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Lung cancer is a serious malignancy, and lung adenocarcinoma (LUAD) is the most
common pathological subtype. Immune-related factors play an important role in lymph
node metastasis. In this study, we obtained gene expression profile data for LUAD and
normal tissues from the TCGA database and analyzed their immune-related genes (IRGs),
and observed that 459 IRGs were differentially expressed. Further analysis of the
correlation between differentially expressed IRGs and lymph node metastasis revealed
18 lymph node metastasis-associated IRGs. In addition, we analyzed the mutations
status, function and pathway enrichment of these IRGs, and regulatory networks
established through TF genes. We then identified eight IRGs (IKBKB, LTBR, MIF,
PPARD, PPIA, PSME3, S100A6, SEMA4B) as the best predictors by LASSO Logistic
analysis and used these IRGs to construct a model to predict lymph node metastasis in
patients with LUAD (AUC 0.75; 95% CI: 0.7064–0.7978), and survival analysis showed
that the risk score independently affected patient survival. We validated the predictive
effect of risk scores on lymph node metastasis and survival using the GEO database as a
validation cohort and the results showed good agreement. In addition, the risk score was
highly correlated with infiltration of immune cells (mast cells activated, macrophages M2,
macrophages M0 and B cells naïve), immune and stromal scores, and immune checkpoint
genes (LTBR, CD40LG, EDA2R, and TNFRSF19). We identified key IRGs associated with
lymph node metastasis in LUAD and constructed a reliable risk score model, which may
provide valuable biomarkers for LUAD patients and further reveal the mechanism of its
occurrence.
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BACKGROUND

Lung cancer is one of the most common malignancies; according
to statistics, 2.2 million new cases of lung cancer and led to 1.8
million lung cancer-related deaths were reported in 2020.

Non-small cell lung cancer (NSCLC) accounts for
approximately 85% of lung cancers, and adenocarcinoma is
the most common pathological subtype of NSCLC, which can
account for more than 50% of cases (Jamal-Hanjani et al., 2017).
Despite recent advances in treatment, in particular targeted
therapies and immunotherapy, the 5 year survival rate for
NSCLC is still less than 20% (Herzberg et al., 2017; Sung
et al., 2021). Lymph node metastasis is an important cause of
this suboptimal long-term survival rate. Lymph nodemetastasis is
common even in early-stage lung adenocarcinoma (Zhang et al.,
2019). In addition, lung adenocarcinoma is more likely than
squamous carcinoma to metastasize to the lymph nodes (Deng
et al., 2019). Patients with lymph node metastases generally
require more extensive systemic therapy; thus, it is critical to
identify patients at high risk for lymph node metastasis.

Immune-related factors are of great importance in cancer
lymph node metastasis (Jones et al., 2018). One of the most
valuable recent advances in lung cancer research has been the
introduction of immunotherapy, in particular the development of
immune checkpoint inhibitors such as those targeting
programmed cell death protein 1 (PD-1) and programmed cell
death 1 ligand 1 (PD-L1), which have greatly advanced the
therapeutic approach to lung cancer (Herbst et al., 2016). The
theoretical basis for immune checkpoint inhibitors derives
from intensive studies of immune system function and
immunosuppressive conditions in the tumor microenvironment
(TME) (Singh et al., 2020). Tumor immune-related factors have an
important impact on the progression and prognosis of lung cancer.

In recent years, great progress has been made with high-
throughput sequencing technologies, such as microarrays and
RNA-seq, and public databases consisting of large genetic and
clinical datasets, such as the TCGA andGEO, have been established.
In the field of lung cancer research, many studies are conducted
using data obtained from public databases to identify key genes and
pathways involved in cancer development and progression by
analyzing gene expression profiles, and some researchers have
predicted patient prognosis by constructing predictive models
(Zuo et al., 2020; Ahluwalia et al., 2021).

In this study, we investigated immune-related genes (IRGs)
associated with lymph nodemetastasis, constructed a risk score to
predict lymph node metastasis, and explored the relationship
between the risk score and survival and immune cell infiltration.
We hope that this study will provide some valuable genetic
markers for studies related to lymph node metastasis in lung
adenocarcinoma.

METHOD

Data Access
A total of three publicly available datasets were used in this study,
including the RNAseq dataset of LUAD from the TCGA database

and the microarray data from the GSE50081 and GSE43580
datasets from the Gene Expression Omnibus (GEO) database.
We averaged the gene expression of multiple probes from the
same sample in the dataset and excluded cases with clinical data
that lacked pathological staging or survival follow-up data
(GSE43580 had no follow-up data and was used only to verify
the predictive effect on lymph node metastasis). A total of 706
samples were included in the study, of which the training set
comprised 450 samples from patients with LUAD and 53 samples
from normal lung tissue samples from the TCGA database, and
the validation set comprised 129 samples from patients with
LUAD from the GSE50081 cohort and 74 samples from patients
with LUAD from the GSE43580 cohort. A total of 2498 IRGs data
were obtained from the ImmPort database (Bhattacharya et al.,
2018). IRGs in the database were identified as key genes involved
in immune activity.

In the section where the mutation status is shown, the gene
mutation data used in the study were also obtained from the
TCGA database.

In addition to this, we looked up immunohistochemical (IHC)
images of key genes from the HPA database (https://www.
proteinatlas.org/) to verify whether the expected differences
were observable at the protein level.

Differential Analysis of Gene Expression
We used the “limma” package in R software to correct for batch
effects in LUAD tissue and normal tissue data and to screen for
differentially expressed genes (DEGs) by Wilcoxon test. A false
discovery rate (FDR) � 0.05 and a log2 |fold change| � 2 were
defined as cutoff values for DEGs. We then intersected the DEGs
with the list of IRGs obtained from the ImmPort database to
obtain differentially expressed IRGs.

Analysis of IRGs Associated With Lymph
Node Metastases
LUAD sample data from the TCGA database were divided into
two groups according to the presence or absence of lymph node
metastases, and Wilcoxon test were performed on previously
obtained differentially expressed IRGs using the “limma” package
in R software to explore IRGs associated with lymph node
metastases. A false discovery rate (FDR) � 0.05 and a log2 |
fold change| � 2 were defined as cutoff values in the
Wilcoxon test.

Gene Functional Analyses
To explore the differences in pathways and functions of IRGs
associated with lymph node metastases, we performed GO
annotation and KEGG pathway enrichment analysis using the
clusterProfiler package in R. The “GOplot” package in R was used
to plot the GO annotation and KEGG pathway analysis.

The Transcription Factors (TFs) Regulatory
Network
We downloaded the list containing information on 318 TFs from
the Cistrome database (http://cistrome.org/) (Mei et al., 2017).
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We then screened the TFs using a false discovery rate (FDR) � 0.
05 and a log2 |fold change| � 2 as the cutoff values. TFs correlated
with IRGs were identified by correlation analysis (correlation
coefficient � 0.4, p value � 0.05), and Cytoscape (v3.6.0) was
applied to construct protein-protein interaction (PPI) network
integration of IRGs and differentially expressed TFs.

Lymph Node Metastasis Risk Score
The LUAD cohort from the TCGA database was used as the
training set to construct the lymph node metastasis risk score. We
used the least absolute shrinkage and selection operator (LASSO)
logistic regression algorithm of the “glmnet” package in R
software to screen for the most significant IRGs for predicting
lymph node metastasis and selected candidate IRGs with penalty
parameter adjustment by 10-fold cross-validation (Friedman
et al., 2010). The weights of the genes in the model were
identified as the regression coefficients for each gene based on
the optimal lambda value. For each sample, the risk score is
calculated as∑ coefficient * gene expression value. In addition, we
evaluated the ability of risk scores to discriminate lymph node
metastases by plotting receiver operating characteristic (ROC)
curves and calculating the area under the ROC curve (AUC)
using the bootstrap resampling method.

Survival Analysis
We combined risk scores with clinical data from the LUAD
cohort from the TCGA database to analyze factors affecting
patient survival using univariate Cox regression and then
subjected factors that significantly affected survival to
multivariate Cox regression analysis to test whether risk scores
independently affected patient survival. For the above analysis,
the significance cutoff values were all p values <0.05. ROC curves
and AUC values were used to evaluate the predictive effect of the
risk scores on survival. In addition, we used X-tile software to find
the best cutoff values to divide the cases into two groups of
patients with high- and low-risk for lymph node metastasis, and
Kaplan-Meier and log-rank tests were used to calculate the
difference in survival between the two groups.

Correlation Between Immune Cell
Infiltration, Immune and Stromal Scores,
Immune Checkpoint Expression and the
Risk Score
We used the CIBERSORT package to assess the proportion of 22
leukocyte subtypes in each sample and compared the differences
in immune cells in tumor versus normal tissue using the Mann-
Whitney U test (Newman et al., 2015). The ESTIMATE package
was used to estimate the immune and stromal scores for each
tumor sample (Yoshihara et al., 2013). In addition, we selected 60
immune checkpoint genes from the B7-CD28 and TNF families,
which have important roles in immune signaling in lung cancer,
and assessed their correlation with risk scores. We used Spearman
correlation analysis to assess the correlation between risk scores
and the above three scores in tumor tissue, and p < 0.05 was
considered significant (Croft et al., 2013; Schildberg et al., 2016).

RESULT

IRGs Associated With Lymph Node
Metastases (LM-IRGs)
A total of 6,091 differentially expressed genes were identified
by differential gene expression analysis between lung
adenocarcinoma tissue and matched normal controls from
the TCGA database, of which the expression of 2021 was
downregulated and the expression of 4,070 was upregulated.
The differentially expressed gene data were then combined
with data on 2,498 IRGs from ImmPort and resulted in the
identification of 459 differentially expressed IRGs, of which the
expression of 250 was downregulated and the expression of
209 was upregulated (Figures 1A,B). The gene matrix of the
above 459 IRGs was next differentially analyzed according to
the presence or absence of lymph node metastasis, and 18 LM-
IRGs were identified (Figures 1C,D).

Functional Enrichment Analysis
For the LM-IRG gene signature, GO and KEGG enrichment
analysis was performed using the R software “clusterProfiler”
package based on expression differences between subgroups
with and without lymph node metastasis. Setting p � 0.05 as
the cutoff value for significance, we found that 190 BP, 15 CC,
and 7MF were enriched in GO, and three pathways were
enriched in KEGG. The top 10 items in each category are
shown in Figure 2. GO enrichment was mainly identified in
GO:0033209(BP): tumor necrosis factor-mediated signaling
pathway, GO:0022624(CC): proteasome accessory complex,
GO:0005125(MF): cytokine activity (Figures 2A,B). KEGG
enrichment included “Proteasome”, “Epstein-Barr virus
infection” and “NF-kappa B signaling pathway”
(Figures 2C,D).

Mutations in LM-IRGs
We downloaded LUADmutation data from the TCGA database. The
findings revealed that SNPs were the most common variant type in
LM-IRGs (Figure 3A). Based on theMutSigCValgorithm, thewaterfall
diagram showed the integration status of somatic mutations in LUAD,
and the results showed that the somatic mutations rate of IKBKB was
relatively high (19%), and GPI (8%),IL33 (8%), PLAU (8%), SPP1(8%)
had a moderate mutation rate (Figure 3B).

The Regulatory Network for LM-IRGs
and TFs
The list containing 318 TF genes was obtained from the
Cistrome database, and 144 differentially expressed TFs were
screened from previously obtained DEGs in normal and tumor
tissues. We then plotted the heatmaps of these TFs (Figure 4A).
To explore the potential regulatory mechanisms of LM-IRGs,
we constructed regulatory networks based on the above 144 TFs
and 18 LM-IRGs. The cutoff values in the correlation analysis
were correlation coefficient > 0.4, and a p value < 0.05. Finally,
the PPI network was visualized using Cytoscape software
(Figure 4B).
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Lymph Node Metastasis Risk Score and
External Validation
We performed a LASSO logistic regression analysis of the gene
expression matrix of 18 LM-IRGs from the LUAD cohort of the
TCGA database by the presence or absence of lymph node
metastases, with an optimal tuning parameter value (SE) of
0.1358 and a lambda value of 0.046, identifying the risk score
constructed using the eight most relevant genes (Figure 5A,B).
The formula for calculating the risk score was as follows:

Risk score�−3.25* IKBKB+1.05*LTBR+0.67*MIF+2.60 *PPARD+
0.40 *PPIA+ 2.39 *PSME3 +0.0085 *S100A6 +0.074 *SEMA4B.

The risk scores were then calculatd for the training set TCGA
LUAD cohort (Figure 5C) and the validation sets GSE50081
(Figure 5D) and GSE43580 (Figure 5E), and the ROC curves
were plotted with AUC values of 0.75 (95% CI: 0.7064–0.7978),
0.72 (95% CI: 0.6288–0.825) and 0.65 (95% CI: 0.5179–0.7916),
respectively. In addition, we also analyzed the differences in risk
scores between the groups with and without lymph node metastases
using t-tests in the three cohorts separately, and the results showed
that the p-values for all three groups were <0.05 (Figures 5C–E).

Correlation of Risk ScoresWith Survival and
External Validation
Patients in the TCGA LUAD cohort were divided into high-and
low-risk groups based on risk scores, and survival curves were

plotted using the Kaplan-Meier method. The log-rank test
showed a significant difference in survival between the two
groups (Figure 6A). In addition, we also plotted survival
ROC curves based on risk scores, with AUC values of
0.660, 0.611, and 0.595 for 1-, 3-, and 5-years survival,
respectively (Figure 6B). To test whether the risk score
independently influenced survival, we analyzed the
influence of age, gender, T stage, N stage, M stage, prior
malignancy, and treatment modality (radiotherapy and
chemotherapy only, no surgery cases in TCGA cohort) by
univariate Cox regression analysis together with the risk
score, and T stage, N stage, M stage, prior malignancy, and
risk score were found to have an effect on patient survival
(Figure 6C). The above factors affecting survival were then
subjected to multivariate Cox regression analysis, and as
shown in Figure 6D, all five were found to independently
affect survival; in particular, the risk score showed the highest
hazard ratio (3.4; 95% CI 1.0–11.0). For external validation,
we show in Supplementary Table S1 the baseline information
for the three groups of patients. We only used the GSE50081
cohort due to the absence of survival information in the
GSE43580 data, and the Kaplan-Meier survival curves
showed differences in survival between patients in the
high-and low-risk groups (Figure 6E), with AUC values of
0.604,0.617, and 0.683 for the survival ROC curves at 1,3, and
5 years, respectively (Figure 6F).

FIGURE 1 | (A) Heatmap and (B) volcano plot of differentially expressed IRGs between LUAD and normal tissues. (C) Heatmap and (D) volcano plot of IRGs
associated with lymph node metastases. The blue to red spectrum in (A,C) indicates low to high gene expression. In (B,D), the blue dots represent downregulated
genes, the red dots represent upregulated genes and the black dots represent genes that were not significantly differentially expressed.
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Validation of Gene Signature at the Protein
Level
Immunohistochemical data from the HPA database were used to
validate the risk score-related LM-IRGs. The results showed that
IKBKB, LTBR, MIF, PPIA, PSME3, and SEMA4B were all more
highly expressed in the tumor, as we expected, but PPARD
staining was not detected in either tumor or normal tissues,
and S100A6 was expressed in both normal and tumors and the
expression level did not appear to be significantly different
(Figure 7).

Correlation Between Risk Score and
Immune Cell Infiltration
We calculated the proportions of 22 immune cells in each sample by
the CIBERSORT algorithm and compared the differences between
tissues with and without lymph node metastasis. (Figure 8A). We
then calculated correlation coefficients between the risk scores and
immune cells proportions, with correlation coefficients > 0.2 and
p < 0.05 being used as cutoff values, and found that risk scores
correlated withmast cells activated, macrophagesM2, macrophages
M0 and B cells naïve (Figures 8B–E).

FIGURE 2 |GO and KEGG enrichment analysis of IRGs associated with lymph nodemetastases. (A,B)GO analysis: BP represent biological process, CC indicated
cellular component and MF represented molecular function, respectively. (C,D) KEGG pathways analysis.

FIGURE 3 | (A) Overview of differentially expressed IRGs mutations. (B) Waterfall of the mutated genes in IRGs associated with lymph node metastases.
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Correlation Between Risk Score and TME
Score
We estimated immune and stromal scores for tumor samples
using the ESTIMATE algorithm and calculated correlations
with the risk score. The results showed that the risk score
was positively correlated with the stromal score (Figure 9A),
immune score (Figure 9B) and ESTIMATE score
(Figure 9C).

Correlation Analysis of Immune
Checkpoints and Risk Score
We calculated correlation coefficients for risk scores and 60
immune checkpoint genes from the B7-CD28 and TNF
families (Supplementary Table S2). To show only
checkpoint genes with strong correlation with risk scores,
we used correlation coefficients > 0.4 and p < 0.05 as cutoff
values. The results showed positive correlations between
risk scores and the immune checkpoint gene LTBR, and
negative correlations with CD40LG, EDA2R, and
TNFRSF19 (Figure 9D).

DISCUSSION

Lung cancer is the leading cause of death among all malignancies each
year, and lung adenocarcinoma is the most common pathological
subtype of lung cancer. Lung adenocarcinoma is prone to early lymph
node metastasis. We reviewed the SEER database (Myers and Ries,
1989) for cases with definite 7th edition AJCC pathological stages
between 2010 and 2015, and found that even in patientswithT1 stage,
54.2% (4,907/9,049) had lymph nodemetastasis, while the proportion
of lymph node metastasis did not increase significantly with the
increase of T stage [T2: 49.9% (5,382/10,793), T3: 65.2% (6,245/
9,582), T4: 73.1% (8,991/12,296)]. Clarification of lymph node
metastasis status is crucial for the treatment of patients as well as
for the assessment of their prognosis (Hwang et al., 2020). The
commonly used noninvasive clinical examinations are CT and PET/
CT, but these two modalities are not accurate enough for the
diagnosis of lymph node metastasis and there is a certain
possibility of missing the diagnosis (Li et al., 2013; El-Sherief et al.,
2017). EBUS-TBNA is a valuable technique, with a higher diagnostic
accuracy than PET or CT, but its use is limited to the peri-airway area
and transbronchial needle aspiration is associated with some

FIGURE 4 | (A) Heatmap of differentially expressed TF genes between LUAD and normal tissues. (B) Regulatory network constructed based on differentially
expressed TFs and IRGs associated with lymph nodemetastases. The yellow triangles indicated TFs, the yellow ellipse indicated IRGs that not related to survival, the red
oval indicated IRGs related to poor prognosis, the blue oval indicated IRGs related to good prognosis.
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risks(Souma et al., 2020). Therefore, the development of new
predictors of lymph node metastasis is of value for diagnosis.

According to previous studies on lymph node metastasis of lung
cancer, many immune-related factorsplay an important role. Given
the complex role of immune-related factors in lymph node
metastasis, we aimed to predict the risk of lymph node metastasis
using RNA sequencing data from a large number of IRGs obtained by
high-throughput sequencing technology. By differential expression
analysis and LASSO logistic regression analysis we constructed an 8-
gene (IKBKB, LTBR, MIF, PPARD, PPIA, PSME3, S100A6,
SEMA4B) based risk score model to predict lymph node
metastasis in lung adenocarcinoma. IKBKB/IKKβ, the core
catalytic subunit of the κB kinase complex, is involved in
mediating the classical NF-κB pathway, which plays an important

role in tumor initiation by inducing DNA damage, oncogenic
mutation and genomic instability. In addition, NF-κB enhances
tumor cell proliferation by promoting the production of multiple
cytokines, growth factors and cell cycle proteins (Park and Hong,
2016). Previous studies have found an association between IKBKB
and the prognosis of a variety of tumors, including osteosarcoma,
gastric cancer, skin cancer, and breast cancer (Gong et al., 2020; Pan
et al., 2020). Lymphotoxin β receptor (LTBR), amember of the tumor
necrosis factor (TNF)/TNF receptor superfamily, significantly affects
the activation and clonal expansion of CD8+ T cells and has been
found to be associated with the development and progression of
hepatocellular carcinoma (Zhu et al., 2017). Macrophage migration
inhibitory factor (MIF) was originally found to act as a
proinflammatory cytokine in immune and inflammatory

FIGURE 5 | (A) Selection of tuning parameter (λ) in the LASSO model used 10-fold cross-validation in TCGA training set. (B) LASSO coefficient profiles of the
18 LM-IRGs. A coefficient profile plot was produced against the log(λ) sequence. (C–E) ROC curves and vioplots showing discrimination ability of the risk score in the
TCGA training set (C), GSE50081 validation set (D) and GSE 43580 validation set (E).
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responses, to mediate the regulation of macrophage function to
counteract the anti-inflammatory activity of glucocorticoids,
and to have tumor-promoting properties (Conroy et al.,
2010). MIF has been extensively studied in relation to
malignancy and its effects are thought to occur mainly
through alteration of the tumor microenvironment (Mitchell
and Yaddanapudi, 2014). Peroxisome proliferator-activated
receptor-δ (PPARD) is a nuclear transcription receptor that,
once activated by a ligand, binds to the promoter of a target
gene and is involved in the regulation of many molecular
processes (Xu et al., 2013). PPARD expression is upregulated
in many malignancies, and its role in tumorigenesis remains

controversial, but recent studies have revealed it its important
role in metastasis and corroborate our findings (Zuo et al.,
2017). Peptidyl prolyl isomerase A (PPIA) catalyzes the cis-
trans isomerization of prolyl acyl peptide bonds in
oligopeptides and accelerates protein folding and may play
a role in cyclosporin A-mediated immunosuppression.
Previous studies have revealed a correlation between PPIA
and the prognosis of non-small cell lung cancer (Campa et al.,
2003). Proteasome activator subunit 3 (PSME3), a subunit of
the 11SREG-γ proteasome regulator, is associated with the
proteasome and is known to regulate the degradation of the
cell cycle protein-dependent kinase inhibitors p21 and p16, the

FIGURE 6 | (A) Kaplan-Meier curve analysis of the TCGA training set. (B) Survival-dependent receiver operating characteristic (ROC) curve indicated prognostic
results of the risks core. The area under curve (AUC) of the TCGA training set corresponding to 1, 3, and 5 years survival was provided. (C)The univariate Cox analysis
and (D)multivariate Cox analysis of the TCGA training set for evaluating the prognostic value of the risk score. (E)Kaplan-Meier curve analysis of the GSE50081 validation
set. (F) Survival-dependent receiver operating characteristic (ROC) curve of the GSE50081 validation set corresponding to 1,3, and 5 years survival.
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oncogene SRC-3 and the tumor suppressor p53 (Li et al., 2007;
Zhang and Zhang, 2008). In addition, recent studies have
revealed that tumors evade immune surveillance by
overexpressing PSME3 (Boulpicante et al., 2020). It was
proposed in previous studies that S100A6 acts as a calcium
sensor and regulator to promote cellular calcium signaling
and, in lung cancer, promotes cancer cell proliferation,
invasion, and migration through P53 acetylation (Emberley
et al., 2004). SEMA4B is a member of the semaphorin protein
family, which primarily regulates cell migration. SEMA4B has
been shown to inhibit the invasion of non-small cell lung cancer
through the PI3K signaling pathway (Jian et al., 2015). However,
this is contrary to our findings as we observed the gene to be highly
expressed in lung adenocarcinoma at both the transcriptome and
protein levels. In addition, a query of the human protein atlas
database revealed that the gene was associated with poor prognosis
in lung cancer; thus, we suggest that further experiments might be
required to verify the role of SEMA4B.

To verify the robustness of the risk scores, we used two
external validation cohorts from the GEO database, and the
risk scores were valid in both cohorts. Interestingly, although
the risk score was designed to predict lymph node metastasis, by
survival analysis we found it to be an independent influencer of
patient survival. This may be because the biological processes the
model genes are involved in make it easier for the tumor cells to
disseminate, and the finding also illustrates the validity of the
model. Most of the previous studies on IRGs for lung cancer were
conducted by constructing risk scores to predict patient survival

(Chen et al., 2020b; Fu et al., 2020; Li et al., 2020), and we believe
that among the factors affecting patient survival, excluding
genetic markers, clinical factors such as pathological stage and
treatment modality also have a great influence, and the influence
of these factors is difficult to completely eliminate. However, in
our study, the focus was on the effect of genetic markers on lymph
node metastasis, and the biological behavior of the tumor was
almost independent of the clinical factors; thus, our findings may
be more accurate and more reproducible.

Immune checkpoint inhibitors have been the biggest advance
in lung cancer treatment in recent years, and there is abundant
evidence from basic research that an immunosuppressive TME
depletes T cells and renders them unresponsive (Hanahan and
Weinberg, 2011), which allows tumor cells to evade immune
surveillance and clearance. Immune evasion is an important part
of the lymph node metastasis mechanism (Chen et al., 2020b; Fu
et al., 2020; Li et al., 2020), so we also investigated the relationship
between risk scores and immune cells, immune scores and
immune checkpoint genes. We calculated the proportion of
stromal and immune cells in the tumor tissue using the
ESTIMATE algorithm (Chen et al., 2020b; Fu et al., 2020; Li
et al., 2020). The stromal and immune scores are measures of the
proportion of stromal and immune cells in the tumor tissue,
respectively, and the ESTIMATE score indicate tumor purity,
which is defined as the percentage of tumor cells in the TME and
is closely related to the prognosis of cancer. The findings showed a
significant correlation between risk scores and all three of these
other factors, possibly predicting an effect of the TME on lymph

FIGURE 7 | IHC images of the eight key genes in LUAD and normal tissues obtained from the HPA database.
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FIGURE 8 | (A) Differential infiltration of 22 immune cell types in LUAD with and without lymph node metastasis (Red: N+, Blue: N−). (B–E) Correlation analysis of
risk scores with mast cells activated (B), macrophages M0 (C), macrophages M2 (D) and (B) cells naïve (E).

FIGURE 9 | (A) Correlation analysis of risk scores with StromalScore. (B) Correlation analysis of risk scores with ImmuneScore. (C) Correlation analysis of risk
scores with ESTIMATEScore. (D) Results of correlation analysis between risk scores and immune checkpoint genes.
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node metastasis (Qi et al., 2020). Tumor-infiltrating B cells are a
key component of adaptive immunity, and data on the antitumor
effects of B cells in NSCLC are inconsistent (Hu et al., 2019).
Recent studies have revealed that naive B cells can inhibit cancer
cell proliferation and are associated with a favorable prognosis in
NSCLC (Chen et al., 2020a). Our results suggest that naive B cells
may also have an inhibitory effect on lymph node metastasis. In
addition, in the differential analysis of immune cell infiltration in
patients with and without lymph node metastasis we found a
higher proportion of γδ T cells in patients with lymph node
metastasis. γδ T cells can secrete cytokines and exert potent
cytotoxicity against a wide range of cancer cells, making them
potential effector cells for cancer immunotherapy (Kakimi et al.,
2014). In an in vitro study, γδ T cells were found to kill the N592
lung cancer cell line (Ferrarini et al., 1996). In addition, one
clinical trial using γδ T cells to treat NSCLC showed that the cells
had some effect (Nakajima et al., 2010). This seems to contradict
our results. However, recent studies have found that microbiota
contribute to inflammation and cancer progression by
stimulating γδ T cells in the lung, leading to γδ T cell
expansion and phenotypic changes (Jin et al., 2019). Overall,
γδ T cells play a complex role in tumor immunity in lung cancer,
and in our study we found higher levels of γδ T cell infiltration in
patients with lymph node metastasis, the mechanism of which
deserves further investigation. Costimulatory molecules
expressed in cancer cells, especially immune checkpoints, play
a crucial role in regulating antitumor immune responses (Turley
et al., 2015), and the results in this study show that multiple
members of the B7-CD28 and TNF families are associated with
risk scores, which may indicate a potential role they play in lymph
node metastasis. Overall, we constructed a risk score to predict
lymph node metastasis and showed moderate predictive validity
in the training cohort and a validation cohort. In addition, we
explored the mutational and regulatory network of metastasis-
related genes and investigated the correlation between the risk
score and some key factors in the TME, all of which may provide
some ideas for subsequent studies. However, our research also has
some limitations. First, although we used other cohorts for
validation, this is still a retrospective study and further
prospective cohorts are needed to verify its validity. Second, it
is IHC that has better utility for clinical work, and the reliability of
our model has not been able to be validated in protein expression
levels. Therefore, we will develop new cohorts in the next study to
investigate the correlation between gene expression and protein
levels in IHC. In addition, we will further investigate the
relationship between lymph node metastasis and the biological
functions of genes in the model and TME, etc. through
experiments based on the directions demonstrated in the
study. Third, due to the lack of diagnostic imaging
information in the dataset used in the study, it was not
possible to explore the improvement of the risk score on the
accuracy of diagnostic imaging, and we will develop a new cohort
to combine the risk score with diagnostic imaging in the next step
to explore the improvement of the accuracy of the diagnosis of
lymph node metastasis.

CONCLUSION

We investigated the IRGs associated with lymph node metastasis
in LUAD, and further explored the above IRGs in terms of gene
regulation, gene function, gene pathway involvement and
mutation status. The constructed risk score was effective in
predicting not only lymph node metastasis but also patient
survival, and we validated it using validation cohorts and IHC.
In addition, the score has a significant correlation with immune
cell infiltration, immune score, and immune checkpoint genes,
which can provide some insight into the mechanisms of and
therapeutic targets for LUAD.
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