework describing self‑organization needs to account for ther‑
modynamic characteristics of the spontaneous order, capturing the corresponding energy flows and
costs.

Typically, self‑organized collective behaviours, such as magnetization, ant colony foraging, swarm‑
ing, slime mould aggregation, flocking of birds and neural processing in the brain, exhibit critical phe‑
nomena [6–14]. These phenomena occur at the critical point of a continuous phase transition and include
scale‑invariance [15], divergence of correlation length anddivergence of the response function [16]. These
hallmarks are observed in physical [17,18], biological [7,11,19], social [20,21] and hybrid systems [22].

Scale‑invariance means that the system near the critical regime does not exhibit a typical length scale,
i.e. patterns appear similar on many magnification levels. Consequently, the size of events at criticality
follows a power‑law distribution (figure 1). The correlation length measures the scale on which fluc‑
tuations or changes at one point in the system affect those at another point, and the divergence of this
quantity implies the long‑range interaction between constituent components of the system. In the context
of collective systems such as groups of biological organisms, long‑range interactions may generate more
coherent global behaviour for the group. The response function characterizes the system’s response to
perturbations. For example, magnetic susceptibility represents the change of magnetization of a material
in response to an applied magnetic field and is known to diverge at criticality, as even a small field can
induce large changes in magnetization. At the critical regime, systems typically become highly sensitive
to small changes in parameters, showing large responses to minor perturbations. Another implication to
collective behaviour in biological systems is that the groups may become more sensitive to stimuli from
the external environment, such as detection of predators.

Physical systems, such as fluids or magnets, can be driven to criticality by adjusting a control parame‑
ter, e.g. temperature or pressure, that influences the state of the system. As the control parameter reaches
a critical value, the order parameter, which measures the degree of order or organization within the sys‑
tem, undergoes a transition, e.g. from zero (disordered phase) to non‑zero (ordered phase). However,
for biological systems, there are typically no well‑defined protocols to adjust the control parameters.
Nevertheless, nature somehow finds its way to poise the system at or near criticality.

A canonical framework describing the mechanism behind such dynamics is the theory of self‑
organized criticality (SOC), initially introduced by Bak et al. [23] based on a mathematical model known
as the Bak–Tang–Wiesenfeld (BTW) Sandpile Model. Central to this theory is the interplay of two oppos‑
ing forces that push a system to criticality. The first force is the driving force, characterized by gradual,
incremental changes that increase the system’s energy, disorder or stress (e.g. adding sand to a sand
pile). When the accumulated stress or energy reaches a certain threshold, a stabilizing force comes into
play, triggering a response that dissipates or redistributes the energy, typically in a sudden and possibly
widespread manner (e.g. sand avalanche). Under the influence of these two opposing forces, the system
‘evolves’ to criticality and remains there. The concept of SOC inspired a series of studies that applied it
to develop an understanding of the underlying mechanism that generates critical phenomena in various
complex systems such as forest fires [24–26], earthquakes [27] and brain activities [7,10,28,29]. However,
it can be argued that SOC provides a possible explanation for how criticality occurs, rather than why it
benefits the system.
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We are interested in exploring the intrinsic utility for a self‑organizing system approaching and op‑

erating at the critical regime. Here, an intrinsic utility is understood broadly, as the inherent benefit
or value gained by the system from its own organization, independently of external rewards and objec‑
tives [30,31]. Recent research on intrinsic utilities shaping self‑organizing behaviours primarily examined
how systems, especially autonomous robots and biological entities, utilize task‑independent objectives
in order to optimize and adapt their behaviours. Notable strategies include predictive information max‑
imization [32–38], empowerment maximization [39–44] and free energy minimization [45–49] (which
encompasses both intrinsic and extrinsic utilities). A consistent feature of these approaches is their em‑
ployment of information theory in quantifying the intrinsic motivation for the spontaneous order and
emergence of collective behaviours. Informally, one identifies a change in suitably defined entropic quan‑
tities with relevant pattern formation at macro‑level. Although these approaches can sometimes induce
critical behaviours [36–38,50], this outcome is not invariably guaranteed. Thus, to understand the fun‑
damental drivers of critical phenomena in collective behaviours, it is essential to give a thermodynamic
account of the intrinsic motivation.

The three frameworks mentioned above predominantly focus on the informational benefit (e.g. in‑
crease in predictability, order or potential influence, reduction in uncertainty or surprise) without ex‑
plicitly addressing the associated energy costs. Although the free energy minimization incorporates the
term ‘energy’ in its name, the utilized concept is an information‑theoretic construct which does not align
with the thermodynamic free energy (more details provided in §2). As a result, the trade‑offs between
informational benefits and thermodynamic costs are not captured explicitly. Furthermore, the lack of a
common example that could be used to directly compare these intrinsic utilities makes understanding
these trade‑offs more challenging.

In this work, we compare several intrinsic utilities applied to the same system and explore whether
they attain optimality near the critical regime. In doing so, we highlight the salient features of these
approaches, providing a concise primer on information‑theoretic and thermodynamic utility measures
in the context of self‑organization. We then formulate a unifying principle connecting (i) the intrinsic
functional benefits of collective behaviour (measured as entropy reduction or gained predictability) and
(ii) the associated thermodynamic costs. Studies of various complex dynamical systems, such as urban
growth [51], self‑propelled particles [52], contagion network [53] and the canonical Curie–Weiss model
for magnetization [54], have shown that systems at critical points exhibit maximum thermodynamic ef‑
ficiency defined as a ratio of the gained predictability (i.e. reduction in uncertainty, or the increase in the
internal order) to the amount of work required to change the underlying control parameter. These stud‑
ies strongly suggested that the rate of entropy reduction relative to the carried‑out work diverges (peaks
in finite systems) at critical points. We further strengthen the argument by analytically demonstrating
that the thermodynamic efficiency diverges at the critical point of the canonical two‑dimensional Ising
model.

We argue that these studies exemplify a general principle of super‑efficiency: at the critical regime, a
self‑organizing system of interacting agents achieves the optimal thermodynamic efficiency by gaining
maximal predictability of collective behaviour per unit of the expended work. Informally, one can say
that a complex system finds the regime where the cost of ‘keeping it together’ is justified. On one hand,
given some available energy to change the control parameter, the system identifies the control parame‑
ter value where the gain in predictability maximizes. On the other hand, given a required predictability
gain, the system finds the point (the value of the control parameter) where the energy cost associated
with the change would be minimal. The principle of super‑efficiency suggests that this point aligns with
the critical point.

This principle encapsulates the intrinsic utility of self‑organizing collective behaviour, elucidating
why some systems gravitate towards criticality. Our discussion will begin with an overview of estab‑
lished information‑based intrinsic utility measures (§2). Section 3 describes thermodynamic efficiency,
which uses both information theory and thermodynamics. Section 4 presents a common example using
the two‑dimensional Ising model to compare the self‑organizing behaviours driven by different intrinsic
utilities. Section 5 offers a more in‑depth discussion on the principle of super‑efficiency, and §6 sum‑
marizes the findings. This study offers insights into the distinct characteristics of collective behaviour
derived within each framework and emphasizes how the principle of super‑efficiency captures the in‑
trinsic utility for collective behaviour at the critical regime. Technical preliminaries and details of the
simulation model are provided in the electronic supplementary material.
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Figure 1. Schematic representations for second-order phase transition and critical phenomena. The control parameter is a variable that
influences the state of the system, such as temperature or pressure, while the order parameter quantifies the degree of order within the
system, with non-zero value only in the ordered phase. (a) Order parameter changes continuously in response to changes in the control
parameter during a second-order phase transition. (b) Scale-invariance observed at the critical regime indicates a power-law distribu-
tion of event sizes, e.g. avalanche or earthquake magnitudes. (c) Correlation length diverges at the critical point, facilitating long-range
correlation of fluctuations between constituent parts of the system. (d) Susceptibility diverges at the critical point, reflecting the system’s
increased sensitivity to external perturbations.

2. Information-driven self-organization
Information‑driven self‑organization is an active area of research that applies information theory to study
the behaviours of an agent or a group of agents. The information‑theoretic utility functions used to de‑
rive the behaviours have the advantage of being universal and domain‑invariant. These measures are
considered strong candidates for capturing the informational benefit of increased order in collective sys‑
tems. Two broad categories can be identified: purely intrinsic, and ‘hybrid’ measures which incorporate,
in addition, an extrinsic target or preference.

In this work, we adopt the following notation:

— Information theoretic quantities (definitions provided in electronic supplementarymaterial, §S1
Information‑theoretic quantities):
— entropy H(.)
— conditional entropy H(.|.)
— mutual information I(.; .)
— Kullback–Leiber divergence D(.||.)
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Figure 2. Causal structure of perception-action loop of an agent with memory, traced over time.

— Capital lettersW,S,A,M... for random variables;
— Small letters w, s, a,m... for a realization of the corresponding random variable;
— Letters ℐ,𝔈,ℱ for quantities computed using the information‑theoretic approaches, correspond‑

ing to predictive information, empowerment and variational free energy, respectively;
— Blackboard bold font𝔼,𝕊,𝔽,𝕎,ℚ, 𝕀 for thermodynamic quantities or statistical quantities, corre‑

sponding to energy, entropy, thermodynamic free energy, work, heat and Fisher information,
respectively. Technical preliminaries are provided in electronic supplementary material, §S2
Thermodynamic preliminaries and Fisher Information.

Additionally, we adopt the notation where subscript xt denotes the state at time t in a time series, and
superscript x(i) indicates the ith instance in the population.

2.1. The perception-action loop
Approaches formalizing information‑driven self‑organization typically assume an underlying model of
agent‑world interaction. This interaction is generally modelled with a perception‑action (or sensorimo‑
tor) loop, using random variables to reflect the probabilistic nature of the dynamic. Figure 2 illustrates
the causal network of the perception‑action loop traced over time, where Wt, St, At, Mt represent the
state of the world, the sensor, the actuator and memory (the controller) at time t. The perception‑action
loop captures the following dynamics:

— At any given time t, the world state Wt leads to an update of the agent’s sensory state St.
The mapping from W to S is specified by kernel 𝛽 ∶W→ S, representing the agent’s sensory
mechanism;

— The agent’s memory (or controller) Mt is influenced by both memory from the previous time
stepMt−1 and the current sensory St, a relationship represented by kernel 𝜙 ∶M × S→M;

— Depending on thememory state, the agent updates its actionAt according to the policy 𝜋 ∶M→
A.Mt also carries through to the futureMt+1;

— The action At and the world stateWt jointly update the next world stateWt+1. The mapping is
specified by kernel 𝛼 ∶W × A→W, representing the agent’s actuation mechanism.

It is worth noting that 𝛼 and 𝛽 are kernels that capture the agent’s embodiment in terms of the agent’s
sensor and actuator capabilities. They set constraints to how the agent may explore the environment, act
and learn [55,56].

In the next subsections, we will elaborate on the variations of causal network representations within
different intrinsic utility frameworks. A common example will be presented in §4.

2.2. Intrinsic utility approaches
The notion of ‘intrinsic utility’ suggests that the utility provided to the agent is internal and task‑
independent [30,57]. Predictive informationmaximization [32–38] and empowermentmaximization [39–
44] are two important approaches that utilize information‑theoretic measures as intrinsic motivation for
inducing self‑organizing behaviours.
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Figure 3. Causal structure of perception-action loop of a memory-less agent traced over time. Coloured blocks represent the two com-
ponents that mutual information is calculated for predictive information.

2.2.1. Predictive information

Predictive information [58], also known as effectivemeasure complexity [59] or excess entropy [60], mea‑
sures how much the observed history reduces uncertainty about the future. In the context of robotic
behaviour development, predictive information in the sensor space may serve as an objective function
for behaviour learning. Predictive information maximization has been implemented for memory‑less
agents [32–38] but potentially can be adapted to incorporate external memory. Figure 3 illustrates a re‑
duced causal network for a simple memory‑less agent (reactive control) on which predictive information
is applied.

Predictive information (used as intrinsic utility) is defined as themutual information betweenpast and
future sensory states [32]. This can be further decomposed into components that represent the diversity
and predictability [5,32]:

ℐ ∶= I(Spast;Sfuture) = H(Sfuture)
⏟⎴⏟⎴⏟

Diversity of future states

− H(Sfuture|Spast)
⏟⎴⎴⎴⏟⎴⎴⎴⏟

Unpredictability of future

. (2.1)

Considering only one time step into the future, predictive information is defined as:

ℐ ∶= I(St;St+1), (2.2)

and measured in bits. Equation (2.1) indicates that predictive information is large when the entropy
of the future sensory states H(Sfuture) is large, corresponding to a rich future experience, and/or when
conditional entropy H(Sfuture|Spast) is small, representing a more predictable future. In both extremes,
where there is complete order (no diversity) or complete randomness (no predictability), the predictive
information will be zero.

The Venn diagram in figure 4 illustrates the relationship between the time series of past and future
sensory states. We note that conditional entropy H(Spast|Sfuture) represents the remaining entropy of his‑
torical sensory states given the future states, which is the part of history that we are unable to reconstruct
using information from the future. For example, reconstructing the question given the answer to that
question.

Behavioural rules can be derived using the predictive information maximization approach, forming a
policy𝜋mapping sensory states to actions. Policy𝜋 can be either deterministic, such as a simplemapping
from sensor values to actions, or stochastic, which is represented by a conditional probability distribu‑
tion 𝜋 ≡ p(a|s). The general form of the objective function for a one‑step predictive information‑driven
agent is then expressed as:

𝜋∗(at, st) = argmax
𝜋(at,st)

{ℐ} = argmax
𝜋(at,st)

{I(St+1;St)}, (2.3)

where 𝜋∗ denotes the optimal policy.
An agent motivated to maximize predictive information chooses policies that result in more diverse

and, at the same time, predictable outcomes. In the context of collective behaviour, maximizing pre‑
dictive information has also been shown to induce cooperative behaviour under decentralized control
[34,36,61]. The increase of predictive information differs from merely reducing randomness in the sys‑
tem; it enhances the richness of structure in the collective system. As shown in §4, collective behaviour
resulting from maximizing predictive information for each individual may appear random, but locally,
it maintains a high level of diversity, aligned with the predictability of an individual’s sensory states.
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Figure 4. The Venn diagram of predictive information shown as the mutual information (the overlap area) between past and future
sensory states: it represents how useful the past is for predicting the future.

Figure 5. The causal structure of the perception-action loop of a memory-less agent traced over time. Coloured blocks represent the
components of mutual information that determines empowerment.

2.2.2. Empowerment

Alternatively, we can focus on a specific segment of the causal network that captures the influence of
actions on subsequent sensory states through the external world (figure 5). Empowerment measures this
influence as the maximum amount of information an agent can inject from its actuators (A) to its sensors
(S) at a future time via the environment.

The n‑step empowerment is defined as the Shannon channel capacity C or maximum mutual infor‑
mation between the current sequence of actions An

t = {At,At+1, ...,At+n−1} and future sensor value St+n
[39]:

𝔈 ∶ =C(An
t → St+n)

≡max
p(ant )

I(St+n;An
t ).

(2.4)

Empowerment ismeasured in bits. Considering only themost immediate future, one‑step empowerment
can be computed by:

𝔈 ∶=max
p(at)

I(St+1;At). (2.5)

The definition (2.5) is referred to as general or context‑free empowerment since it measures only the agent’s
general ability to inject information into its future sensory states. In order to use empowerment as the
driver for an agent’s action, one needs to distinguish between different states of the environment, so
that the agent can make decisions accordingly. This is achieved by context‑dependent empowerment.
The context refers to the state of the environment w that affects the perception‑action loop character‑
istic p(s|a). More specifically, the future sensory state of the agent is affected by both its past actions
and the historical states of the world. In other words, the same actions can lead to different distribu‑
tions of future sensory states when the external environment has changed. Instead of considering a



8
royalsocietypublishing.org/journal/rsos

R.Soc.OpenSci.
12:

241655
.............................................................................................................

general action‑perception characteristic p(s|a), empowerment should be considered for a specific world
state or context [39,40,43,62]:

𝔈(wt) ∶= max
p(ant |wt)

I(St+n;An
t |wt). (2.6)

Given that an action at stochastically leads to a collection of possible future world states 𝛤, the resulting
average context‑dependent empowerment is computed as:

𝔈(Wt) ∶=
∑

wt∈𝛤
p(wt)𝔈(wt). (2.7)

This quantity can be used as an objective function for an empowerment‑driven agent to make decisions
on which action to take. More commonly, the state of the world W would be replaced by some context
K that approximates it if the full world information is not available.

The general empowerment, as defined in equations (2.4) and (2.5), is different from the average
context‑dependent empowerment [43]. General empowerment does not consider the varying influence
of actions in different states, since the channel capacity is computed using only p(s|a) =

∑
w p(s|a,w)p(w).

In contrast, the average context‑dependent empowerment, as defined in equation (2.7), captures
the nuanced ways in which different states can affect the actuation‑sensing channel by computing
maxp(a|w) I(S;A|w), and then average over all possible states.

The objective function for an n‑step empowerment‑driven agent is:

a∗t = argmax
at

{𝔈(Wt+1)}

= argmax
at

⏟⎴⏟⎴⏟
empw‑driven

{∑

w
p(wt+1) max

p(ant+1|wt+1)
⏟⎴⏟⎴⏟
free to act

I(St+n+1;An
t+1|wt+1)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
potential empowerment

}
,

(2.8)

where a∗ denotes the optimal action under which average context‑dependent empowerment is maxi‑
mized.

Referring to the maximization expression in equations (2.4)–(2.6) and (2.8), we emphasize that p(a) is
assumed to be chosen without constraints, that is, an empowerment‑driven agent is free to act, so that
the channel capacity can potentially be achieved. This needs to be distinguished from predictive infor‑
mation maximization, where the agent’s action is mapped to the sensory input via a policy 𝜋 and hence,
is constrained.

Furthermore, equation (2.8) indicates that the action selected at time t is such that the potential
empowerment is maximized at time t + 1. Therefore, the chosen action a∗t is different from the action
distribution p∗(ant+1|wt+1) that maximizes the mutual information [43,62]. As pointed out in [43], ‘Em‑
powerment considers only the potential information flow, so the agent will only calculate how it could
affect the world, rather than actually carry out its potential’.

Equation (2.8) also implies dependence on the current state of the world wt, as the context of the
empowerment (wt+1) is a combined result of the current world state wt and the evaluated action at.

Similar to predictive information, a decomposition of the mutual information in equation (2.4) is
shown in figure 6. To intuitively understand two conditional entropies, we utilize the box‑pushing exam‑
ple presented in [39]: a gridworldwith a robot that canmove anywhere exceptwhere the box is. If the box
is pushable but the robot’s sensors cannot capture the box’s location, then the robot cannot perceive its
box‑pushing actions. This is captured inH(An

t |St+n), the unperceivable actions. On the other hand, if the
robot can seewhere the box is but cannotmove it, then this information is reflected inH(St+n|An

t ), the un‑
actionable sensory information. Only the amount of information that is both actionable and perceivable
contributes to empowerment.

In summary, an empowerment‑driven agent takes actions that maximize its ability to influence the
external world in ways that are perceivable by its own sensors. In multi‑agent settings, it has been
shown that empowerment‑maximization for individual agents leads to spontaneous coordination among
the collective [40,63,64]. This coordination arises because shared information enhances an individual’s
empowerment, or informally, its ability to make an influence.

Examples of predictive information and empowerment in collective systems, along with their com‑
parisons, are presented in §4.
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Figure 6. The Venn diagram of mutual information I(St+n; Ant ). Empowerment is the maximum of this mutual information for a given
action channel.

Figure 7. The diagram illustrates interactions between elements in the active inference framework. Solid lines represent influences be-
tween components. Dash lines represent directed influence from sensory to internal or from action to external, which correspond to the
two stages of active inference. Figure is adapted from [49].

2.3. Beyond intrinsic motivation
Another prominent approach to derive behaviours based on fundamental principles is the free‑energy
principle, which offers a formal account for the representational capacities of physical systems [46].
The free‑energy principle was initially proposed by Friston et al. [45] as an attempt to explain embod‑
ied perception‑action loops in neuroscience, thus providing an understanding of the dynamics of the
brain and decision‑making. Adoption of this principle led to wide applications in the study of learn‑
ing [47,48,65], evolutionary dynamics [66], social interactions [67] and collective intelligence [50,68]. The
principle centres on the idea that self‑organizing biological agents have a natural inclination to resist
disorder. It is argued that, as a result, the brain attempts to minimize uncertainty or surprise.

The mechanism derived from the free‑energy principle is commonly referred to as active inference.
Similar to predictive information and empowerment, active inference can be conceptualized under the
perception‑action loop representation, although based on different relationships between state variables
(figure 7).

An underlying assumption in active inference is that the brain makes Bayesian inference over the ex‑
ternal (world) states. Bayesian inference relies on some prior probability distribution over the unknown
world and updates the distribution when more information is available. The main ingredients in the
formulation of active inference are the generative model p and the approximate posterior distribution q.
The generative model pmaps causes (external statesW) to consequences (sensory S, action A and inter‑
nal stateM). It encodes the dynamics of the external world and integrates the agent’s prior preferences
of behaviour [49]. While Bayesian inference relies on updating the prior distribution p to the posterior
p(⋅|observations) given the observed data, the posterior is notoriously costly to compute. To reduce the
computational difficulty, a parameterized distribution q is employed as an approximation to the true pos‑
terior p(⋅|observations). The approximation distribution q is parameterized by the internal statesM, which
supplies the sufficient statistics of the conditional distribution. The Bayesian inference process with an
approximated posterior distribution is referred to as variational Bayesian inference. It is worth noting that
the integration of external goals in the generative model sets active inference apart from the other pure
intrinsic motivation approaches.
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The variational free energy is defined as the Kullback–Leibler divergence between the approximate

posterior distribution q and the generative model p. The expression can be expanded in terms of the
difference between a term that resembles expected energy and an entropy term, hence the name ‘free
energy’ [49]:

ℱ ∶= 𝔼q [log
q(w)

p(s, a,m,w)
] = 𝔼q[− log p(s, a,m,w)]

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
Expected energy

−𝔼q[− log q(w)]
⏟⎴⎴⎴⏟⎴⎴⎴⏟

Entropy

. (2.9)

However, the quantity called in this approach ‘free energy’ is different from the thermodynamic free
energy. In active inference, it is instead the variational free energy formulated in terms of information‑
theoretic quantities, relating to the Bayesian inference process [45,49]. Informally, anything that can be
represented in the form:

free energy= energy ± const. × entropy, (2.10)

can be interpreted as ‘free energy’ [69].
Active inference involves two alternating stages: belief update and action selection. During belief up‑

date, the agent optimizes the internal representation of the generativemodel p given the sensory samples;
in action selection, the agent’s action ensures that it samples sensory data that align with its current rep‑
resentation. The belief update stage addresses uncertainty about the current generative model, while the
action selection stage addresses uncertainty about the future (including future hidden states and future
observable outcomes) [48,70].

The active inference approach has been shown to generate collective behaviour in a group of individ‑
uals, each driven by the free‑energyminimization scheme [50]. Collective dynamics are influenced by the
individual’s belief about uncertainty and can also be tuned to the changing environment by parameter
learning over a slower timescale.

Equation (2.9) can be rearranged in terms of the complexity of the internal model and the accuracy
of its representation. In this configuration, minimizing free energy is equivalent to reducing complexity,
consequently resulting in optimized energy consumption [49,71]:

ℱ = 𝔼q[log q(w) − log p(w)] − 𝔼q[log p(s, a,m|w)]

=KL[q(w)||p(w)]
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

Complexity

−𝔼q[log p(s, a,m|w)]
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

Accuracy

. (2.11)

While equation (2.11) implies a connection between minimizing free energy and reducing energy cost
under Landauer’s principle [71], the relationship is not explicitly formulated as a ratio of informational
gain to energetic costs.

A more detailed example of free‑energy minimization and the comparison with other approaches is
provided in §4.

3. Thermodynamic efficiency
At this stage, we point out that the three information‑theoretic approaches reviewed in the previous
section do not explicitly account for the corresponding energy costs. Thermodynamic efficiency, on the
other hand, takes into consideration both the benefits and the associated costs of maintaining order
within the system. Before presenting a formal definition of thermodynamic efficiency, it is important
to differentiate between thermal and thermodynamic efficiency.

3.1. Thermal vs thermodynamic efficiency
Let us consider a system undergoing a non‑ideal process in which it receives energy and performs useful
work. Not all the received energy is converted into work; some is inevitably lost as heat, which does not
contribute to work output (figure 8). Thermal efficiency measures the system’s efficiency of converting
energy to work and is defined as the ratio of useful work output to total energy input, both measured in
joules, rendering it a dimensionless quantity. In a non‑ideal process, the second law of thermodynamics
implies that this ratio is less than one.
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Figure 8. Thermal efficiency for a system undergoing a specific process. It is generally defined as the dimensionless ratio between the
total work output and the total energy input. Adapted from [72].

Figure 9. Thermodynamic efficiency for a system. It is defined as the ratio between the increase in order and change in the generalized
work carried out to generate the order.

In contrast, thermodynamic efficiency assesses the conversion of work into the system order, mea‑
sured during a quasi‑static change in the underlying control parameter. It pertains to systems involving
interactions among multiple components and considers the benefit of increasing order within a collec‑
tive system against the thermodynamic cost incurred. A system may transition from a disordered to an
ordered state by altering a control parameter according to a specific protocol. Thermodynamic efficiency
evaluates how efficiently the system converts the carried out work into order, at each specific value of
the control parameter (figure 9). It is quantified as the ratio of the reduction in the system’s configuration
entropy (predictability gain) to the generalized work performed during the control parameter adjust‑
ment (subject to the unit of the Boltzmann constant kB, e.g., see the expression for entropy, defined in the
context of thermodynamics in electronic supplementary material, equation (7)):

𝜂(𝜃) =
−d𝕊∕d𝜃

d⟨𝛽𝕎gen⟩∕d𝜃
, (3.1)

where 𝜃 is the control parameter, 𝕊 denotes the configuration entropy of the system, and𝕎gen denotes
the generalized work performed to change the control parameter.
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3.2. Perspectives on thermodynamic efficiency
The thermodynamic efficiency of interactions can be expressed in two different ways [52,54] (technical
details are provided in electronic supplementary material, §S2 Thermodynamic preliminaries and Fisher
Information):

𝜂(𝜃) =
−d𝕊∕d𝜃

d⟨𝛽𝕎gen⟩∕d𝜃
⏟⎴⎴⎴⏟⎴⎴⎴⏟

In thermodynamic terms

=
−d𝕊∕d𝜃

∫𝜃
∗

𝜃 𝕀(𝜃′)d𝜃′
⏟⎴⎴⏟⎴⎴⏟

In computational terms

, (3.2)

where 𝕀 denotes Fisher information.
Thermodynamic efficiency offers a dual perspective on the energy dynamics within systems, encom‑

passing both thermodynamic and computational dimensions. From the thermodynamic viewpoint, this
quantity captures the gain in internal orderwithin a collective system of interacting agents (e.g., a swarm)
relative to the overall work required to adjust the agent interactions. From a computational viewpoint,
thermodynamic efficiency measures the increase in predictability (reduction of uncertainty) of collective
action gained by accumulating additional sensitivity to changes in the control parameter along the path
𝜃→ 𝜃∗. For example, a swarm may gain predictability of a collective response by adjusting the individ‑
ual’s alignment strength or the number of effective neighbours influencing an individual. This, however,
may come at the expense of additional sensitivity to changes in these parameters, so that coherentmotion
may be disrupted by a change of alignment strength or a reduced number of effective neighbours.

4. A common example
In previous sections, we explored different approaches to quantifying the intrinsic utility of collective
behaviour. In this section,we compare the four considered approaches—predictive information, empow‑
erment, active inference and thermodynamic efficiency—using the canonical Ising model as a common
example. This example considers a system at equilibrium, in order to provide a direct comparison of the
collective behaviours resulting from optimizing utility functions in the absence of external fluxes.

4.1. The 2D-Ising model
The 2D‑Ising model offers a simplified representation of ferromagnetism in statistical mechanics. It
models a collection of sites that can each exhibit either an up‑spin or down‑spin configurationwhile inter‑
acting with their neighbours to create a complex aggregate dynamic. The 2D‑Ising model is particularly
relevant to our comparison due to its characteristic phase transition in the collective dynamics.

The 2D‑Isingmodel considers a lattice of atomswithmagnetic spins oriented either up or down (figure
10). The vertices of the lattice are referred to as ‘sites’ and the edges as ‘links’. Assuming the absence of
an external magnetic field, the energy of a site is determined by the total energies in the links with its
neighbours. Each site prefers to be in a lower‑energy state. For ferromagnetic materials, maintaining a
link between two sites with opposite spins requires additional energy, hence there is a natural tendency
for a site to align its spin with those of its neighbours. The susceptibility of a site to neighbouring in‑
fluences depends on the coupling strength J. A high value of J indicates strong coupling between sites,
leading to a greater tendency for spins to align with neighbouring sites.

In this example, the dynamics of the Ising model are interpreted from a perception‑action loop per‑
spective: each site acts as an agent that senses the energy of its neighbourhood and ‘decides’ whether
to flip its spin or maintain its current state. The agency of each site is determined by the choice of the
coupling strength J. With a high J value a site is more prone to align with its neighbours, and vice versa.
This parameter governs the strength of the site’s response to the neighbourhood’s energy landscape,
influencing its decision to align with neighbouring spins.

To draw a clearer connection between the Ising model and the perception‑action loop, we consider
that each of the four elements of the perception‑action loop has a corresponding representation in the
Ising model:

— W (world): the magnetization (average spin) of the lattice;
— S (sensory): the energy state of a site (defined in equation (4.1));
— A (action): flipping the spin or remaining unchanged, with flip = −1 and no‑flip = +1;
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Figure 10. A lattice of atoms with dipole magnetic moments. Links in red represent higher energy bonds (where two adjacent atoms
have opposite spins), and blue represents lower energy bonds (where two adjacent atoms are aligned).

To quantify the energy, we define:

— N: the number of sites in the lattice;
— J: the coupling strength between adjacent sites;
— 𝜎(i): the spin of site i, with +1 representing up spin and −1 is down;
— 𝜎: the configuration of the lattice 𝜎= {𝜎(1), 𝜎(2), ..., 𝜎(N)}.

Let i,j be two sites connected by a link, then:

𝜎(i)𝜎(j) =
⎧

⎨
⎩

+1 if sites i, j aligned
−1 if sites i, j misaligned.

Considering the interactions between a site and its nearest four neighbours only, the total energy of this
site is:

E(i) =
∑

j∈𝜈(i)
−J𝜎(i)𝜎(j), (4.1)

where 𝜈(i) denotes the set of neighbouring sites of i.
We simulate the process for both Glauber dynamics [73] and Metropolis [74,75] dynamics. At each

time step, a site was selected uniformly at random. Under Glauber dynamics, the site’s spin flips with
the probability:

pG(flip) = 0.5
[
1 − tanh(0.5𝛽dE(i))

]
. (4.2)

Alternatively, using Metropolis dynamics, the probability to flip is:

pM(flip) =min
[
1, e−𝛽dE(i)

]
, (4.3)

where 𝛽 is the inverse of temperature and dE(i) is the change in energy after a flip. We assume 𝛽 = 1 for
the purpose of this experiment. The energy change dE(i) is computed as:

dE(i) = E(i)(after flip) − E(i)(before flip)

=
∑

j∈𝜈(i)
2J𝜎(i)𝜎(j). (4.4)

The simulation setting is detailed in electronic supplementary material, §S3 Simulation of Ising model, and
the source code is available in [76]. For the analysis, we computed all four intrinsic utility measures for
systems at different values of control parameter J. The goal is to compare the range of control parameter
J that optimizes each utility and discuss the implications of the different optimal ranges for each utility
measure and the associated characteristics of self‑organized behaviours.
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4.2. Computational results
During the simulations, we hold the coupling strength J constant and run the simulation until the system
reaches equilibrium.We then calculate the corresponding predictive information, empowerment, free en‑
ergy (active inference) and thermodynamic efficiency. To eliminate the effects of initial conditions, we
average these quantities across multiple simulations for each J. This process is repeated for a range of
J values. We aim to identify the optimal range of J values under each approach in order to answer the
question: ‘If the coupling strength J evolves independently using each of these quantities as the fitness
function, what behaviour should we expect when fitness is optimized?’

We collect the following data for the selected site and the lattice at time t:

— at: the action of flip (−1) or no‑flip (+1) at time t;
— 𝜎t, 𝜎t+1: spin of the selected site before and after the action is performed;
— wt,wt+1: the magnetization of the lattice before and after the action is performed;
— st, st+1: the selected site’s sensory state before and after the action is performed.

The data form time series {at}, {𝜎t}, {𝜎t+1}, {wt}, {wt+1}, {st}, {st+1}, using which we compute the intrinsic
utility measures. Leveraging the homogeneity of the lattice sites, we can aggregate the random samples
from different sites to compute the measures. This approach ensures that the results represent the intrin‑
sic utility values corresponding to the coupling strength J as experienced by an average site within the
lattice.

4.2.1. Predictive information

For a given coupling strength J, the corresponding one‑step predictive information is the mutual
information between the pre‑action sensory state (St) and post‑action sensory state (St+1):

ℐ = I(St+1;St) [bits]

=
∑

st

∑

st+1
p(st, st+1) log

p(st, st+1)
p(st)p(st+1)

.
(4.5)

where the probability distributions are parameterized by J.
Figure 11 shows predictive information ℐ for each coupling strength J, with two main observations

highlighted. Firstly, predictive information is higher under weak coupling and decreases to nearly zero
under strong coupling; this observation applies to both Glauber and Metropolis dynamics. Recall that
predictive information can be decomposed into two terms:

I(St+1;St) = H(Sfuture)
⏟⎴⏟⎴⏟

Diversity of future states

− H(Sfuture|Spast)
⏟⎴⎴⎴⏟⎴⎴⎴⏟

Unpredictability of future

. (4.6)

The overall trend is driven by the diversity component of the equation.Weak coupling promotesmore
exploratory behaviours, leading to diverse sensory states. In contrast, strong coupling (as J→+∞) pre‑
vents sites from flipping after settling into the lower‑energy state, resulting in a predictable system with
little sensory diversity.

Secondly, predictive information optimizes at different coupling strengths for Glauber and Metropo‑
lis dynamics—aphenomenondriven by the unpredictability term (figure 12). Due to different behaviours
of the conditional entropies in the sub‑critical regime, predictive information maximizes close to the crit‑
ical point in Glauber dynamics, while peaks as J→ 0 under Metropolis dynamics. A detailed comparison
of the two dynamics is provided in electronic supplementary material, §S3 Simulation of Ising model.

4.2.2. Empowerment

To compute the average empowerment of a site at equilibrium, we first analytically derive the channel
capacity of the action channel. In this model, the action channel is defined by the conditional probability
p(st+1|at). The state of pre‑action sensory st determines this conditional probability, and thus, two cases
must be considered separately: p(st+1|at, st ≠ 0) and p(st+1|at, st = 0).

When st ≠ 0, meaning that the up and down spins of the neighbours are not perfectly balanced, a flip‑
ping action will result in the next sensory state becoming the opposite of what it was before the flip. The
action channel, in this case, resembles the one shown in figure 13. This is a noiseless binary channel and,
by definition, has channel capacity C(st) = 1 bit. Full capacity is achieved when the site follows action
distribution p(a) = (1∕2, 1∕2).
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Figure 11. Average predictive information plotted against different values of J, computed from100 simulations, each of 20million time
steps on a 50 × 50 square lattice with periodic boundary conditions. Predictive informationmaximizes when J is small (weak coupling),
where an average site exhibits explorative behaviour.

Figure 12. Decomposition of predictive information into richness (dotted line) and unpredictability (dash line) components; predictive
information is the difference between the two curves. Results obtained from the average over 100 simulations, each of 20 million time
steps on a 50 × 50 square lattice with periodic boundary conditions.

Figure 13. A noiseless binary channel. Channel capacity C = 1 bit.

If st = 0, the channel simply reduces to the one shown in figure 14, that is, a channel that carries no
information as the output is always the same. This means that the channel capacity is zero, C(st) = 0 bit.

Combining these two cases, we obtain:

C(st) =
⎧

⎨
⎩

1 if st ≠ 0
0 if st = 0.

(4.7)
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Figure 14. A single output channel. Channel capacity C = 0 bit.

Figure 15. Average empowerment plotted against different values of J, computed from 100 simulations, each of 20 million time steps
on a 50 × 50 square lattice with periodic boundary conditions. Empowerment optimizes at strong coupling, where the collective stabi-
lizes to a uniformly aligned configuration at equilibrium. Such configurationmaximizes an average site’s ability to retrieve the impact of
its action through future sensory states.

The average one‑step empowerment, averaged over the distribution of channels, is computed as follows:

𝔈̄=
∑

st
p(st)C(st) [bits]. (4.8)

Empowerment optimizes at a strong coupling (figure 15), where the lattice stabilizes with most atoms
aligned at the equilibrium. Empowerment measures an agent’s ability to inject information into the en‑
vironment via current actions and later retrieve the information via its sensors. A site’s action is most
perceivable when all its neighbours align in the same direction, in which case the action of flip or no‑flip
leads to distinct sensory outputs (s or −s, s≠ 0). Conversely, if four neighbours have an equal split be‑
tween up and down spins, flipping the spin of a site does not change its sensory state. That is, the site
will not be able to perceive the impact of its action. A large positive J value increases the probability of an
average site being at the configuration where all its neighbours have the same spin, thereby maximizing
the site’s empowerment by ensuring its actions produce noticeable changes to its future sensory inputs.
Empowerment is not affected by the choice of spin‑flip dynamics (Glauber or Metropolis).

4.2.3. Variational free energy (active inference)

For the purpose of this study, the active inference framework is adopted from [77], thus focusing
solely on its intrinsic component. A negative sign is placed before the expression, effectively trans‑
forming the minimization problem into maximizing the action value −ℱ. For each possible action
at ∈ {−1 (flip),+1 (no‑flip)}, we compute the one‑step negative free energy following the derivation from
[77]:

−ℱ(at) = −H(St+1|Wt+1, at)

=
∑

st+1

∑

wt+1

p(st+1,wt+1|at) log p(st+1|wt+1, at),
(4.9)
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Figure 16. Average negative free energy plotted against different values of J, computed from 100 simulations, each of 20 million time
steps on a 50 × 50 square lattice with periodic boundary conditions. Negative free energy maximizes at strong coupling, where the
spins are aligned at equilibrium, and the site experiences minimum surprise comparing its approximate distribution of the world state
(based on local sensory information) to the actual distribution that generates the world states (global property).

where the probability distribution p(.) is parameterized by coupling strength J.
The average negative free energy at equilibrium is computed by weighted average across the

proportion of at =−1 (flip) and at = 1 (no‑flip) actions:

−ℱ̄ =−
∑

at
p(at)ℱ(at) [bits]. (4.10)

For a given coupling strength J= j, this measure represents how much discrepancy an average site
should expect between its internal model (based on the local sensory history) and the external world
(described by the lattice magnetization); in other words, howwell the site’s local information aligns with
the underlying global situation.

The negative free energy plot (figure 16) reveals a similar optimal region for J as empowerment. Max‑
imizing negative free energy effectively minimizes surprise. When J→ 0, all the sites are actively flipping
their spins. A chosen site’s local sensory states can take on all possible values, while the global magneti‑
zation is averaged to zero. This mismatch results in large surprise for an average site. On the other hand,
more atoms are aligned at large J, increasing the likelihood that an average site correctly predicts the
overall spin direction, hence reducing surprise. The same trend holds for both Glauber and Metropolis
dynamics.

4.2.4. Thermodynamic efficiency

Thermodynamic efficiency 𝜂 for each corresponding J is computed as:

𝜂 =−
d𝕊(J)∕dJ

∫J∗
J 𝕀(J′)dJ′

. (4.11)

The numerator is the derivative of the configuration entropy 𝕊 of the lattice with respect to the con‑
trol parameter J. It represents the reduction of uncertainty in the lattice’s configuration as a result of a
small variation in the coupling strength J. Using the Kikuchi approximation, the configuration entropy
is [78,79]:

𝕊=𝕊4 − 2𝕊2 + 𝕊1, (4.12)

where 𝕊k is the entropy of size k sub‑lattices.
The denominator in this calculation is the integral of Fisher informationwith respect to the control pa‑

rameter J, representing the work required by the system to instigate the change 𝛿J. The integration limit
extends from J, the point of evaluation, to J∗, the zero‑response point. Ideally, J∗ =∞, but in this numeri‑
cal experiment, setting J∗ = 10 is sufficient, ensuring that the system reaches perfect order at equilibrium
and no further work can be done. The method for numerically computing Fisher information is detailed
in electronic supplementary material, §S4.
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(a) Glauber dynamics (b) Metropolis dynamics

Figure 17. Average thermodynamic efficiency plotted against different values of J, computed from 100 simulations, each of 20 million
time steps on a 50 × 50 square lattice with periodic boundary conditions. Thermodynamic efficiency optimizes at the critical regime,
where a significant portion of the work expended in tuning the parameter J contributes to reducing configurational entropy; that is, the
collective is most energetically efficient in creating internal order.

(a) Glauber dynamics (b) Metropolis dynamics

Figure 18. Finite-size analysis near the critical coupling Jc for both Glauber and Metropolis dynamics. Results show that as lattice size
increases, the peak of thermodynamic efficiency approaches the critical coupling strength Jc.

Thermodynamic efficiency reaches optimumwhen J is near the critical value Jc ≈ 0.4407 [80], as shown
in figure 17. At the vicinity of the critical point, even a small increase in the control parameter J results
in a significant reduction in the system’s disorder. Consequently, the work performed to establish order
in the system achieves the highest efficiency. This observation indicates that the collective systems that
optimize thermodynamic efficiency at the same time operate at the critical regime. The same result holds
for both Glauber and Metropolis dynamics.

It is important to note that the numerical values of thermodynamic efficiency tend to exhibit more
noise than other metrics. This is due to the computation of the entropy derivative and Fisher informa‑
tion. Thermodynamic efficiency peaks slightly to the right of the critical value due to finite‑size effect, as
shown in figure 18. Despite these numerical nuances, the presented computational results suggest that
optimizing thermodynamic efficiency within a collective system is achieved at the critical regime. This
argument frames the thermodynamic efficiency as an intrinsic utility and provides an explanation why
collective behaviours induced by this utility often exhibit critical phenomena.

5. Principle of super-efficiency
Many natural systems with a large number of interacting components exhibit self‑organization, form‑
ing larger structures or coherent collective behaviours without external coordination. Locally interacting
neurons collectively perform complex brain functionswhile processing diverse stimuli [7,10]. Activemat‑
ter comprising self‑catalytic colloidal particles produces polar collective motion [81,82]. Starlings form
flocks that move in intricate patterns in response to environmental changes [11,83]. These self‑organizing
collective behaviours are often observed at critical regimes which seem to balance the fluidity (or adapt‑
ability) offered by amorphous, disordered groups (e.g. granular materials or liquids) and the stability
(or persistence) provided by rigid, ordered structures (e.g. crystalline materials).
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The ubiquity of collective behaviours that tend to self‑organize near or at critical regimes suggests that

there is an underlying principle governing such behaviour across different systems. By abstracting from
the specific details of each system, we may uncover not only why collective systems self‑organize but
also why self‑organization often brings the collective close to the critical regime. A possible underlying
principle would need to interpret these behaviours in terms of generic intrinsic utilities.

Motivated by these observations, we propose the principle of super‑efficiency:

Self‑organizing collective systems strive to maximize the thermodynamic efficiency of interactions by gaining
maximal predictability of collective behaviour per unit of the expended work. This efficiency is maximized at
the critical regime.

In general, the gained predictability enhances coordination within the system, facilitating efficient inter‑
actions. Systems with high or maximal thermodynamic efficiency tend to operate at or near the critical
regime where long‑range correlations and scale invariance bring collective benefits. Thus, thermody‑
namic efficiency may provide an intrinsic utility to the system by balancing energy costs with group
coherence. This would explain the ubiquity of collective animal behaviours, such as swarming, herding,
flocking, which self‑organize to criticality.

Formally we express the principle of super‑efficiency via maximization of the ratio between the
reduction in configuration entropy and the incurred generalized work (equation (3.2)). Given a pro‑
tocol adjusting the interactions among the constituent components of the system, maximization of the
thermodynamic efficiency occurs through tuning the corresponding control parameter 𝜃1:

𝜃∗ = argmax
𝜃

{𝜂(𝜃)}

= argmax
𝜃

−𝜕𝕊∕𝜕𝜃
𝜕⟨𝛽𝕎gen⟩∕𝜕𝜃

.
(5.1)

The expression above quantifies the abstract notion of super‑efficiency: a collective system maximizes
the ratio of predictability gain to the additional work required to tune the interactions among its compo‑
nents. In the following subsection, we justify this conjecture by taking evolutionary, cognitive and social
perspectives.

5.1. Maximizing thermodynamic efficiency as an intrinsic utility
Thermodynamic efficiency can be optimized in two ways: either by reducing the additional work (i.e.
energy consumption) for a fixed predictability gain or by increasing the predictability gain given a fixed
energy budget to carry out the additional work.

From an evolutionary perspective, minimizing energy consumption when establishing structural or
functional order preserves resources for survival and reproduction [84,85]. Organisms that achieve goals
with less energy per adaptation gain a selective advantage. On the other hand, given energy constraints
on behavioural change, increasing predictability enhances group coordination and collective survival
[86–88].

In terms of cognitive economy [89,90], individuals use heuristics and mental shortcuts to reduce the
energy needed for policy and behavioural changes, freeing resources for other cognitive tasks. Under a
fixed energy budget, maximizing predictability improves coordination in complex cognitive and social
tasks [91,92].

For social dynamics, minimizing the energy required for a social transformation conserves resources
for the long‑term benefit of society, for both current and future generations [93,94]. Alternatively, given
energy limitations, maximizing predictability enhances strategic planning and policy implementation,
particularly in times of crisis [95–97].

5.2. Super-efficiency in canonical models
An earlier study by Nigmatullin et al. [54] derived an analytical expression for the thermodynamic ef‑
ficiency of interactions for the canonical Curie–Weiss model (a fully connected ferromagnetic model),

1Note that we use a partial derivative to emphasize that this principle is applicable for settings with multiple control parameters.
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showing that it diverges at the critical point as the temperature 𝜃→ 𝜃c:

𝜂(𝜃) =
⎧

⎨
⎩

− 𝜃c
2kB

(𝜃 − 𝜃c)−1 for 𝜃 < 𝜃c
1
kB
(𝜃 − 𝜃c)−1 for 𝜃 > 𝜃c,

(5.2)

that is:

𝜂(𝜃) ∝ |𝜃 − 𝜃c|−1. (5.3)

We can also show that thermodynamic efficiency diverges at the critical point for the canonical Ising
model with nearest neighbour interactions. The thermodynamic efficiency 𝜂(J) as the coupling strength
J→ Jc is given by (see electronic supplementary material, §S5):

𝜂(J) =
ln(1 +

√
2)

2 |J − Jc|−1 (5.4)

that is:

𝜂(J) ∝ |J − Jc|−1 . (5.5)

5.3. Evidence from simulated systems
Several previous studies of thermodynamic efficiency [51–54], as well as the computer simulation
presented in §4, exemplify the general principle of super‑efficiency.

Crosato et al. [52] explored this relationship near criticality using a model of self‑propelled particles.
They defined thermodynamic efficiency 𝜂 as the reduction in entropy relative to the work done on the
system anddemonstrated that as particles undergo a kinetic phase transition fromdisordered to coherent
motion, 𝜂 peaks at the critical regime. In other words, the collective motion becomes coherent at the criti‑
cal point, where the system is most energetically efficient in reducing its configurational entropy. Hence
we can argue that at this point, the system of self‑propelled particles is super‑efficient (i.e. maximally
efficient) in coordinating its collective behaviour, offering a clear utility to the group.

This concept was also applied for urban transformations [51], where the maximum entropy principle
coupled with Lotka–Volterra dynamics was used to study shifts in population and income distribution
in urban areas. The study considered the thermodynamic efficiency 𝜂 expressed as the increase in pre‑
dictability of the population income flows relative to the thermodynamic work required to adjust the
social disposition (i.e. the factor balancing the suburbs’ attractiveness). The study identified a phase tran‑
sition in urban dynamics, where the number of affluent (i.e. service‑abundant) suburbs would change
abruptly in response to a small change in the underlying social disposition parameter. Importantly, the
thermodynamic efficiency was observed to peak at the phase transition, which occurred precisely at
the point balancing monocentric and polycentric urban configurations, providing an intrinsic utility for
social dynamics.

In the context of epidemic modelling, Harding et al. [53] examined the thermodynamic efficiency
𝜂 of contagions diffusing on a network, defining 𝜂 as the ratio of uncertainty reduction in the system
to work expenditure required to quasi‑statically change the control parameter (e.g. the infection trans‑
mission rate). Their numerical analyses identified a phase transition between sub‑critical (non‑epidemic)
and super‑critical phases (epidemic) as the infection transmission rate increased, with the highest ther‑
modynamic efficiency observed at the critical regime. In this case, the intrinsic utility of an intervention
process, considered as social and public health dynamics, is offered by the reduction of pathogen trans‑
mission probability: this utility is represented by thermodynamic efficiency maximized at the transition
from super‑critical to sub‑critical phase. Alternatively, the intrinsic utility for the pathogen evolution,
considered as a biological phenomenon, would be provided by the increase in the transmission proba‑
bility: this utility is captured by thermodynamic efficiency maximized at the transition from sub‑critical
to super‑critical phase.

In summary, the principle of super‑efficiency is supported by the observed peak in thermodynamic
efficiency at the critical regime in various simulated systems, including self‑propelled particles, urban
transformations and epidemic modelling. Despite differences in the application settings, the intrinsic
utility could be characterized by maximization of thermodynamic efficiency achieved at the critical
regime.
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5.4. Evidence from empirical systems
The principle of super‑efficiency is further supported by empirical studies of collective behaviours in nat‑
ural systems.While no single empirical study fully justifies the principle, evidence frommultiple studies
shows that collective systems tend tomaximize predictability (through internal order) while minimizing
energy consumption.

Empirical studies of European starling show that their flocks exhibit scale‑free correlations in velocity
and speed fluctuations—a signature of criticality [11,19,83]. Long‑range correlations enhance collective
responsiveness to external stimuli (e.g. predators, food resources), allowing flocks to achieve higher coor‑
dination of group behaviour (i.e. gain predictability). Friman et al. [98] found that starlings flying in small
groups save metabolic energy compared to flying solo, especially when the individuals maintain consis‑
tent follower positions behind leaders in V‑like formations. These energy savings result from structural
coordination, reflecting group‑level energy optimization through positional ordering. Together, these
findings suggest that starling flocks operate near a critical regime, balancing predictability gain with en‑
ergy efficiency. Importantly, these studies contrasted different flocking configurations (ranging between
extremes such as solo and coherent groups), so that higher coordination or lower energy consumption
can be interpreted as a gained predictability or additional work required to change the configuration.
The thermodynamic efficiency is precisely the ratio of these two quantities.

Experimentswith ant colonies [6,99,100] also show evidence of disorder‑to‑order phase transition and
signatures of criticality (scale‑invariant dynamics) in ant foraging activities. These studies suggest that
ant colonies benefit from operating at the vicinity of critical point where they maintain a certain level of
coordination. These studies show that ants move faster in larger groups, indicating efficiency gains from
social coordination. Porfiri et al. [101] explained how ant colonies achieve energy savings through so‑
cial interactions balancing positive and negative feedbacks. Such balance keeps metabolic cost growing
sublinearly with colony size, permitting lower energy consumption per individual for larger colonies.
Collectively, these findings show that ant colonies self‑organize near criticality for maximum efficiency
of interactions, where group order is established with low energy consumption. Again, the comparison
between different group sizes allows for the interpretation of the coordination increase and energy sav‑
ings as the predictability gain and additional work, respectively. The ratio of these changes is captured
by the thermodynamic efficiency.

The organization and function of brain network also show evidence of balancing predictability gain
and energy consumption. Empirical analysis of rat cortex data shows that sensory representation is
achieved by reducing entropy (and conditional entropy) of the neuronal responses to stimulus [102].
In other words, sensory adaptation maximizes predictability gain in the neuronal activities. Takagi
[103] modelled brain network formation by minimizing the ratio of activity cost over wiring cost and
found structural similarities—such as hubs and clusters—between the simulated network and empirical
brain networks from various species. By contrasting different network configurations, that is, from com‑
pletely random networks to small‑world networks to fully connected networks, these studies suggest
that the brain network evolves to maximize predictability gain while minimizing energy consumption
per adaptation.

5.5. Implication: why collective systems self-organize to criticality
The principle of super‑efficiency aims to explain why it is beneficial for a group of interacting agents
to operate at the critical regime, rather than how the system could self‑organize to this point—the latter
question is pursued by SOC models. The underlying rationale is that for a self‑organizing system with
many interacting components, being energetically efficient in reducing disorder and creating internal
coordination is advantageous, as has been demonstrated by the considered simulation and empirical
studies.

In short, the thermodynamic efficiency offers an intrinsic utility for a collective. When this utility is
maximized at a specific configuration (e.g. coupling strength, network connectivity, social disposition), it
optimizes evolutionary fitness, cognitive economy or social welfare. In the considered studies, the super‑
efficiency of collective behaviour has occurred at the critical regime, which is expected, as confirmed
by the divergence of thermodynamic efficiency at the critical point in canonical models. Thus, super‑
efficiency may provide a general principle for understanding why collective systems self‑organize to the
critical regime.

To re‑iterate, a super‑efficient self‑organizing system approaches the point where it can gain maximal
predictability of its collective behaviour, given the amount of additional work available to change the
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control parameter. Alternatively, given a desired predictability gain, a super‑efficient system seeks the
point where the energy cost of changing the control parameter is minimal.

6. Discussion
Is there an intrinsic utility for self‑organizing collective systems to operate at the critical regime? In attempting to
explore this question, we overviewed notable intrinsic utilitymeasures, using both information‑theoretic
and thermodynamic perspectives. The considered measures were directly compared using a common
example that we constructed in order to connect the canonical 2D‑Ising model to the perception‑action
loop.

The connection is established by conceptualizing each site in the Ising lattice as an agent possess‑
ing sensory‑motor capabilities, thereby linking the model to the perception‑action loop framework. The
choice of spin‑flip dynamic is analogous to the embodiment of the agents. Optimization of the control
parameter—the coupling strength J—may be considered analogous to choosing the sensory channels
[104] that maximize specific intrinsic utility given the embodiment.

Optimal J values were computed for different approaches, including predictive information maxi‑
mization, empowerment maximization, free energy minimization and thermodynamic efficiency max‑
imization. For the considered example, each approach exhibited a distinct optimal range of parameter
values, offering intuitive insights into the underlying driver shaping collective behaviour:

— Predictive informationmaximizes at sub‑critical coupling strength forMetropolis dynamics and
near‑critical regime for Glauber dynamics, balancing sensory richness with predictability;

— Empowerment maximizes at super‑critical coupling strength, where the individuals have
maximal influence over the environment;

— Free energy minimization (with intrinsic component only) also leads to super‑critical cou‑
pling strength, where local observations align most closely with the global configuration, hence
surprise is minimized;

— Thermodynamic efficiency maximization optimizes near the critical regime, achieving maxi‑
mum entropy reduction per unit of work expended.

Thus, thermodynamic efficiency, measured by the entropy reduction or predictability gain relative to the
associated thermodynamic work carried out, might be a candidate for the intrinsic utility of criticality.

In the Ising model example, each measure exhibits the same characteristic behaviour reported in
previous studies—balancing diversity and predictability for predictive information [32,33], maximiz‑
ing perceivable influence for empowerment [39,40], aligning the internal model with external generative
model for active inference [45,46], and optimizing entropy reduction relative towork for thermodynamic
efficiency [51,52]. This consistency indicates that the findings we observed in our simulations reflect
the measures’ underlying properties rather than artefacts of a specific model. We also tested different
Ising model dynamics, both yielding similar results. The considered model represents a broad class of
collective systems; this establishes an adequate range of applicability for our comparative analysis.

One limitation of the considered model is its equilibrium dynamics. In contrast, many biological sys‑
tems operate far from equilibrium, continuously exchanging energy, matter and information with the
external environments. Here, we restricted our analysis to equilibrium thermodynamics for two main
reasons: (i) previous studies on thermodynamic efficiency are based on equilibrium models, making
this a logical starting point for a primer, and (ii) we sought a simplified setting that highlights the char‑
acteristics of self‑organizing behaviours driven by each intrinsic utility without introducing too many
additional assumptions.

Extending the study to non‑equilibrium systems is an important direction for future research. For
example, a previous study on non‑equilibrium flocking [105] has shown that as velocities of the birds
becomemore aligned, the entropic force can break the flock apart unless it is finely counterbalanced by a
cohesive force.Hence, an intrinsic utility such as thermodynamic efficiencymight serve as a candidate fit‑
ness function for achieving such balance. This would establish whether the principle of super‑efficiency
is applicable to non‑equilibrium systems when significant entropic forces are present.

Informed by this analysis, as well as the relevant studies of thermodynamic efficiency [51–54], we
proposed a general principle, the principle of super‑efficiency, that may explain why collective systems
self‑organize to the critical point. The principle of super‑efficiency states that at the critical point, a
self‑organizing system achieves an optimal entropy reduction relative to the thermodynamic costs. The



23
royalsocietypublishing.org/journal/rsos

R.Soc.OpenSci.
12:

241655
.............................................................................................................

ability to reduce entropy efficiently grants the collective system an advantage, offering an intrinsic moti‑
vation to operate near the critical point. We believe that the principle of super‑efficiency has implications
for the broader field of guided self‑organization, informing the design of intelligent, adaptive systems
that achieve superior coordination, decision‑making and resource management.
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