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Thyroid cancers (TC) have increasingly been detected following advances in diagnostic
methods. Risk stratification guided by refined information becomes a crucial step toward
the goal of personalized medicine. The diagnosis of TC mainly relies on imaging analysis,
but visual examination may not reveal much information and not enable comprehensive
analysis. Artificial intelligence (AI) is a technology used to extract and quantify key image
information by simulating complex human functions. This latent, precise information
contributes to stratify TC on the distinct risk and drives tailored management to transit
from the surface (population-based) to a point (individual-based). In this review, we started
with several challenges regarding personalized care in TC, for example, inconsistent rating
ability of ultrasound physicians, uncertainty in cytopathological diagnosis, difficulty in
discriminating follicular neoplasms, and inaccurate prognostication. We then analyzed and
summarized the advances of AI to extract and analyze morphological, textural, and
molecular features to reveal the ground truth of TC. Consequently, their combination with
AI technology will make individual medical strategies possible.

Keywords: artificial intelligence, thyroid cancer, biomarker, personalized medicine, histopathology, fine-needle
aspiration biopsy, ultrasound
INTRODUCTION

Thyroid cancers (TC) have emerged in popularity over the past decades, with indolent TC
accounting for the majority (1–3). For advanced TC (1, 2) and aggressive papillary thyroid
carcinomas (PTC) (4), the incidence and mortality rates are also steadily increasing, which
makes it imperative to adopt more effective strategies for managing such changes. In the era of
personalized medicine, precise and efficient risk stratification is important before, during, and after
treatment, to choose and adjust its type and intensity. The foremost step is to discover key
information that reveals the biological behavior of TC. There are abundant anatomical structures
(texture, internal architecture, and spatial distribution) and molecular components (gene variation,
protein expression, etc.) within TC. So far, TC’s diagnosis mainly relies on image analysis (e.g.,
ultrasound images, cell smears, and tissue sections), but information obtained only by our naked
eyes hardly enables a comprehensive analysis of the tumors (5). Given patients and their disease
features, primary human cell cultures both from surgical biopsies and from fine-needle aspiration
(FNA) samples foster the targeted therapies (6). However, many tough challenges still hinder a clear
February 2021 | Volume 10 | Article 6040511

https://www.frontiersin.org/articles/10.3389/fonc.2020.604051/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.604051/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.604051/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:chenc2469@163.com
https://doi.org/10.3389/fonc.2020.604051
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.604051
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.604051&domain=pdf&date_stamp=2021-02-09


Li et al. Artificial Intelligence for Thyroid Cancer
break of personalized treatment such as inconsistent rating
ability of ultrasound (US) physicians (7), uncertainty in
cytopathological diagnosis (8), difficulty in discriminating
follicular neoplasms (9, 10), and inaccurate prognostication.

Artificial intelligence (AI) is a series of technologies combined
to mimic human interaction (Figure 1). In some tasks, it matches
Frontiers in Oncology | www.frontiersin.org 2
or exceeds human perception (11, 12). AI deals with various sorts
of omics information in parallel, easily identifying and modeling a
complicated nonlinear relationship in the image (13, 14). Several
studies have demonstrated that AI classifier is comparable to
radiologists while qualitatively analyzing thyroid nodules (TN)
(15–18). Furthermore, AI can extract and quantify key image
information, whereby image diagnosis converts from a subjective
qualitative task to objective quantitative analysis. This more
detailed and precise information is conducive to special risk
stratification and propels tailored management to transit from
the surface (population-based) to a point (individual-based).

In this review, we aimed to summarize the use of AI for
extracting and analyzing morphological, textural, and molecular
features to reveal detailed information and personalize therapies
for TC patients (Figure 2).
APPLICATIONS OF AI IN THE US
DIAGNOSIS OF TN

TN with several typical ultrasound features implies an increased
risk of malignancy, such as solid composition, hypoechogenicity,
irregular margin, microcalcification, and taller-than-wide shape.
However, these properties can neither confirm nor exclude the
diagnosis of TC (19). The observer’s agreement among multiple
centers is poorly satisfactory in assessing these features (7).
Thyroid Imaging Reporting and Data Systems (TI-RADS) are
enormously valuable to PTC as risk stratification systems, while
relatively less to FTC, MTC, and other malignancies (20).
Interestingly, the AI model appears to be a promising tool to
facilitate a better knowledge of TN via quantitative analysis of
typical US features and introduction of texture features.
FIGURE 1 | Main AI technologies and their relationships. AI. Artificial
intelligence; ML, machine learning; NN, neural network; DL, deep learning;
LDA, linear discriminant analysis; ELM, extreme learning machine; RF, random
forest; SVM, support vector machine; k-NN, k-nearest neighbor.
FIGURE 2 | The connection between the focus reviewed. Thyroid ultrasound is the preferred imaging examination for patients with thyroid nodules. When
sonographers consider certain thyroid nodules as malignant, the patient could choose fine-needle aspiration biopsy or surgery for a confirmed diagnosis. Artificial
intelligence (AI) uses ultrasound images, cell smears, and tissue slices to extract morphological, textural, and molecular features. This information is fed back into the
AI classifier to improve its performance and thus optimize thyroid cancer diagnosis and treatment workflow. As expected, whether these morphological (Mor.),
textural (Text.), and molecular (Mol.) features are related to each other warrants further study.
February 2021 | Volume 10 | Article 604051
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Performance of Typical US Features
Wildman-Tobriner et al. (21) developed an AI TI-RADS based on
the American College of Radiology (ARC) TI-RADS. This
system optimized the evaluation task through reassigned values
for eight ultrasound features, highlighting the status of
hypoechogenicity or marked hypoechogenicity. The novel AI TI-
RADS had better accuracy than ARC TI-RADS when performed by
inexperienced radiologists (55% vs. 48%) and experts (65% vs.
47%). Similar to other studies, ARC TI-RADS-based classifiers had
higher sensitivity and slightly lower specificity (21–24). Wu et al.
(25) evaluated quantitative echoic indexes for detecting malignant
TN, which showed higher accuracy than typical ultrasound
hypoechogenicity (>60% vs. 54.01%). We summarized the
outcomes of the ultrasound features employed by AI for
classification in Table 1 and found the most widely used features
were shape, margin, echogenicity, calcification, composition, and
size. In other words, these discriminative features seem to be the
focus for the AI model to learn (31, 37). Particularly, Choi et al. (30)
demonstrated several new calcification features associated with TN
malignancy, including shorter calcification distance ratio, smaller
amounts of calcification, and dimmer calcification. Chen et al. (28)
quantified TNmalignant risk through the calcification index. These
new features boosted diagnostic accuracy by combining qualitative
and quantitative methods (30, 38). Current AI classifiers focus on
benign and malignant TN dichotomy, and certain of them like the
S-Detect series have already become commercially available (32,
34). Furthermore, they are expected to predict more tumor-
Frontiers in Oncology | www.frontiersin.org 3
biological behaviors such as lymph node metastasis (39, 40) and
pathological subtypes (41).

Performance of Texture Features
A meta-analysis suggested that a taller-than-wide shape displays
TN’s variation in space and orientation growth, and it is defined as
the most suggestive feature for malignancy (42). Texture features
refer to the characterization of spatial distribution and surface
orientation with numerical features (43). Thus, texture analysis as
a powerful alternative will make it possible for radiologists to
comprehend the TN in depth and gain a correct diagnosis.
Raghavendra et al. (44) integrated spatial and fractal texture
features and screened two features with an excellent area under
the curve in diagnostic practice (94.45%). Prochazka et al. (45) used
AI to extract texture features from US images independent of the
direction of the US probe and achieved better accuracy (94.64%).
Yu et al. (46) performed a numerical transformation of two US
features, unregulated shape and long/short-axis ratio into the
perimeter2/area and the angle between the long axis and the
horizontal axis. These new features showed excellent sensitivity
and specificity (100% and 87.88%, respectively) combined with 65
texture features. Collectively, AI mode has a role in integrating
typical ultrasonic and texture features, and this fusionmight sharply
reduce the differences in judgments among US professionals.
Despite the mounting advantages of the AI model in optimizing
and even creating workflows, many remarkable factors hold its
ultimate practice back in the real world. The three main factors are
TABLE 1 | Summary of key studies on the outcome of ultrasound features in artificial intelligence classifier identifying benign and malignant thyroid nodules.

Study Patients Features Classifiers Accuracy, % Sensitivity, % Specificity, % AUC

Lim et al. (26) 96 Size, margin, cystic change, echogenicity, and
macrocalcification

ANN 93.78 NA NA 0.949

Savelonas et al. (27) 387 Boundary features SVM NA NA NA 0.95
Chen et al. (28) 256 Calcification index AmCAD-UT NA NA NA 0.746
Zhu et al. (29) 618 Not well-circumscribed, solid, hypoechogenicity,

microcalcification, taller than wide, absent peripheral
halo

ANN 83.10 83.80 81.80 0.828

Choi et al. (30) 85 Quantitative calcification NN 82.80 83.00 82.40 0.83
Wu et al. (25) 333 Quantitative echogenetic values AmCAD-UT 70.32 33.12 93.31 NA
Xia et al. (31) 187 Margin, shape, composition, echogenicity, and

calcification
ELM 87.72 78.89 94.55 0.867

Choi et al. (32) 89 Size, margins, shape, composition, echogenicity,
orientation, and spongiform

S-Detect 1
(SVM)

81.40 90.70 74.60 0.83

Ouyang et al. (33) 1036 Size, margins, shape, composition, echogenicity,
calcification, aspect ratio, capsule, hypoechoic halo,
vascularity, and cervical lymph node status

RF + k-SVM NA NA NA 0.954

Kim et al. (34) 106 Size, margins, shape, composition, echogenicity,
calcification, orientation, and spongiform

S-Detect 2
(CNN)

73.40 81.40 68.20 NA

Liu et al. (35) 4655 Shape, context, and margin CNN 94.90 97.20 89.10 NA
Wildman-Tobrineret
et al. (21)

1264 ACR TIRADS Genetic
Algorithm

65.00 93.30 64.70 0.93

Guan et al. (36)a 2235 Margin size Inception-v3 90.50 93.30 87.40 0.956
Zhao et al. (22) 822 Size + ACR TIRADS ML 82.10 90.90 78.10 0.917
Jin et al. (23) 695 ACR TIRADS CNN 80.35 80.64 80.13 0.87
Bai et al. (24) 13984b ACR TIRADS CNN 88.00 98.10 79.10 NA
Febru
ary 2021 | Volu
me 10 | Article 6
ANN, artificial neural network; SVM, support vector machine; AmCAD-UT, a software integrating AI technology and clinicians’ expertise; NN, neural network; ELM, extreme learning
machine; RF, random forest; k-SVM, kernel support vector machine; Inception-v3, a kind of Googlenet; CNN, convolutional neural network; ML, machine learning; NA, not available; ACR
TRIADS, American College of Radiology Thyroid Imaging Reporting and Data System, the features included in this system is composition, echogenicity, shape, margin, and echogenic foci.
aThis study focused on the classification between papillary thyroid carcinomas and benign nodules.
bNodules, not patients.
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as follows: (i) poor availability of large-high-quality datasets to
guarantee great robustness (17); (ii) lack of explainability for
conclusions from a black-box algorithm to solidify the trust
between physicians and patients (47, 48); (iii) financial burden
from specific equipment and research costs (48).
APPLICATIONS OF AI IN
CYTOPATHOLOGICAL EVALUATION
FROM FNA

FNA is a primary preoperative examination to evaluate TN. Its report
system, the Bethesda System for Reporting Thyroid Cytopathology
(TBSRTC), is a state-of-the-art and category-based method for
clinicians’ decision-making. While TBSRTC includes six diagnostic
categories on the estimated risk of malignancy (ROM) (Table 2),
15%–30% of TN continues to be classified as indeterminate TN
(ITN), most frequently TBSRTC categories III, IV, and V (8). Recent
studies showed excellent consistency between machine learning (ML)
models and cytologists in malignancy prediction (49–51), in which
the ROM of TBSRTC III determined by the ML model was
considerably lower than by manual classification (4.2% vs. 18.8%)
(51). It’s worth noting that morphological and genetic classifications
assisted by the AI model are fairly accurate at distinguishing
malignancy from benign TN (52–54) (Table 3).
Frontiers in Oncology | www.frontiersin.org 4
Performance of Morphological Features
PTC, the most common TC (>80%), arises from abnormal
growth of thyroid epithelial cells (28, 38). In recent years, AI
models with quantitative morphological features have tried to
improve follicular lesions’ recognition capacity (55–57). Sanyal
et al. (55) obtained the nuclear morphology and papillary
structure of PTC under two magnifications (×10 and ×40).
CNN model selected PTC from colloid goiter, follicular
neoplasms, and lymphocytic thyroiditis by right of these
features. Guan et al. (56) developed a new AI cytological
classification based on nuclear size and staining information
(the contours, perimeter, area, and means of pixel intensity),
whose results showed high accuracy (97.66%) to differentiate
PTC from benign nodules. Another research group also
confirmed this performance (57). They first derived nuclear
pleomorphism and area information and then reported the
weight of 17 cytological and morphological features. Finally,
their model successfully discriminated follicular carcinoma (FC)
from follicular adenoma (FA) (57) (Table 3).

The major difference between FC and FA is the occurrence of
capsular or vascular invasion (67). Preoperative examinations of
both US and FNA have difficulty in making a reliable diagnosis.
A highly vascularized tumor protrusion on the US strongly
indicates FC, which is rather rare yet (68). Seo et al. (69) took
full advantage of this difference by collecting information about
the tumor edge in the US images. The overall accuracy was
89.51% for distinguishing FC and FA. Yang et al. (70) segmented
the whole lesions of follicular neoplasms; as a result, the
classification accuracy was significantly improved to 96%. This
clarified the importance of internal information and affirmed the
study’s reliability by Savala et al. (57). Similarly, the diagnosis of
MTC and ATC is histology dependent (71, 72), yet now no
studies to our knowledge have answered the hope of AI in their
ultrasound and cytopathological diagnosis.
Performance of Biomolecules
For patients with ITN, repeat FNA or lobectomy might be
performed because management guidelines are more flexible (8,
73). Fortunately, molecular tests provide a noninvasive and
accurate option to reduce clinical and healthy uncertainty (8,
67). Each genome contains as much information as 100,000
photographs (74). Next-generation sequencing (NGS) can
perform high-speed analysis of multiple genes parallelly in a
single operation, producing billions of molecular fragments (74,
75). It has always been a crucial component of big data due to its
large volume of data, the astonishing velocity of the sequencing
methods, and the result output’s veracity. Traditional information
systems are less competent to analyze large and complex datasets
(76, 77). AI as a big data algorithm can integrate multi-omic data
in a different learning task, and automatically realize high-level
features’ detection or classification (77). Some genetic classifiers
have played their strengths in TN such as the Afirma gene
expression classifier (GEC) (58), gene sequence classifier (GSC)
(59), gene mutation-based classifier (ThyroSeq) (60, 78), and
microRNA-based classifier (RosettaGX Reveal) (61, 79). The
GEC involved 167 genes that displayed high sensitivity (92%)
TABLE 2 | The 2017 TBSRTC categories and their own risk of malignancy.

Diagnostic category Risk of malignancy if
NIFTP≠ CA (%)

I. nondiagnostic or unsatisfactory
Cyst fluid only
Virtually acellular specimen
Other (obscuring blood, clotting artifact, etc.)

5–10

II. Benign
Consistent with a benign follicular nodule (includes
adenomatoid nodule, colloid nodule, etc.)
Consistent with lymphocytic (Hashimoto) thyroiditis in
the proper clinical context
Consistent with granulomatous (subacute) thyroiditis
Other

0–3

III. atypia of undetermined significance or
follicular lesion of undetermined significance

6–18

III. follicular neoplasm or suspicious for a
follicular neoplasm
Specify if Hürthle cell (oncocytic) type

10–40

IV. suspicious for malignancy
Suspicious for papillary carcinoma
Suspicious for medullary carcinoma
Suspicious for metastatic carcinoma
Suspicious for lymphoma Other

45–60

V. Malignant
Papillary thyroid carcinoma
Poorly differentiated carcinoma
Medullary thyroid carcinoma
Undifferentiated (anaplastic) carcinoma
Squamous-cell carcinoma
Carcinoma with mixed features (specify)
Metastatic carcinoma Non-Hodgkin lymphoma
Other

94–96
This is an integrated table from reference (8).
February 2021 | Volume 10 | Article 604051
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and positive predictive value (PPV: 93%) but limited by its
relatively low specificity (52%) and negative predictive value
(NPV: 47%) (58). GSC expanded the gene spectrum to 10,196
genes by RNA-enhanced NGS. Compared to GEC in the same
samples, it made progress in screening for benign nodules
(sensitivity: 91.1% and specificity: 68.3%) (59) (Table 3). These
two classifiers are the most broadly accepted methods to rule out
malignant nodules. In general, ThyroSeq and RosettaGX Reveal
are more like rule-in entities. Nikiforova et al. (60) achieved a
robust sensitivity of 98% and a hopeful specificity of 81.8% by
employing the latest version of ThyroSeq (ThyroSeq V3) to
recognize a few cancers from most benign tumors. Steward et al.
(78) drew similar conclusions in a prospective blinded multicenter
study and reported 94% sensitivity and 82% specificity. RosettaGX
Reveal showed 98% sensitivity and 78% specificity when validated
in independent cases with all three pathologists’ agreement on the
histopathological diagnosis (61) (Table 3). However, whether the
mentioned classifiers could consolidate and complement each
other remains so ambiguous that we need to further investigate
the precise application strategy.

The multi-gene analysis is able to enhance diagnostic
performance, but it may be limited due to key genes’ deletion or
their reduced expression. Of note, the number of thyroglobulins has
been considered as a predictor of postoperative disease progression
(67). Therefore, the key proteins might provide some added
information for personalized therapy. Recent research has
confirmed that proteins are more stable than RNA in clinical
Frontiers in Oncology | www.frontiersin.org 5
tissues (80). Sun et al. (62) completed a 14 protein-based ANN
classifier for TN classification. This model realized the accuracy of
90.62% and 87.53% in multicenter retrospective and prospective
samples respectively (Table 3). Some molecular alterations such as
BRAFmutations (81) are diagnostic of cancer, but most of the other
alterations (82, 83) show overlap in both benign and malignant
lesions. Therefore, assessing the risk of malignancy by molecular
test ing should depend on knowledge of the prior
cytological appearance.
APPLICATIONS OF AI IN
HISTOPATHOLOGICAL ANALYSIS

Upon reliable evidence obtained by the US and FNA examination,
tumor information from the resected specimens is significant for
pathologists to diagnosis TC such as tumor size, pathologic
types, and degree of malignancy. Molecular patterns in the
tumor microenvironment like cytokines, chemokines, and
adipocytokines interconnect the units of immune-inflammatory
responses (e.g., macrophages, neutrophils, lymphocytes) and
tumor nest (e.g., epithelial cancer cells, fibroblasts, endothelial
cells) (84). The more detailed information the pathologists
provide, the more precise the treatment strategies physicians
take. The combination of AI, morphology, and molecular
markers is expected to provide more information for TC
management at a patient’s level.
TABLE 3 | The main performance of artificial intelligence using pathological information in different task.

Study Subject Test Feature Task Classifier Accuracy,
%

Cochand-Priollet et al.
(54)

157 FNA Nuclear size, shape, and texture Classification of malignant and benign TN FNN 89.00

Daskalakis et al. (53) 115 FNA Nuclear morphology and texture Classification of malignant and benign TN k-NN + PNN +
Bayesian

95.70

Tomei et al. (52) 93 FNA mRNA expression Classification of malignant and benign TN BNN 88.80
Sanyal et al. (55) 544 FNA Nuclear morphology and papillary

structure
Classification of PTC and non-PTC ANN 85.06

Guan et al. (56) 279 FNA Nuclear contour Classification of PTC and benign TN VGG-16 97.66
Savala et al. (57) 57 FNA Cellular and nuclear morphology Classification of FC and FA ANN 100.00
Alexander et al. (58) 249a FNA RNA expression Classification of malignant and benign ITN SVM 65.00
Patel et al. (59) 183a FNA RNA sequencing Classification of malignant and benign ITN SVM 74.00
Nikiforova et al. (60) 175ab FNA Genetic alterations Classification of malignant and benign ITN Torrent Suite

software
90.90

Lithwick-Yanai et al.
(61)

150ab FNA MicroRNA expression Classification of malignant and benign ITN LDA + k-NN 83.65

Sun et al. (62) 64a FNA Protein Classification of malignant and benign TN ANN 87.53
Wang et al. (63) 10 Histo. Nuclear size and chromatin

concentration
Classification of FC, FA, and normal thyroid SVM 100.00

Ozolek et al. (64) 94 Histo. Nuclear morphology Classification of five follicular lesions LDA +k-NN 100.00c

Zhao et al. (65) 800 Histo. Gene variant pathways TC risk stratification ANN 77.50/
86.00d

Ruiz et al. (66) 495 Histo. Gene signature Prediction of lymph-node metastasis and disease-
free survival

LDA 82.63
February 2
021 | Volume 10 | Ar
FNA, fine-needle aspiration biopsy; Histo., Histopathology; TN, thyroid nodules; FNN, feedforward neural network; PNN, probabilistic neural network; BNN, Bayesian neural network; PTC,
papillary thyroid carcinoma; FC, follicular carcinoma; FA, follicular adenoma; ANN, artificial neural network; SVM, support vector machine; LDA, linear discriminant analysis; k-NN, k-nearest
neighbor; NA, not available.
aOnly the validation cohort is included, which in the study by Lithwick-Yanai et al. was specifically the set agreed upon by the three pathologists.
bFNA smears, not patients.
cThe accuracy in the group of FA vs. FC, FA vs. NG, FC vs. NG, FA vs. FV-PTC, and FC vs. WIFC.
dThe accuracy of recognizing the different- risk cases was 77.50% (low-risk) and 86.00% (high-risk) respectively.
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Performance of Morphological Features
The morphological feature is the final station of biological
behavior and genetic variation of TN. The morphological
performance supported by AI might be beneficial for the
accurate diagnosis of TN. Wang et al. (63) successfully classified
FA, FC, and normal tissues according to nuclear size and
chromatin concentration. Ozolek et al. (64) achieved nearly
perfect accuracy based on nine nuclear morphological features
for discriminating five thyroid follicular lesions: FA, FC, follicular
variant of PTC, nodular goiter, and the widely invasive FC (Table
3). However, further validation of these models is required due to
tumor complicated heterogeneity, which was also turned out in a
recent study for classifying TC, normal tissues, nodular goiter, and
adenomas using a deep learning model (85).

Morphologically, FV-PTC is a mixed entity for typical PTC
nuclear features and entirely or almost entirely follicular growth
patterns. FV-PTC includes two major subtypes: encapsulated
(EFV-PTC) and non-encapsulated or infiltrative variants (IFV-
PTC) (86). The former generally have RAS mutations like
follicular tumors, the latter often presents extrathyroidal
extension (ETE), lymphatic metastasis, and BRAF mutations
like classical PTC (cPTC) (87). Likewise, EFV-PTC usually
appears invasive or non-invasive, and the noninvasive
encapsulate tumor was redefined from carcinoma to borderline
tumor, noninvasive follicular thyroid neoplasm with papillary-
like nuclear features (NIFTP) (86). Up to a point, the invasive
EFV-PTC behaves more aggressively like FC, whereas NIFTP is
with indolent clinical behaviors like FA (87). It is believed that
invasive EFV-PTCmight develop from NIFTP (88). Borrelli et al.
(89) revealed a significant difference in miRNA expression of FA,
NIFTP, and IFV-PTC. In particular, just two miRNA (miR-10a-
5p and miR-320e) enable us to differentiate NIFTP from IFV-
PTC. In another study by Selvaggi (90), none of the
multinucleated giant cells (MGCs) were observed in 20 NIFTP
cases, while the amount of MGCs varied from 1 to 4 in 88% of
the FVPTC cases (both IFV-PTC and invasive EFV-PTC). When
utilizing computer quantitative analysis to classify FV-PTC,
Chain et al. (91) demonstrated the NIFTP nuclear area (mean,
54.8 mm2) and elongation was smaller than PTC (mean, 77.2
mm2); Hsieh et al. (92) addressed PD-L1 expression in NIFTP
was lower than in invasive EFV-PTC. These quantitative
morphological characteristics and definite molecular alterations
contribute to FV-PTC classification.

As FV-PTC’s definition stated, the coexistence of papillary
and variable follicular structures is so common in cancer nests
that we hold a positive view about more transitional or
intermediate categories between the cPTC and FV-PTC.
Undoubtedly, the clearer the learning exemplars, the easier it is
to learn for the AI model because it receives fewer error messages
(13). For greater efficiency, it’s essential to accurately classify the
training set and refine the output target.
Performance of Genetic Parameters
The American Thyroid Association risk stratification system and
the American Joint Committee on Cancer TNM staging system
are used to guide postoperative treatment and predict post-
Frontiers in Oncology | www.frontiersin.org 6
treatment outcomes, which incorporate several parameters
including age, ETE, anatomic location, number, and size of
metastatic lymph nodes, aggressive variants, vascular invasion,
and distant metastasis. Nonetheless, these systems fail to routinely
recommend a genetic determination to guide individual
management (67, 93). Zhao et al. (65) selected 10 gene variant
pathways that involved inflammatory and immune responses to
determine the TC patients’ risk level. Based on these pathways, the
patients were divided into the high-risk and low-risk groups whose
survival time was significantly better than the former. Ruiz et al.
(66) demonstrated a 25-gene panel related to molecular pathways,
cell structure, and function was an independent prognostic factor
for lymphatic metastasis and disease-free survival (Table 3).
Further evidence is still warranted to address the value of this
genetic information to TN’s triage and biological behaviors. As AI
and gene testing technology upgrade, the cooperation of
traditional clinic-pathological parameters and gene molecules
might yield more precise therapeutic implications.
CONCLUSION

The future development of personalized medicine in TC still faces
several challenges like inconsistent rating ability of US physicians,
uncertainty in cytopathological diagnosis, difficulty in discriminating
follicular lesions, and inaccurate prognostication. AI’s application
has improved the efficiency and accuracy of diagnosis and treatment
in other tumors (94–96). A growing amount of medical information
can be extracted and analyzed through AI technology. This review
has innovatively offered ideas for the ultrasonic and pathological
testing out of these dilemmas in terms of morphological, textural,
and molecular features. As more key parameters are explored from
the tumor and its microenvironment, the AI-aided combination of
morphological and molecular features will pave the way for TC’s
protocol at the individual level.
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