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Abstract: We show that a simple model with a maintenance term can satisfactorily reproduce
the simulations of several existing models of wine fermentation from the literature, as well as
experimental data. The maintenance describes a consumption of the nitrogen that is not entirely
converted into biomass. We show also that considering a maintenance term in the model is equivalent
to writing a model with a variable yield that can be estimated from data.

Keywords: wine fermentation; nitrogen; mathematical modeling; population model; maintenance;
variable yield

1. Introduction

The overall principle of wine fermentation consists of the conversion of sugar into
ethanol by yeast. It has been observed for a long time that nitrogen consumed during the
yeast growth also plays an important role. The fermentation can be indeed modeled by a
two-step process in which the yeast first grows on nitrogen as a limiting resource and then
degrades the non-limiting sugar into ethanol and carbon dioxide. However, experimental
observations have shown that the consumed nitrogen was not entirely converted into
biomass. Several mathematical models were proposed to take these characteristics into con-
sideration. For instance, in [1,2], the biomass growth follows a logistic law whose carrying
capacity depends on the initial quantity of nitrogen. In [3], a model that distinguishes part
of nitrogen used for yeast growth from another part responsible of the synthesis of proteins
(hexose transporters [4]) was developed. Both models were calibrated with different sets of
experimental data and provide satisfactory fitting. However, both models present some
drawbacks. The dependency of the dynamics on the initial condition of the first model
makes it sensitive to the precise knowledge of the initial quantity of nitrogen (that needs to
be “memorized” in the dynamical equations of the model). Moreover, it does not allow
consideration of non-batch operations or continuous addition of nitrogen, such as in [5] for
instance. The second model relies on the knowledge of the time-varying concentration of
transporters, which is in general not easily accessible for experimental measurements, and
several assumptions were necessary to estimate it from biomass measurements.

The objective of the present work is to propose a new model that reconciles both
approaches in a single one.

The observation of the ratio of produced biomass over nitrogen consumption along
the whole fermentation, determined on experimental database or numerical simulations
of models [1,3], shows that this ratio is non-constant and depends on the initial quantities.
This highlights that the conversion of nitrogen into biomass can be viewed as a variable
yield process. The experimental evidence that nitrogen is not entirely converted into
biomass therefore advocates for the consideration of a maintenance term in the modeling
(see, for instance, [6]), without necessarily requiring a detailed representation of the internal
mechanism or cells.
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Indeed, different mechanisms in the internal functioning of the cells have been investi-
gated in the literature, particularly the role of carbohydrate accumulation [7–9], which could
explain that the growth dynamics of yeast in wine fermentation does not follow the classical
mass-balanced models [10,11]. However, the measurements of these biochemical compounds
is experimentally very difficult and is almost impossible in an industrial framework.

The rationale of the results presented here is to test if the introduction of a maintenance
term (see [12–14] or [15–17]) can improve wine fermentation modeling. One of the original
features of the proposed approach is to view nitrogen consumption as a global consumption
for growth by considering a variable yield. This allows us to avoid to consider a specific
structure to model the maintenance. Thus, the purpose of the present work is to investigate
the ability of a simpler model with a maintenance term to reproduce and predict wine
fermentation kinetics.

Here, we propose a new modeling approach based on a maintenance term (which gives
rise to a variable yield), a feature that has not been yet considered in the wine fermentation
literature, to the best of our knowledge.

It focuses mainly on the new modeling of the growth of yeast on nitrogen.
This new model was validated using both data generated by existing models (Section 4)

and experimental data (Section 5).

2. The Proposed Model

We denote by N, S, E, CO2 and X the concentrations of (total) nitrogen, sugar, ethanol,
dioxide carbon and biomass, respectively. For simplicity, we derive a model under isother-
mal conditions.

For the first step N → X (yeast growth on nitrogen), we propose the following equations

dX
dt

=µN(N, X)X (1)

dN
dt

=− µN(N, X)X
Y

−m(N, X)X (2)

where Y is the growth yield, µ the Contois growth function

µN(N, X) =
µmax

N N
N + KN X

and m a maintenance function, which is positive for N > 0 and X > 0. We choose here
a ratio-dependent kinetics function µN to reproduce the observation that the growth
is slowing down under an excess of yeast, with a Contois expression as in [3]. In the
literature, the maintenance m is often considered as constant [12,13], which was validated
in continuous culture (chemostat). In general, continuous cultures are intended to be
operated at a stationary phase, very differently to batch-operating mode. However, as
already investigated in [17], maintenance terms have to depend on the level of available
resources; say, R (N here). In particular, constant maintenance in a batch model would
imply dR

dt < 0 when the resource is exhausted, i.e., R = 0, and thus R could take unrealistic
negative values, as underlined in [14]. In [15,16], the maintenance is directly related to
the microbial activity, which is stopped in absence of nutrients. This is why we consider a
maintenance function proportional to the growth activity, with a factor that might depend
on the nitrogen concentration (one may expect that it decreases when the substrate N
becomes rare)

m(N, X) = α(N)µN(N, X)

where α is a positive function equal to zero for N = 0. Then, one can consider the function
y defined as follows

y(N) :=
Y

1 + α(N)Y
, N ≥ 0
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Formally, model (1) and (2) can be rewritten equivalently as

dX
dt

=µN(N, X)X (3)

dN
dt

=− µN(N, X)X
y(N)

(4)

where the function y is playing the role of a variable yield. Identifying the function m or
the function y is thus formally equivalent. However, we shall see in the next section that
identifying the function y instead of m presents some practical advantages.

For the second step S→ E + CO2, we follow the model proposed in the literature [3]

dE
dt

=
dCO2

dt
=
[
µN(N, X) + βνE(E)

]
µS(S)X (5)

dS
dt

=− k
dE
dt

(6)

where µS is a Monod function and νE a function inhibited by the ethanol

µS(S) =
µmax

S S
KS + S

, νE(E) =
1

1 + KEE
(7)

Inhibition by the consumption of sugar S by ethanol E has been reported many times
in the literature [18–22]. The constant yield of production k of CO2 and consumption of S
follows a mass balance assumption, verified experimentally [23], that can be determined
using thermodynamics considerations [24].

Note that this model can be extended to anisothermal conditions, considering that the
maximal specific rate parameters µmax

N , µmax
S and affinity constants KS, KE are temperature

dependent, as in [3].

3. Calibration of the Model

From model Equation (1), the parameters of the function µN can be identified indepen-
dently of the yield and maintenance terms. To validate the hypothesis of ratio dependency
of the function µN , one can first use experimental data to plot the slope of the logarithm of
X versus the ratio r = N/X and check if it qualitatively follows a function of the form

µ(r) =
µmax

N r
KN + r

A classical least-square method can be applied to fit parameters µmax
N , KN on the data.

Alternatively, one can plot the inverse of the slope of the logarithm of X versus the inverse
of the ratio r to check if it qualitatively follows a linear dependency, as obtained from
Equation (1) (

d log X
dt

)−1
=

1
µmax

N
+

KN
µmax

N

(
N
X

)−1
(8)

However, for the accurate identification of the parameters µmax
N , KN , a linear regression

on Equation (8) is expected to be less reliable than a non-linear least-square optimization

of the solution X(·) of (3), because
((

d
dt log X

)−1
,
(

N
X

)−1
)

data might be too far to be

uniformly distributed.
Note from Equations (1) and (2) that one has

lim
t→+∞

N(t) = 0
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(because the derivative of N cannot vanish when N is not exhausted). In absence of the
maintenance term m, one gets dX

dt + Y dN
dt = 0 which implies that one should have

Y =
X(+∞)− X(0)
N(0)− N(+∞)

=
X(+∞)− X(0)

N(0)

To test the validity of the model with maintenance, one can plot from experimental data
the ratio X(+∞)−X(0)

N(0) for different values of N(0) to check that it is not constant. If this is
the case, one can then look at identifying a non-constant function y. For this purpose, we
write from Equations (3) and (4)

X(+∞)− X(0) = −
∫ +∞

0
y(N(t))

dN
dt

(t) dt

and as t 7→ N(t) is a monotone-decreasing function, one can make the change of variable
n = N(t) in this last integral to obtain

X(+∞)− X(0) =
∫ N(0)

0
y(n) dn

Therefore, if one fits a differential function f such that f (0) = 0 that satisfies

X(+∞)− X(0) = f (N(0))

for experimental data with different values of N(0), then one simply gets y = f ′.
Let us underline that identifying the function y in this way can be achieved indepen-

dently of the knowledge of the kinetics µN , differently to the function m, which clearly
presents some robustness advantages. Once the function µN is identified, the maintenance
function can then be determined as

m(N, X) =

(
1

y(N)
− 1

Y

)
µN(N, X)

where Y = y(0) (to fulfill α(0) = 0).
For model Equations (5) and (6), the coefficient k is kept from the literature, and the

parameters β, µmax
S , KS, KE are identified (with a least-square method) from experimental

data of CO2 production rate.

4. Validation of the Model on Synthetic Data

We have used synthetic data generated by models of the literature that were previously
validated on experimental data [1,3] for a range of initial conditions and operating conditions.

Fitting comparisons of the proposed model with the different data sets are reported in
Section 6.

4.1. Validation on Simulations of a Model with Transporter

We have considered the model with transporters developed in [3], which is more
complex with two additional state variables: the concentrations of hexose transporters and
the nitrogen dedicated to these transporters. Data were generated by simulating this model
with the parameters given in [3] and operating conditions given in Table 1.
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Table 1. Operating conditions for the simulation of the model with transporters.

X(0) 0.02 g·L−1

N(0) 0.071–0.57 g·L−1

S(0) 200 g·L−1

time horizon 350 h
temperature constant equal to 24◦

others no initial transporter
no nitrogen addition

This model explicitly distinguishes two forms of nitrogen, one available for the yeast
NX and the other one Ntr for the transporters. To compare with the variable N of our model,
we have considered the total nitrogen N = NX + Ntr.

4.1.1. Estimation of the Contois Function

We have used a non-linear least-square method based on a Newton algorithm with
a finite difference approximation of the Jacobian matrix (function leastsq of scilab).

Figure 1 shows a good fitting of the Contois function µN on data
(

N
X ,

dX
dt
X

)
of the transporter

model, with parameters given in Table 2.

Figure 1. Result of the fitting of the Contois function on data from the model with transporters.

Table 2. Parameters of the Contois function µN .

µmax
N 0.103 h−1

KN 0.0381 g·L−1

4.1.2. Estimation of the Variable Yield Function

On Figure 2, data X(T)− X(0) versus N(0) from the model with transporters were
plotted for T = 350 h (we have checked that N is quasi-null at T and that X no longer
increases after T). One can see that the points are aligned. However, the line that passes
through these points does not touch 0, which is not possible for a constant yield (for a
constant yield, the points have to be aligned on a line that passes through 0, because when
N(0) = 0, there is no biomass production).

Then, we fitted a C2 function f such that f (0) = 0 with the following expression
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f (N) =

aN + b
(

1−
(

N†−N
N†

)3
)

, N < N†

aN + b, N ≥ N†

whose parameters are given in Table 3.

Figure 2. Result of the fitting of the function f on data from the model with transporters.

The calibration of the parameters a, b of the function f was performed with a linear
regression (function reglin of scilab).

Table 3. Parameters of the variable yield function y.

a 7.55
b 0.808 g·L−1

N† 0.176 g·L−1

Then, we obtain the variable yield function y as the C1 function

y(N) = f ′(N) =

a + b 3(N†−N)2

N†
3 , N < N†

a, N ≥ N†

and the function α, which describes the maintenance as

α(N) =
1

y(N)
− 1

y(0)
=


N3

†
aN3

†+3b(N†−N)3 −
N†

3b+aN†
, N < N†

3b
a(3b+aN†)

, N ≥ N†

which are both depicted on Figure 3.
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Figure 3. Graphs of the obtained variable yield function y and of the function α.

Note that the model with transporters was validated only for N(0) in the interval
[0.071, 0.57] g·L−1, and that we have no a priori information about the behavior of the
yield for values of N(0) smaller than 0.071 g·L−1. The threshold parameter N† was simply
chosen so that the simulations of the variables X and N of the model (3) and (4) were the
closest to the ones of the transporter model.

4.1.3. Estimation of the Other Parameters and Comparison of the Models

For the model of the second step S → E + CO2, the stoichiometric parameter k was
taken from the literature, while the other parameters β, µmax

S , KS, KE were estimated with
a least-square optimization on the CO2 chronicles only (the CO2 production rate being a
variable that is usually measured in experiments), starting from values in [3]. Values are
given in Table 4.

Table 4. Parameters for the second step S→ E + CO2 model.

k 2.17
β 2.41
µmax

S 0.197 h−1

KS 21.1 g·L−1

KE 72.7 g·L−1

Here, we also used a non-linear least-square method based on a Newton algorithm
with a finite difference approximation of the Jacobian matrix (function leastsq of scilab).
All data were re-normalized to 1 (i.e., for each variable, the figures were divided by the
largest one).

Finally, we present on Figures 4–6 simulations of the new model for three largely differ-
ent initial values of nitrogen from 0.170 g·L−1 to 0.567 g·L−1. The evolution of the ethanol
concentration E has not been reproduced as it is proportional to the CO2 concentration.

These simulations show the ability of the new model to reproduce, with a single set
of parameters, close simulations to the model with transporters, in terms of production
of biomass and dioxide carbon, estimation of the peak of the CO2 production rate and
depletion of (total) nitrogen and sugar.
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2

2

Figure 4. Comparison with the model with transporters (in dashed) for N(0) = 0.170 g·L−1 (constant
temperature of 24 ◦C).

2

2

Figure 5. Comparison with the model with transporters (in dashed) for N(0) = 0.283 g·L−1 (constant
temperature of 24 ◦C).
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2

2

Figure 6. Comparison with the model with transporters (in dashed) for N(0) = 0.567 g·L−1 (constant
temperature of 24 ◦C).

4.2. Validation on the SOFA Model

The model proposed in [1] does not explicitly consider transporters with an additional
state variable as the previous model, and instead presents a more sophisticated expression
of the dynamics that depend on the initial condition, with an additional latency term at the
beginning of the simulations.

Differently to the previous model, which is built as a “mass-balanced” model, this
one relies on an empirical dynamics of logistic shape for the biomass growth, with some
parameters that depend on the initial concentration of nitrogen N(0), instead of the two-
dimensional model (3) and (4).

Therefore, this is not a Markovian model. It has been validated on different operating
conditions, and has been encoded into the SOFA software exploited for decision-making [2].
We launched simulations of this model for the same operating conditions than for the
previous model (Table 1). Although simulations look qualitatively similar, they do not
overlap, especially for the biomass chronicle. This could be explained by the fact that
this model is intended to predict a number of cells and not a precise biomass (an average
number of 4.15× 109 cells for one g of biomass was used to have X expressed in g·L−1 as
for the previous model). We proceeded to a new validation of our model on these data.

4.2.1. Estimation of the Contois Function

Figure 7 shows that the data
(

N
X ,

dX
dt
X

)
do not precisely follow the graph of a function

(this is most probably due to the fact that the model is not Markovian). Indeed, this happens
mainly for the large value N0 of the initial nitrogen. We believe that this could be explained
by the dynamics of the biomass X of this model, which is a logistic law with a carrying
capacity given by an heuristic expression that depends on N0, and not dynamics coupled
with the dynamics of N (indeed the interval of tested values of N0 might be larger than the
validity of this model). However, we have fitted the graph of a Contois function to these
data with the parameters given in Table 5, which was able to satisfactorily reproduce the
trajectories of the model for a large amplitude of values of N0, as we shall see later on.
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As for the previous model, we used a non-linear least-square method based on a
Newton algorithm with a finite difference approximation of the Jacobian matrix (function
leastsq of scilab). As one can see in Table 5, the values of µmax

N and KN are significantly
larger and smaller, respectively, than in Table 2, which is consistent with the observation
that this model predicts a faster convergence of the biomass to its maximal value, despite
the latency term (compare Figures 4–6 with Figures 8–10).

Figure 7. Result of the fitting of the Contois function on data from the SOFA model.

Table 5. Parameters of the Contois function µN .

µmax
N 0.270 h−1

KN 0.00952 g·L−1

2

2

Figure 8. Comparison with the SOFA model (in dashed) for N(0) = 0.170 g·L−1 (constant tempera-
ture of 24 ◦C).
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2

2

Figure 9. Comparison with the SOFA model (in dashed) for N(0) = 0.283 g·L−1 (constant tempera-
ture of 24 ◦C).

2

2

Figure 10. Comparison with the SOFA model (in dashed) for N(0) = 0.567 g·L−1 (constant tempera-
ture of 24 ◦C).

4.2.2. Estimation of the Variable Yield Function

Data X(T)− X(0) from the simulation of the SOFA model were plotted on Figure 11
at T = 350 h, for different values of N(0) in the interval [0.071, 0.57] g·L−1 (here, we also
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checked that the fermentation was quasi-ended at T). One can see that the points follow an
increasing concave curve and further increase very slowly, quite differently to the model
with transporters (see Figure 2).

Figure 11. Result of the fitting of the function f on data from the SOFA model.

We have then fitted a C2 function f with f (0) = 0 for the expression

f (N) =

{
bN − aN2, N < N†

bN − aN2 + bN + A
B
(
e−BN† − e−BN) N < N†

with
A = (b− 2aN†)eBN† , B =

2a
b− 2aN†

and parameters a, b, N† given in Table 6.
Parameters a and b were determined with a linear regression (function reglin

of scilab).

Table 6. Parameters of the variable yield function y.

a 15.1 g·L−1

b 15.2
N† 0.465 g·L−1

Then, we obtain the expression of the variable yield function

y(N) = f ′(N) =

{
b− 2aN, N < N†

Ae−BN , N ≥ N†

as well as the function α

α(N) =
1

y(N)
− 1

y(0)
=


1

b−2aN −
1
b , N < N†

eb(N−N†)

b−2aN†
− 1

b , N ≥ N†

whose graphs are drawn on Figure 12.
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Figure 12. Graphs of the obtained variable yield function y and of the function α.

4.2.3. Estimation of the Other Parameters and Comparison of the Models

For the second step, the same stochiometric parameter k was taken for the literature,
and the other parameters β, µmax

S , KS, KE were estimated with a least-square optimization
on the CO2 chronicles only, as for data generated by the model with transporters (see
Table 7).

Table 7. Parameters for the second step S→ E + CO2 model.

k 2.17
β 3.22
µmax

S 0.197 h−1

KS 17.6 g·L−1

KE 36.4 g·L−1

Figures 8–10 show the comparison between the SOFA model and our calibrated
model for the same initial condition than for the former comparison with the model with
transporters. Here also, we see that the proposed model reproduces quite faithfully the
simulations of the SOFA model, with the advantage of being a simpler Markovian model.
Indeed, the difference between the model with transporters and the SOFA model can be
translated into different maintenance terms (see Figures 3 and 12): for large values of nitro-
gen, the model with transporters behaves like a model with a maintenance proportional to
the growth, while the SOFA model amounts to have a strongly increasing maintenance. Re-
call that the simulations for the largest value of N(0) showed the most differences between
these two models (for N(0) = 0.567 g·L−1, the model with transporters predicts a biomass
production of 5.11 g·L−1, while the SOFA model predicts 3.88 g·L−1; see Figures 6 and 10).
While the model with transporters was validated experimentally for N(0) in the interval
[0.170, 0.567] g·L−1, we believe the validation of the SOFA model for initial concentrations
of nitrogen larger than 0.4 g·L−1 might need to be revisited (although our model once
calibrated is able to reproduce the SOFA simulations).

5. Calibration of the Model on Real Data

We considered data from experiments conducted at SPO Lab (INRAE, Montpellier,
France) in 2004, that were used to calibrate the model with transporters and the SOFA
model (see [1,3]). The data consisted of a set of three experiments with the same operating
conditions given in Table 1 and different initial concentrations N(0) of nitrogen, exactly the
same as for the simulations of Sections 4.1 and 4.2. For each experiment, one had

- Height measurement points for X.
- No measurement point for N, S or E.
- About 400 measurement points for CO2 and dCO2/dt.
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We first calibrated a function f (·) to the data (N(0), X(T) − X(0)), with the same
expression as in Section 4.2, to determine a yield function y(·) (see Figure 13), using a linear
regression to estimate parameters a and b.

Figure 13. Results of the fitting of the function f on the experimental data (left) and of the corre-
sponding variable yield function y (right).

As we do not have measurements of N over the time, we cannot estimate the Contois
parameters independently of the CO2 measurements, as we did with the synthetic data. All
the parameters of the model were fitted simultaneously with a least-square method (values
are given in Table 8), except for the sugar-conversion yield, for which we have used the
value of the literature k = 2.17, as before.

The non-linear least-square method uses a Newton algorithm with a finite difference
approximation of the Jacobian matrix (function leastsq of scilab), and the data set was
re-normalized to the maximal value of 1.

Table 8. Parameters fitted on the experimental data.

µmax
N 0.175 h−1

KN 0.0133 g·L−1

β 1.622
µmax

S 0.393 h−1

KS 19.2 g·L−1

KE 71.9 g·L−1

Figures 14–16 show the results of the fitting for the three experiments. One can
appreciate the goodness of fit for a unique set of parameters. In particular, the production
of biomass and CO2, as well as the height and date of the peak of dCO2/dt, are well
predicted with this model.
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2

2

Figure 14. Simulation for N(0) = 0.170 g·L−1 (experimental data in blue).

2

2

Figure 15. Simulation for N(0) = 0.283 g·L−1 (experimental data in blue).
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2

2

Figure 16. Simulation for N(0) = 0.567 g·L−1 (experimental data in blue).

6. Fitting Comparisons

For the calibration of the variable yield function on both synthetic and experimental
data (Sections 4 and 5), we have used a linear regression (function reglin of scilab) for
the determination of parameters a, b of the function f (for the model with transporter) and
f ′ (for the SOFA model and experimental data). The residual error is given in Table 9.

Table 9. Residual standard error (RSE) for the determination of a and b.

Data Tr Model SOFA Model Exp.

RSE 2.21× 10−10 0.199 0.225

This shows that the model with transporters behave very closely to a variable yield
model. The fitting performances for the SOFA model and experimental data are more
difficult to interpret, because the validity of the SOFA model for the large range of initial
concentrations of nitrogen we considered is questionable, and the quantity of experimental
data is quite poor compared to the synthetic data.

For the synthetic data, the calibration of the growth characteristics (parameters µmax
N ,

KN of the Contois function) was performed first, independently of the CO2 data. Then,
parameters for the second step (parameters k, β, µmax

S , KS, KE for the CO2 production) were
calibrated. In both cases, a non-linear least-square method based on a Newton algorithm
with a finite difference approximation of the Jacobian matrix (function leastsq of scilab)
was used. Table 10 shows a good fitting quality.

Table 10. Root Mean Square Error (RMSE) for the calibration of the growth function µ and the
CO2 chronicles.

Data Tr Model SOFA Model Exp.

RMSE (µ) 0.0414 0.292 -
RMSE (CO2) 0.0543 0.0895 0.0519
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We recall that for experimental data, we do not have measurement of N over time, so it
was not possible to estimate the growth function independently of the CO2 measurements.
The estimation of all the parameters was made on the CO2 measurements only. We have
used the same non-linear least-square method, with data re-normalized to 1 (i.e., the figures
were divided by the largest one), so that all points have equal weight in the criterion. The
errors shows a good fitting of the CO2 curves with the model with maintenance.

7. Conclusions

In this work, we demonstrated that the consideration of a maintenance term, or
equivalently, a variable yield, in wine fermenting modeling can satisfactorily replace
more sophisticated models with a simpler structure. Indeed, the effects of the underlying
mechanisms of transporters or carbohydrate accumulation, which are difficult to capture
experimentally, are somehow encoded into a maintenance term, and are translated into
a variable yield between biomass and nitrogen. We showed that this variable yield, as
a function of the nitrogen concentration, can be estimated from experimental data of
biomass growth and nitrogen depletion, without the need to measure internal compounds.
This consideration brings a flexibility to suit different kind of models or experimental
data (once calibrated) with a single common structure, that could correspond to different
operating conditions or hypotheses in wine fermentation. This new approach provides
new perspectives of control of fermentation with nitrogen addition, based on a simple
Markovian model, as well as model extensions with aromatic compounds [25] or multi-
strains [26].
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