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Abstract

Background

Multiple myeloma (MM) is a hematological malignancy characterized by the clonal expan-

sion of malignant plasma cells. Though durable remissions are possible, MM is considered

incurable, with relapse occurring in almost all patients. There has been limited data reported

on the lipid metabolism changes in plasma cells during MM progression. Here, we evaluated

the feasibility of concurrent lipidomics and proteomics analyses from patient plasma cells,

and report these data on a limited number of patient samples, demonstrating the feasibility

of the method, and establishing hypotheses to be evaluated in the future.

Methods

Plasma cells were purified from fresh bone marrow aspirates using CD138 microbeads. Pro-

teins and lipids were extracted using a bi-phasic solvent system with methanol, methyl tert-

butyl ether, and water. Untargeted proteomics, untargeted and targeted lipidomics were per-

formed on 7 patient samples using liquid chromatography-mass spectrometry. Two compar-

isons were conducted: high versus low risk; relapse versus newly diagnosed. Proteins and

pathways enriched in the relapsed group was compared to a public transcriptomic dataset

from Multiple Myeloma Research Consortium reference collection (n = 222) at gene and

pathways level.
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Results

From one million purified plasma cells, we were able to extract material and complete untar-

geted (~6000 and ~3600 features in positive and negative mode respectively) and targeted

lipidomics (313 lipids), as well as untargeted proteomics analysis (~4100 reviewed proteins).

Comparative analyses revealed limited differences between high and low risk groups

(according to the standard clinical criteria), hence we focused on drawing comparisons

between the relapsed and newly diagnosed patients. Untargeted and targeted lipidomics

indicated significant down-regulation of phosphatidylcholines (PCs) in relapsed MM.

Although there was limited overlap of the differential proteins/transcripts, 76 significantly

enriched pathways in relapsed MM were common between proteomics and transcriptomics

data. Further evaluation of transcriptomics data for lipid metabolism network revealed

enriched correlation of PC, ceramide, cardiolipin, arachidonic acid and cholesterol metabo-

lism pathways to be exclusively correlated among relapsed but not in newly-diagnosed

patients.

Conclusions

This study establishes the feasibility and workflow to conduct integrated lipidomics and pro-

teomics analyses on patient-derived plasma cells. Potential lipid metabolism changes asso-

ciated with MM relapse warrant further investigation.

Introduction

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by plasma cell

infiltration of the bone marrow, and/or the presence of extramedullary plasmacytomas [1].

With an increasing number of treatment options available, median survival for MM has

improved, and now approaches six years [2]. Despite advances in therapeutic strategies and an

increasing number of pharmacological agents to choose from, MM eventually relapses for the

majority of patients, hence there is a need to understand the mechanisms of relapse and iden-

tify potential new therapeutic approaches.

The Revised International Staging System (R-ISS) for MM incorporates serum biomarkers

(lactate dehydrogenase, beta-2-microglobulin and albumin) and cytogenetic abnormalities of

known prognostic significance to predict disease behavior [3]. It is imprecise however, with

different patients in the same risk group exhibiting heterogeneous behavior and prognoses.

MM treatment strategies predominantly use regimens built around immunomodulatory drugs

such as thalidomide or its analogues, or proteasome inhibitors including bortezomib or carfil-

zomib. These treatments may be followed by autologous stem cell transplantation. With an

increasing number of treatment options available, median survival has improved in the last

decade, now approaching six years [2], but despite these advances, myeloma eventually

relapses for the majority of patients.

Perturbations in lipid metabolism are emerging as potential drivers and therapeutic targets

in cancer development and progression [4]. This is of particular relevance because obesity is a

risk factor for a number of cancer types, including multiple myeloma (MM) [5]. A pooled

analysis of 1.5 million participants from 20 unique prospective cohorts found a 1.2 to 1.5 fold

increased risk of MM mortality with increasing body mass index [6]. In addition to the
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systemic chronic inflammation associated with obesity, increased bone marrow adiposity of

the MM microenvironment may directly fuel MM progression [7].

In MM, initial lipidomic studies comparing malignant plasma cells to healthy plasma cells

have reported decreased levels of phosphatidylcholines [8], and differing fatty acid composi-

tion of cellular membranes [8, 9]. There are limited studies on the metabolic changes that

occur during MM relapse, with most studies focusing at the genomic level [10]. Using Raman

spectroscopy to compare between drug resistant and sensitive MM cell lines, Franco et al. sug-

gested differences in nuclear structure, as reflected by altered DNA:RNA ratio as well as cho-

lesterol and phosphatidylethanolamine content [11]. Metabolic reprogramming, elevated

oxidative stress response and up-regulated prostaglandin synthesis were reported by Zub et al.
who compared the proteome and transcriptome of melphalan sensitive and resistant

RPMI8226 cell lines [12].

Advances in omics technologies herald the potential of multi-omics systems analysis, where

regulatory networks could be evaluated, for example, by combining proteomics and transcrip-

tomics data. One challenge of performing multi-omics analysis on clinical samples is the lim-

ited patient-derived material. In this study, we investigated the feasibility of conducting

lipidomic and proteomic analyses from the same patient-derived plasma cell sample. To sup-

port the omics results from our pilot cohort, we compared the proteomics data with a larger

public transcriptomic dataset from Multiple Myeloma Research Consortium reference collec-

tion, and interpreted the lipidomics data against a combined transcriptomics-proteomics lipid

metabolism network for relapsed MM.

Materials and methods

Participants and samples

A single-center, prospective pilot study was performed at the Princess Alexandra Hospital,

Brisbane, Australia. We identified patients as possible candidates (on the basis of clinical fea-

tures) prior to bone marrow aspiration and biopsy, and written informed consent was sought

prior to the aspiration and biopsy procedure. Bone marrow biopsies were all performed in the

outpatient setting. Participant details are in S1 File. Patients were recruited to the study

between January and May 2016 at the Princess Alexandra Hospital in Brisbane, Australia. The

study was performed using samples that were submitted to our institutional biospecimen

bank, and patients provided written informed consent for this banking process. For samples

(and therefore patients) to be included, the laboratory analysis had to be consistent with multi-

ple myeloma. The research was performed at the Princess Alexandra Hospital, the Transla-

tional Research Institute, and the Queensland Institute of Medical Research. Demographic

details are included in S1 File.

This study was approved by the PAH Human Research Ethics Committee (HREC/15/

QPAH/442). Tissue banking was performed under the auspices of the Australasian Leukaemia

and Lymphoma Group (ALLG) Tissue Bank.

Plasma cell isolation from bone marrow

Plasma cells were isolated from fresh bone marrow aspirate samples using CD138 microbeads

(Miltenyi). Purity was verified by flow cytometry (on the basis of CD38 and CD138 expres-

sion) and was>80% for all samples. Purified plasma cells were stored in aliquots of 106 cells at

-80˚C until analysis.
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Lipid and protein extraction

Samples were selected based on laboratory confirmation of the diagnosis of myeloma with

>10% plasma cells in the marrow aspirate sample, and>80% of CD138+ plasma cells post-

purification. Extraction of lipids and proteins from 106 isolated plasma cells was carried out

using a bi-phasic solvent system of cold methanol, methyl tert-butyl ether (MTBE) and water

[13]. Briefly, each sample was suspended in 20 μL of cold Milli-Q water and homogenized with

a pipette tip, followed by addition of 20 μL of a 20 μM solution of zidovudine (AZT) in metha-

nol as internal standard. Cold methanol (205 μL) was then added. The sample was vortexed

briefly, frozen in liquid nitrogen for 2 min, thawed, and sonicated for 10 min. The freeze-

thaw-sonication cycle was repeated twice. After incubating at -30˚C for 1 h, the sample was

extracted by 750 μL cold MTBE with shaking at 4˚C for 15 min. Phase separation was induced

by addition of 188 μL Milli-Q water, vortexing and centrifugation at 14000 g for 15 min at

4˚C. The upper phase was collected (700 μL) as the lipid-rich extract fraction, and protein was

recovered as the pellet. The lipid extract was evaporated to dryness under vacuum and then

reconstituted in 100 μL of a methanol/toluene (9:1) mixture for LC-MS analysis.

Untargeted lipidomics

Untargeted lipidomics using LC-MS was performed as previously described [14], using Agilent

1290 Infinity II UHPLC with 6550 iFunnel Q-TOF mass spectrometer and Dual Agilent Jet

Stream (AJS) source. Agilent Zorbax Eclipse Plus RRHD C18 column (2.1 × 50 mm, 1.8 μm)

was used at a flow rate of 0.5 mL/min. Mobile phases for positive mode LC-MS consisted of A:

acetonitrile/water (60:40) and B: isopropanol/acetonitrile (90:10). Both A and B contained 10

mM ammonium formate and 0.1% formic acid. In negative mode, ammonium formate and

formic acid was replaced with 10 mM ammonium acetate in both eluents. LC gradient is

described in S2 File.

Full scan MS spectra were acquired for samples at a mass range of m/z 100–1700. The TOF

component was tuned using reference masses 118.09, 322.05, 622.03, 922.00, 1221.99 and

1521.97 in positive ionization mode, and the masses 112.99, 302.00, 601.98, 1033.99, 1333.97

and 1633.95 in negative mode. Source capillary voltages were set to 4000 V for positive ioniza-

tion mode and 3500 V for negative ionization mode whilst the nozzle voltage was set to 0 V,

fragmentor was set to 365 and octopoleRFPeak to 750. Nitrogen gas temperature was set to

250˚C at a flow of 15 L/min and a sheath gas temperature of 400˚C at a flow of 12 L/min. Dur-

ing the experiment reference masses were enabled for positive (121.05 and 922.01 Da) and

negative modes (68.99, 112.98 and 1033.99 Da) to enable auto-recalibration of compounds

with known masses.

The MS1 untargeted LC-MS data were subjected to batch Molecular Feature Extraction

(MFE) with Agilent Profinder (B.08.00, Agilent Technologies Inc., Santa Clara, CA, USA).

Data were then imported into R statistical framework for analysis. Data were first filtered to

retained only features that in at least 75% of samples of one or more comparison groups.

Remaining missing values were imputed with the minimum value. After quantile normaliza-

tion and log2 transformation, differential analysis was carried out using limma package [15] to

identify significant features (p value (with and without adjustment) < 0.05, logFC > 1.5).

To assign the molecular identity to candidate features, LC-MS/MS was performed using

nitrogen as the CID collision gas. MS/MS acquisition was performed in targeted mode. The

HPLC, column and source parameters were identical to those used in the MS acquisition. A

fixed collision energy of 20 eV was used to induce fragmentation for all targets in positive and

negative mode. MS/MS data was acquired between 70–1500 m/z with MS and MS/MS scan

rates of 3 spectra per second, with a maximum of 5 seconds between MS scans. The isolation
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width for all targets was set to medium (~4 amu) and a delta retention time of 0.3 minutes.

The LC-MS/MS data were submitted to the open source software MS-DIAL [16] with Lipid-

Blast in-silico LC-MS/MS library [17] for identification of lipids.

Targeted lipidomics

Targeted lipidomics experiments were performed using an Agilent Technologies 1290 Infinity

II UHPLC system with an Agilent HILIC Plus RRHD 2.1×100 mm 1.8-micron column, cou-

pled online to an Agilent 6490A Triple Quadrupole Mass spectrometer with iFunnel and AJS

source. The mass spectrometer was operated in dynamic MRM mode. Each sample was ana-

lyzed in three separate dynamic MRM runs for the following lipid classes: Cer, PC and SM in

method F1; PC-O, PC-P, HexCer, LPE, LPC in method F2; PE, PE-O, PE-P, PI, PG in method

A1. MRM lipid transitions are shown in S2 File.

The source nitrogen gas temperature was set to 250˚C at a flow of 15 L/min. The sheath gas

temperature was 400˚C with a flow of 12 L/min. The capillary voltage was set to 4000 V for

positive mode and 5000 V for negative mode and the nebulizer operated at 30 psi. Ion funnel

low and high pressure in positive mode were 150 and 60, and in negative mode 150 and 120

respectively. The autosampler was operated at 4˚C and the column compartment was operated

at 30˚C for the duration of the experiment. A solution of 95% acetonitrile was used to perform

the needle wash with a duration of 15 seconds. An injection volume of 8μL was used for all

samples. Pooled quality control (QC) samples were injected multiple times to condition the

HPLC column prior to analyzing the biological samples. Chromatographic separation of lipids

was performed using 2 different HILIC buffer systems; 25 mM ammonium formate (pH4.6)

or 10 mM ammonium acetate (pH7.6). The acetonitrile gradient was from 50% to 95% as

described in S2 File.

Raw LC-MS data was imported into Skyline [18], where peak integration was automated

but manually confirmed and adjusted if required. Retention time for internal standard of each

lipid class was used to confirm correct peak integration of lipids belonging to the same class.

Peak areas were exported from Skyline for further analysis in R. Data were then normalized

using probabilistic quotient normalization [19] to correct for injection variations, and then

log2 transformed. Differential analysis was carried out using limma package identify signifi-

cant lipids (p value (with and without adjustment) < 0.05, logFC > 1.5).

To perform enrichment analysis, lipid sets were generated based on class, total chain length

and total chain unsaturation. Lipid set enrichment analysis was performed in R using the fgsea

package using logFC as a ranking statistic [20].

Proteomics

Proteins pellets were thawed on ice then centrifuged. Any excess liquid was removed and sam-

ples dried under N2 for 10 min. Protein pellets were resuspended in 15 μL of buffer (70 mM

Tris pH8, 1% sodium deoxycholate, 10 mM tris(2-carboxyethyl)phosphine and 40 mM

2-chloroacetamide), and sonicated in the Bioruptor (Diagenode) for 15 minutes. Protein con-

centration was measured using DirectDetect1 infrared spectrometer (Merck). A 10 μg aliquot

of 1 mg/mL protein extract was denatured by heating at 95˚C for 5 minutes. After cooling to

room temperature, 0.2 μg trypsin (Promega) was added and incubated at 37˚C overnight.

Digest was stopped by acidification to 0.5% TFA, and peptides were isolated using OMIX C18

tips (Agilent). NanoLC-MS/MS was performed using a Waters nanoACQUITY UPLC system

interfaced to an LTQ-Orbitrap Elite hybrid mass spectrometer as described in [21].

Acquired data was searched using MaxQuant [22] version 1.5.8.3 against SwissProt human

proteome downloaded on 25/10/2017, and later exported to R for analysis. Proteins were
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filtered according to unique peptides (�2) and Score (>5), and then according to missing val-

ues, where proteins were only kept if they were detected in at least 75% of samples of one or

more comparison groups. Data was then quantile normalized and remaining missing values

imputed using two techniques: i) proteins missing in < 25% of all samples were considered

missing at random, and were imputed using localized least square regression as described in

[23], ii) proteins missing in> 25% were imputed from a normal distribution centred at mini-

mum intensity. Log2 transformed data was analyzed using limma package to identify signifi-

cant proteins (p value (with and without adjustment) < 0.05, logFC > 1.5). Pathway

enrichment analysis was carried out using the fgsea package using logFC as a ranking statistic

and pathways from Reactome database [24].

Transcriptomics data set

Gene expression profiles of the Multiple Myeloma Research Consortium (MMRC) reference

collection were downloaded from the Multiple Myeloma Genomics Portal (http://portals.

broadinstitute.org/mmgp/) as a GCT file. Expression signals were obtained as median centered

and log2 transformed, and imported into R. Patient samples were filtered to include only those

diagnosed with Multiple myeloma and reported treatment status. Microarray probes were first

mapped to UniProt IDs, followed by differential analysis and pathway enrichment using

limma and fgsea packages, respectively.

Network analysis

Biopax level 3 file of the “Metabolism of Lipids” pathway was downloaded from the Reactome

database, imported and analyzed in R using NetPathMiner package [25]. Transcriptomic data

was used to weight network based on adjacent pairwise correlation. Top 50 correlated paths,

with a minimum path length of 6 reactions, were then extracted for relapsed and newly-diag-

nosed patients. Association of extracted paths with disease status was assessed by a path classi-

fication model. A subnetwork of top paths was then exported to Cytoscape [26] for interactive

visualization and analysis.

Results

Following clinical diagnosis, plasma cell isolation and quality control, a total of 7 participant

samples were available for inclusion (S1 File). For each participant, 1×106 plasma cells were

extracted for proteomics and lipidomics analyses. Lipidomics was performed using both

untargeted and targeted approaches. Two comparisons were conducted based on clinical

information, with the caveat that the sample sizes were small in this study. Firstly, high risk

MM (n = 3) were compared to low risk MM (n = 4) according to R-ISS staging. Secondly,

relapsed/refractory MM (RRMM, n = 2) versus newly diagnosed MM (NDMM, n = 7). Table 1

summarizes the number of detected, filtered, and significant features for each analysis.

Untargeted lipidomics profiling of plasma cells

For untargeted lipidomics profiling, 6069 and 3617 features were detected in the positive and

negative mode, respectively. Filtering missing and low intensity features retained 3015 and

2080 features. Differential analysis between risk groups identified 62 and 88 significant features

(adjusted p value<0.05) in positive and negative mode (S3 File). The number of significant

features was much higher (>400 features, adjusted p value <0.05) in RRMM/NDMM compar-

ison, indicating higher variation compared to different risk groups.
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To attempt to identify the differential features via MS/MS fragmentation, differential fea-

tures with logFC > 1.5 were selected into an inclusion list. Pooled samples corresponding to

different groups were subjected to LC-MS/MS, where spectra of only features in the inclusion

lists were acquired. The MS/MS was searched against MS-DIAL database. Out of ~400 fea-

tures, MS-DIAL matched 17 features to their lipid composition (S3 File, MS_MS Matched_li-

pids), in which several PCs were diminished in RRMM as well as in high risk patients

Table 1. Overview of lipidomics and proteomics LC-MS analyses.

Untargeted lipidomics Targeted lipidomics Proteomics

Positive Negative

Detected features 6069 3617 313 4169

Filtered features 3015 2080 219 2569

Risk groups

P < 0.05
(adjusted)

312

(62)

256

(88)

12

(0)

28

(0)

Up-regulated� 40 38 4 20

Down-regulated� 52 23 4 8

RRMM vs NDMM

P < 0.05
(adjusted)

1028

(467)

827

(454)

16

(0)

182

(5)

Up-regulated� 86 71 6 45

Down-regulated� 192 82 7 123

� logFC > 1.5.

Abbreviations: NDMM, newly diagnosed multiple myeloma; RRMM, relapsed/refractory multiple myeloma.

https://doi.org/10.1371/journal.pone.0227455.t001

Table 2. Untargeted lipid features identified via MS/MS fragmentation.

Lipid Molecule ESI Mode Comparison� logFC

Cer[NS] 34:1; Cer[NS](d18:1/16:0); [M+H]+ + high.low 1.58

Cer[NS] 34:2; Cer[NS](d18:1/16:1); [M+H]+ + RRMM.NDMM -2.90

PC 30:0; [M+H]+ + high.low -1.75

PC 30:0; [M+H]+ + RRMM.NDMM -1.66

PC 31:1; [M+H]+ + high.low -1.87

PC 31:1; [M+H]+ + RRMM.NDMM -1.56

PC 32:2; [M+H]+ + RRMM.NDMM -1.56

PC 34:4; [M+H]+ + high.low -2.39

PC 34:4; [M+H]+ + RRMM.NDMM -2.10

PC 35:4; [M+H]+ + RRMM.NDMM -1.67

PC 40:4; [M+H]+ + RRMM.NDMM -3.82

PC 40:7; [M+H]+ + RRMM.NDMM -1.55

Plasmenyl-PC 30:0; [M+H]+ + RRMM.NDMM -3.83

Plasmenyl-PC 36:1; [M+H]+ + RRMM.NDMM -2.55

Plasmenyl-PC 38:5; [M+H]+ + RRMM.NDMM -4.12

Plasmenyl-PE 40:6; [M-H]- - RRMM.NDMM -1.76

PS 36:4; [M+H]+ + RRMM.NDMM -2.24

�Comparison between high and low risk group (high.low) or between relapse and newly-diagnosed (RRMM.

NDMM).

Abbreviations: ESI, electrospray; logFC, log fold change.

https://doi.org/10.1371/journal.pone.0227455.t002
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(Table 2). Several factors may have contributed to the low identification rate, including the

time gap between the initial LC-MS and LC/MS/MS runs, and the fact that not all features nec-

essarily correspond to lipids.

Targeted lipidomics profiling of plasma cells

The targeted lipidomics method included 313 lipids, from which 219 lipids were retained after

manual inspection and filtering through Skyline (S4 File). Differential analysis confirmed

untargeted profiling results with several PCs diminished in both high risk and RRMM

(Table 3). To investigate if the observed differences are specific to particular lipid class, we per-

formed Lipid set enrichment analysis (Fig 1 and S4 File), which revealed significant down-regu-

lation trend in PCs in both high risk and RRMM. Ceramides and lyso-PEs were significantly

enriched for upregulation in high risk patients, while down-regulated in RRMM. Elevated levels

of phosphatidylethanolamines (PEs), sphingomyelins and sphingosines resulted in significant

enrichment of these classes in RRMM.

Untargeted proteomics of plasma cells

In the untargeted proteomic analysis, 4169 proteins were identified, of which 2569 were sub-

jected to differential analysis after filtering. Difference between risk groups was limited to 28

significant proteins (none after p value adjustment), while RRMM vs NDMM comparison

reported 182 differential proteins (5 proteins after p value adjustment), the majority of which

are down-regulated (S5 File). Enrichment analysis using Reactome pathways identified ~ 150

significant pathways in RRMM (S6 File). In contrast, risk groups had only ~25 enriched path-

ways, mostly related to extracellular matrix.

Comparison of RRMM proteomics dataset with gene expression data. In both lipido-

mics and proteomics measurements, the differences between RRMM and NDMM were larger

than those observed between risk groups. We followed up on these observations in RRMM by

integrative analysis with the publicly available MMRC reference collection which contains

gene expression profiles for plasma cells from a total of 222 patients, with 107 being NDMM

Table 3. Reduced abundance of phosphatidylcholines (PC) in high risk and RRMM, measured by targeted

lipidomics.

Lipid Molecule Comparison� logFC

PC 30:0 high.low -1.57819

PC 30:1 high.low -1.37218

PC 34:4 high.low -1.7996

PC 34:4 RRMM.NDMM -1.14782

PC 34:5 high.low -2.19233

PC 38:0 RRMM.NDMM -3.03733

PC 38:1 RRMM.NDMM -1.99746

PC 40:0 RRMM.NDMM -2.39816

PC 40:1 RRMM.NDMM -1.7426

PC 40:2 RRMM.NDMM -1.13424

PC(O-38:6) / PC(P-38:5) RRMM.NDMM -1.93524

PC(O-40:7) / PC(P-40:6) RRMM.NDMM -1.77034

�Comparison between high and low risk group (high.low) or between relapse and newly-diagnosed (RRMM.

NDMM).

Abbreviations: logFC, log fold change.

https://doi.org/10.1371/journal.pone.0227455.t003
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(termed untreated) and 115 RRMM (termed treated). Mapping microarray probes to their cor-

responding UniProt IDs obtained expression levels for ~ 17,000 genes. Differential expression

analysis followed by pathway enrichment identified 430 significant pathways (S6 File).

There was significant overlap between the proteomics results from our cohort and the inde-

pendent transcriptomics results at the pathway level but not at the gene level (hypergeometric

Fig 1. Targeted lipidomics measurements per lipid class, with significantly enriched classes marked with red. Targeted lipidomics data were grouped by lipid class

and then evaluated for significance for high versus low risk MM (left) and RRMM versus NDMM (right) using enrichment analysis of fgsea R package. Lipid classes with

adjusted P value< 0.05 are considered significantly different between the two groups (labelled red). LogFC, log fold change.

https://doi.org/10.1371/journal.pone.0227455.g001

Fig 2. Overlap between proteomics and transcriptomics data at the gene and pathway levels. Proteomic level changes in RRMM

compared to NDMM were evaluated against independent transcriptome data from the Multiple Myeloma Research Consortium

reference collection. The graph shows the number of genes/proteins (left) or pathways (right) that are significantly different in the

proteomics data (red bar), which also was significantly different in the transcriptome data (green bar), in the same direction (blue

bar).

https://doi.org/10.1371/journal.pone.0227455.g002
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test, Fig 2). Out of 6900 significantly expressed genes, 62 genes were also found significant at

the protein level, only 20 of which were regulated in the same direction (p = 0.99) (S5 File).

Interestingly, out of the 430 significantly enriched pathways in the transcriptomics dataset, 76

pathways were also enriched at the protein level, 67 of which in the same direction (p< 1e-16).

Overlapped pathways included TCR, NF-kß signalling and protein synthesis pathways (S6

File).

Network analysis

Next, we focused on the lipid related pathways in RRMM. Reactome pathway group “Metabo-

lism of lipids” was converted into a single connected network using NetPathMiner R package.

Following the package instructions, small ubiquitous compounds, such as water and co-fac-

tors, were removed to prevent over-connectivity of the network, resulting in a network with

1130 nodes and 1571 edges. Metabolite nodes were then removed to obtain a reaction network,

subsequently weighting the edges using transcriptomics datasets (see Methods). Top correlated

paths showed strong association with their corresponding conditions. This was demonstrated

by the ability of pathClassifier function to correctly predict path condition. Receiver Operating

Characteristic (ROC) curve showed area under the curve (AUC) of 0.995, indicating high sen-

sitivity and specificity of the path classifier (Fig 3).

Subnetworks constructed from correlated paths resulted in substantially smaller networks.

In RRMM, a subnetwork of 101 nodes and 125 edges was obtained, with paths related to PCs,

ceramides, cardiolipin metabolism, production of leukotrienes, exotoxins from arachidonic

acid (AA), and production of dihydroxycholestanoic acid from cholesterol (Fig 4, red edges).

On the other hand, the subnetwork correlated amongst NDMM consisted of 87 nodes and 96

edges, and incorporated FA and PE metabolism, production of prostaglandins and thrombox-

anes from AA, and production of phosphoserine from cholesterol. Subnetworks from both

conditions showed a small overlap, with only 32 nodes and 23 edges (Fig 4, grey edges).

Exploring the proteomics data in the context of correlated subnetwork for RRMM revealed

a low detection rate (Fig 5). Notably, PLBD1, a phospholipase B implicated in sn1 and sn2

hydrolysis PCs, was up-regulated in RRMM proteomics and transcriptomics. This up-regula-

tion of PLBD1, along with the correlation of PC metabolic subnetwork in RRMM, propose a

possible explanation for the reduced levels of PCs observed in lipidomics data.

Discussion

This study confirmed the feasibility of conducting concurrent lipidomics and proteomics pro-

filing of freshly isolated plasma cells from patients with MM. We observed more lipidomic and

proteomic differences between RRMM and NDMM, than between high and low risk MM

based on the current R-ISS staging system. As an initial cross-validation, the proteomics data

from our small pilot cohort was compared to a larger transcriptomics dataset for RRMM ver-

sus NDMM cases. This comparison revealed limited overlap at the transcript/gene level, likely

due to the lower proteomics depth compared to transcriptomics. However, significant correla-

tion was observed in the differential pathways at the transcript and proteome level, indicating

agreement of our pilot cohort data with the larger transcriptome data. Together, these results

confirm the feasibility of concurrent lipidomics and proteomics analyses from a single aliquot

of one million plasma cells prepared from freshly collected bone marrow.

From both targeted and untargeted lipidomics, we observed significantly lower level of PC

in RRMM compared to NDMM, and in high risk compared to low risk patients. Decreased PC

was previously observed in MM cells compared to normal plasma cells [8]. Recently, Steiner

et al. reported significantly lower circulating plasma levels of several PCs, and elevated lyso-
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PCs in RRMM compared to NDMM [27]. Hydrolysis of PCs by phospholipases generate lyso-

PCs and a free fatty acid which could be further processed to generate lipid second messengers

such as arachidonic acid, prostaglandins and leukotrienes [28]. These bioactive lipids play

multiple roles in promoting cancer development and metastasis [29]. Interestingly, our tran-

scriptomics network analysis of the larger independent cohort revealed high correlation of PC,

arachidonic acid, prostaglandin metabolic pathways among RRMM. Furthermore, although

the proteomic coverage of lipid metabolic enzymes was overall very limited, we found phos-

pholipase B-like 1 gene product PLBD1 to be elevated in RRMM. The major cellular phospho-

lipases that participate in signal transduction are PLA, PLC and PLD [28]. PLBD1 was recent

identified from neutrophils as a phospholipase which removes fatty acids from either sn-1 or

sn-2 positions [30]. Coupled with observed high level of transcripts in the arachidonic path-

way, it is tempting to suggest that elevated PLBD1 levels contributes to MM progression and

relapse by increasing arachidonic acids levels. Future studies in larger cohorts should examine

this pathway.

Fig 3. Receiver operating characteristic (ROC) curve for correlated path classification model of lipid metabolic pathways based on

transcriptome data for RRMM. Diagnostic plot of the result from the path classification model for RRMM transcriptome data. ROC

curves are shown for each component (M1, M2), which represent a path structure pattern. This gives information about which

components is associated with RRMM and NDMM. A ROC curve with an AUC< 0.5 relates to RRMM. Conversely, ROC curve with

AUC> 0.5 relates NDMM. Complete ROC represents the performance of the classifier using both components.

https://doi.org/10.1371/journal.pone.0227455.g003
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We acknowledge that the small patient numbers in our study limit any significant interpre-

tation of the molecular data. However, it was interesting to observe that in our small dataset,

plasma cells from patients with RRMM appear to have a different lipidomic and proteomic

profile when we compare with samples from NDMM. This is potentially clinically relevant, as

patients who have relapsed disease experience poorer outcomes, with shorter periods of

Fig 4. Extracted correlated lipid metabolism path network for RRMM and NDMM patients. A sub-network

comprised of top 50 correlated paths based on gene expression in RRMM and NDMM was extracted from the lipid

metabolism path network. Red and blue edges indicate exclusive correlation in RRMM and NDMM patients,

respectively. Grey edges indicate correlation in both conditions.

https://doi.org/10.1371/journal.pone.0227455.g004

Fig 5. Proteomics results shown in the context of extracted lipid metabolism path network for RRMM and NDMM patients. Proteomic data were projected on to the

same network shown in Fig 4. Red nodes indicate up-regulation at protein level in RRMM compared to NDMM. Conversely, blue nodes indicated down-regulated

proteins. Inset: PC metabolism pathways, showing expression correlation and proteomics up-regulation suggest active PC degradation in RRMM.

https://doi.org/10.1371/journal.pone.0227455.g005
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disease control than patients receiving front-line therapy at first diagnosis. The altered lipido-

mic and proteomic profile observed may reflect the clonal evolution that occurs in the malig-

nant cells over time following serial chemotherapeutic challenges. To this end, it is interesting

to note that PC is an important lipid in maintaining endoplasmic reticulum (ER) function,

and that ER stress response pathways is implicated in the development of resistance to protea-

some inhibitors in MM [31]. Further studies, with larger groups of patients will be beneficial

in establishing the relationship between clonal evolution, subsequent lipidomic and proteomic

changes. These results may enable personalized therapy selection, thereby improving patient

outcomes.

In summary, we report the feasible concurrent lipidomic and proteomic analyses of purified

plasma cells collected from a small cohort of multiple myeloma patients. As the goal was to

determine the methodological feasibility and develop a suitable workflow, interpretation of the

biological data from this study is limited by the small cohort size and possible confounders

which were not considered. Nonetheless, in alignment with previous reports of reduced levels

of PCs in MM (compared with healthy plasma cells), we observed reduced levels of several PCs

in high risk MM and in RRMM. Furthermore, independent transcriptome data from a larger

cohort corroborates altered PC metabolism in RRMM, and further suggest altered arachidonic

acid and eicosanoid metabolism. We believe these preliminary observations warrants further

exploration in a larger cohort, as these approaches are likely to provide valuable clinical

insights into disease biology, as well as perhaps offer novel biomarkers for the prediction of

disease kinetics.
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