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Enthalpy-entropy compensation of atomic diffusion
originates from softening of low frequency phonons
Simon Gelin 1,2,3✉, Alexandre Champagne-Ruel 1 & Normand Mousseau 1✉

Experimental data accumulated over more than 120 years show not only that diffusion

coefficients of impurities ordinarily obey the Arrhenius law in crystalline solids, but also that

diffusion pre-exponential factors measured in a same solid increase exponentially with

activation energies. This so-called compensation effect has been argued to result from a

universal positive linear relationship between entropic contributions and energy barriers to

diffusion. However, no physical model of entropy has ever been successfully tested against

experimental compensation data. Here, we solve this decades-old problem by demonstrating

that atomistically computed harmonic vibrational entropic contributions account for most of

compensation effects in silicon and aluminum. We then show that, on average, variations of

atomic interactions along diffusion reaction paths simultaneously soften low frequency

phonons and stiffen high frequency ones; because relative frequency variations are larger in

the lower region of the spectrum, softening generally prevails over stiffening and entropy

ubiquitously increases with energy.
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Atomic diffusion in solids proceeds via sequences of ther-
mally activated atomic jumps, which, in the presence of
chemical inhomogeneities, induce a flux of atoms that can

be described at the mesoscopic level by the diffusion coefficient
D1,2. In crystals, where sequences of diffusive events are usually
dominated by a single-jump mechanism, D is proportional to the
product of the average rate at which jumps are activated and the
concentration of defects possibly mediating jumps. Drawing
on reaction rate3 or dynamical4 theories to compute the average
jump rate, it has become customary to interpret the tempera-
ture dependence of D using the semi-empirical relation,
DðTÞ ¼ g f ν exp ðΔSm þ ΔSf Þ=kBð Þ exp �ðΔEm þ ΔEf Þ=kBTð Þ,
where g and f are geometrical and correlation factors, respectively,
ν an attempt frequency, ΔEm and ΔEf are the enthalpy barriers
(energy barriers at zero pressure) to atomic migration and defects
formation, respectively, and ΔSm and ΔSf are the corresponding
entropic contributions2. Although resting on thermodynamical
principles and being compatible with the Arrhenius law, this
relation remains phenomenological if not complemented by a
mechanistic framework within which to evaluate and interpret
the different terms it is composed of. Establishing such a fra-
mework is particularly difficult for entropic contributions, as they
may arise from diverse physical phenomena at the atomic or
electronic scales5–8, without any general rule to assess which
dominates.

This issue is best exemplified by the limited understanding of
the ubiquitous compensation effect, also referred to as Meyer-
Neldel rule9,10, according to which diffusion pre-exponential
factors D0 of different impurities diffusing in a same solid
increase exponentially with their activation energy ΔE:
D0 ¼ D00 exp γc ΔE

� �
, with D00 and γc, the compensation pre-

exponential factor and compensation factor, respectively. This so-
called “law of compensation” has been reported in a wide variety
of solids, including metals10, minerals11, semiconductors12, and
ionic crystals13; we illustrate it in Fig. 1a for self- and impurity
diffusion in silicon and aluminum. In light of the semi-empirical
relation, this law suggests the existence of a fundamental positive
linear relationship, called enthalpy–entropy compensation,
between entropic contributions and energy barriers to diffusion:
ΔSm,f= kB γc ΔEm,f, with γc > 0. However, it remains controversial

whether enthalpy–entropy compensation originates from an
underlying general physical principle9, or simply results from
trifling experimental errors14,15.

The two most popular explanations for the compensation of
energy barriers by entropy are based on phenomenological
models of migration entropy: Zener’s model, drawing on reaction
rate theory, ascribes compensation to a loosening of crystalline
lattices’ elastic moduli at transition states (TSs)16, while the
multiexcitation entropy model explains the increase of entropic
contributions as resulting from the increasing number of ways
phonons can assemble to overcome higher energy barriers9.
Unfortunately, because they resort to qualitative descriptions of
atomic diffusion, both models introduce arbitrary parameters that
make them untestable, so that it remains unknown whether any
of them identifies the correct physical origin of compensation.

To solve this issue, we systematically compare atomistic
simulations of harmonic diffusion pre-exponential factors with
previously published experimental compensation data, in silicon
and aluminium single crystals. This comparison shows that
harmonic vibrational entropy accounts for ≳70% of compensa-
tion effects in both materials, demonstrating that the physical
origin of compensation is mostly contained in this level of
mechanistic description. Drawing on this discovery, we perform a
detailed statistical analysis of entropy variations as a function of
potential energy along elementary-activated events in four dif-
ferent amorphous solids. The disorder of amorphous solid
structures gives access to hundreds of thousands of events, with
continuously dispersed activation energies, and allows us to
unveil the generic mechanism at the origin of the compensation
law. As a solid is deformed along a diffusion reaction path, some
of the atomic bonds are stretched (and eventually broken), while
others are compressed (to provide the moving atoms with space
for their motion). On average, these two mechanisms simulta-
neously soften low-frequency vibrational modes of the solid
(increase entropy) and stiffen high-frequency ones (decrease
entropy). This broadening of the spectrum, which intensifies as
the activation energy increases, generally leads to compensation
because entropy changes are controlled by relative variations of
modes’ frequencies, and these are larger at low frequencies.
However, we exhibit counterexamples where stiffening is so
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Fig. 1 Compensation in silicon, aluminium, and four amorphous solids. a Compensation effect for diffusion in crystalline silicon (left) and aluminium
(right) (experimental and numerical data are all reported in Supplementary Information, the computation of local averages and the fitting procedure are
explained in “Methods”). The compensation factor is equal to 3.0 eV−1 in silicon, and 5.6 eV−1 in aluminium. The Stillinger–Weber, EDIP and modified
Tersoff silicon models give compensation factors of 1.0, 2.0, and 2.3 eV−1, respectively. Density functional theory data in aluminium—obtained with the
local density approximation (LDA) or the generalized gradient approximation (GGA)—also obey compensation, with a compensation factor of 3.8 eV−1.
b Compensation effect for harmonic activation rates in four amorphous solids: a-Si, CuZr, Ni80P20, and LJ; compensation factors are extracted from linear
fits to all data and equal 1.53, 1.68, −0.70, and −2.07 eV−1, respectively. Dots represent local averages of activation energies and log 10ðν?Þ values over
non-uniform energy bins; their color enables to distinguish transition states investigated in Fig. 2 based on the energy bin they belong to.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17812-2

2 NATURE COMMUNICATIONS |         (2020) 11:3977 | https://doi.org/10.1038/s41467-020-17812-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


intense that it dominates softening, and anti-compensation is
observed. Our analysis allows us to resolve the puzzling fact that
the nature of local impurities has no significant statistical impact
on compensation since properties of low frequency, extended
vibrations—which govern entropy variations—are controlled
mainly by the host solid; this is why a single-compensation law is
usually observed in a given solid.

Results
Numerical vs. experimental data in crystals. Our numerical
study starts with the observation that all Arrhenius parameters of
diffusion processes reported in Fig. 1a fall on a single straight line,
extending over more than three electronvolts in activation ener-
gies and seven orders of magnitude in pre-exponential factors.
This remains true whether diffusion proceeds via the direct
interstitial mechanism (Ni, Cu, Li, Fe, O in Si, and H in Al) or via
defect-mediated mechanisms. This observation entails that
compensation parameters, D00 and γc, do not depend on the
specific nature of diffusing impurities, but rather on physical
properties of the host solid lattice. It also implies that variations of
migration and formation entropies share the same origin.
Therefore, the experimental compensation effect may be fully
captured within numerical simulations of migration barriers to
self-diffusion in pure host solids. We do so here by sampling TSs
(saddle points) surrounding the ground state (GS) of a compu-
tational model of crystalline silicon-containing defects, using the
activation relaxation technique nouveau (ARTn) algorithm17,18

(“Methods”). The creation of defects (vacancies and self-inter-
stitials) gives us access to a richer set of activated events. We then
compute, for each TS, the pre-exponential factor ν? ¼
ν expðΔSm=kBÞ of the average rate at which these TSs are crossed
within the harmonic transition state theory (hTST)19:
ν? ¼Qiνi=

Q
iν

z
i , where νi and ν

z
i denote positive vibrational

frequencies at GS and TS, respectively. Similarly to the expression
of the harmonic vibrational entropy of formation20, the hTST
prefactor derives from an approximation of the solid’s canonical
partition functions, here at the GS and at the TS, based on a
second-order expansion of the mass-rescaled potential energy
landscape (PEL). Therefore, although the hTST formulation does
not allow for a unique definition of the semi-empirical attempt
frequency and migration entropy, it suggests by consistency with
the formation entropy expression, a decomposition where the
attempt frequency captures an average vibrational property of the
solid’s GS, while migration entropic contributions are controlled
by variations of local curvatures of the PEL when moving from
the GS to the TS.

Finally, we test our results against experimental data by
assigning a diffusion coefficient to each sampled event, with D0

the product of the hTST-crossing rate and the typical squared
jump length of the most displaced atom, and ΔE the potential
energy difference between the TS and the GS. To ensure the
generality of our results, we repeat the procedure with three
empirical potentials developed for silicon. Numerical results
follow the compensation law for all studied empirical potentials
(Fig. 1a, left, discontinuous lines). In particular, the recent
parametrization based on Tersoff’s model (“Methods”) repro-
duces 77% of experimental compensation effects (green triangles
in Fig. 1a, left). To provide an independent assessment of the
contribution of vibrational entropy variations to compensation,
we compare experimental diffusion data in aluminum with
previously published first-principles computations relying on the
harmonic approximation (“Methods”). Despite the small range of
activation energies probed numerically, most of the compensation
effect—~70%–is accounted for by variations of vibrational
entropy (Fig. 1a, right). In addition to numerical errors (finite-

size effects in first-principles calculations or missing features of
atomic interactions in empirical models), it is likely that
additional increases of entropy may require the inclusion of
electronic contributions7,8 and, possibly, of the anharmonicities
of the solids’ PEL.

Generic broadening of VDOS at transition states. Even con-
sidering these possible additional contributions, our results
demonstrate clearly that enthalpy–entropy compensation origi-
nates largely from harmonic vibrational contributions to entropy.
However, they build on a restricted set of activated events and
systems and, therefore, are not sufficient to disentangle the gen-
eral features of vibrational changes at the origin of the compen-
sation effect from event-specific properties leading to the
dispersion of the data around the compensation line. To lift this
limitation, we turn to activated events around inherent states
(ISs) of disordered materials, which give access to a potentially
astronomical number of different configurations and activation
barriers. We focus on four prototypical amorphous solids: silicon
(a-Si), CuZr, Ni80P20, and a 2D binary Lennard–Jones (LJ) mix-
ture (“Methods”). These cover a wide range of bonding and local
environments, from elemental covalent amorphous materials (a-
Si) to metal–metal (CuZr), metal–metalloid (Ni80P20), and hard
2D glasses (LJ). As shown in Fig. 1b, activation energies of events
sampled in these solids with ARTn spread continuously over
several electronvolts, with hTST activation rate prefactors varying
exponentially with energies. While there is a large dispersion on
an event per-event basis, we find clear trends when averaging over
these large data sets: prefactors increase in CuZr and a-Si,
according to the compensation law, and decrease in Ni80P20 and
LJ, showing an anti-compensation that has already been observed
in a non-physical LJ glass21. These diverse responses provide
useful data for developing a quantitative explanation for the
correlation between prefactors and energy barriers.

Since, as we have demonstrated, compensation largely
originates from variations of VDOS, we investigate frequency
changes as the system moves from an IS to a neighboring TS by
averaging VDOS over data sets of >100,000 events sampled in 50
independent realizations per solid type. This procedure gives
unprecedented access to the core signal associated with frequency
transformations. In Fig. 2a, we represent normalized VDOS at ISs
and TSs. Given that only a few tens of atoms are significantly
displaced at TSs, and studied systems contain ~4000 atoms,
individual differences are hardly distinguishable. We thus report
in Fig. 2b the cumulative differences of (non-normalized) VDOS
between TSs and ISs, averaged over TSs in different activation
energy intervals (“Methods”). A systematic trend, common to all
solids, clearly emerges: cumulative VDOS differences increase in
the lower region of the spectrum, indicating a softening of low-
frequency phonons at TSs with respect to ISs; a similar trend is
observed at the high end of the spectrum (where signals converge
to minus one due to the presence of a negative-frequency mode at
TSs), caused this time by a hardening of some vibrational modes
at TSs. These co-occurring shifts at the extremities of the
spectrum create a depletion of modes in the center, responsible
for a rapid decrease of cumulative VDOS differences in this
region. The physical origin of the broadening of the spectrum is
clear: moving from a local point of stability to a transition state
both shortens and elongates interatomic distances and angles
around the geometrical center of the activated event, which in
turn perturbs the distribution of dynamical matrix components
with both softer and stiffer atomic interactions. On average, softer
interactions amplify the proportion of low-frequency, extended
vibrations while stiffer ones impact high-frequency, localized
excitations. We further confirm this scenario by showing that
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cumulative VDOS differences systematically reach their mini-
mum value at a frequency close to the last inflection point of the
participation ratio curves, from where it drops to zero and thus
modes localize. The broadening described here is perfectly
consistent with VDOS deformations induced by isotopic
impurities in model crystalline lattices22 as well as perturbations
of spring constants in disordered solids models23.

How does compensation emerge? To understand how com-
pensation emerges, we represent in Fig. 2c the logarithm of the
cumulative product of average-frequency ratios νzi;n=ν

z
i;nþ1—with

i the indexes of modes ordered by ascending frequency, and n the
indexes of the energy bin over which frequencies are averaged—,
divided by the difference of activation energies of TSs lying in
bins centered at ΔEn+1 and ΔEn (“Methods”). This quantity, that
we call the cumulative local compensation factor, γc(ν, ΔEn),
converges toward the slope of the line connecting consecutive
local averages of energy-prefactor data represented by circles in
Fig. 1b. Cumulative compensation factors start by increasing,
because the piling up of low-frequency modes at the bottom of
the spectrum systematically increases with activation energy in all
solids (Fig. 2b). Inversely, they end up decreasing at the top of the
frequency spectrum, where high-frequency modes of high-energy
TSs spread over higher values than high-frequency modes of low-
energy TSs. Therefore, (anti-)compensation in a-Si (Ni80P20, LJ)
originates in the asymmetric broadening of VDOS at TSs, which
causes positive (negative) contributions to the compensation
factor to operate over most of the spectrum. In CuZr, the com-
petition between softening and stiffening opposite contributions
is subtler; cumulative compensation factors reach their maximum

before the center of the spectrum but then do not decrease fast
enough to counteract the initial increase. This is because a fixed-
frequency shift νzi;n � ν

z
i;nþ1 has a lower impact on the frequency

ratio ν
z
i;n=ν

z
i;nþ1 controlling the cumulative compensation factor

as the frequency ν
z
i;n increases. This dominance of delocalized

modes explains the ubiquity of the compensation effect: as energy
barriers increase, the broadening of the spectrum intensifies, and
softening, which increases entropy, becomes more and more
important than stiffening. It also explains the weak impact of the
nature of the diffusing impurity on the compensation law. Indeed,
while the change of localized vibrational modes frequencies upon
activation may be significantly affected by interactions between
host solid atoms and impurities, that of delocalized modes fre-
quencies is controlled mainly by the properties of the host solid.

Discussion
From a physical point of view, the difference between various
systems emerges both from variations in solids microstructure
and the details of atomic interactions. On average, directional
covalent bonds in amorphous silicon limit local coordination
number and, thereby, result in a very open structure where
activation typically proceeds through the stretching of bonds,
which softens vibrational modes. Since higher barriers are gen-
erally associated with more bonds being stretched further, addi-
tional softening accompanies them, explaining the origin of the
compensation effect in this solid. In contrast to this behavior, the
hard 2D LJ solid is a dense structure with rigid interactions. As
there is little free volume around atoms, activation tends to
involve collisions that, contrarily to silicon, will stiffen
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interactions and shift vibrational frequencies to higher values;
here, higher energy barriers are largely associated with more
atoms moving through even tighter environments, hence gen-
erating an anti-compensation correlation. For the two other
systems, the balance between softening and stiffening of the
vibrational spectrum cannot clearly be deduced from a general
overview of the nature of interactions and the description of their
variations during activation; the diversity of local atomic envir-
onments gives rise to considerable dispersion of harmonic pre-
factors around the compensation law—spanning more than five
orders of magnitude in CuZr and ten in Ni80P20 (Fig. 1b)—, so
that only a quantitative evaluation of harmonic prefactors over all
microscopic events, such as the one performed here, can confirm
the sign and magnitude of the average enthalpy–entropy
correlation.

To conclude, our work establishes that the compensation effect
for diffusion in crystals is not a mere experimental artifact; it is
reproduced quantitatively within atomistic simulations, and ori-
ginates mainly from the generic broadening of solids vibrational
spectra caused by the dispersion of atomic interactions at per-
turbed states. It confirms Zener’s general idea that lattice loos-
ening can cause enthalpy–entropy compensation, and goes well
beyond this proposition by unraveling in detail how loosening
emerges from the unbalanced competition between mode soft-
ening at the low end and stiffening at the high end of the
vibrational spectrum.

This analysis allows us to predict that anti-compensation may
only be observed in solids whose atoms are densely packed and
held together through stiff interactions, and whose vibrational
spectrum contains an unusually large proportion of high-
frequency localized modes. We exhibit such an example with
amorphous Ni80P20. In addition, the fundamental nature of the
softening mechanism revealed here suggests that it extends
beyond atomic diffusion and explains the ubiquity of
enthalpy–entropy compensation relations for processes con-
trolled by a single microscopic-free energy barrier, observed
across disciplines, including materials science9,24, chemistry25,26,
and biology27.

Methods
Experimental diffusion parameters in crystalline silicon and aluminum. The
compensation effect is commonly observed for different impurities diffusing in a
same solid. It also holds for a given impurity diffusing in similar solids, but it
remains unclear how to establish whether two solids are similar or not28. We thus
focus here on the former situation. In addition, we restrict ourselves to single
crystals, and more specifically to diffusion processes that are governed by a single-
jump mechanism, so that compensation effects necessarily emerge from the rela-
tion between energetic and entropic properties of both the jump and the con-
centration of defects mediating diffusion, if any. In these conditions, we collect, in
silicon single crystals, the data for species diffusing via the direct interstitial
mechanism, the kick-out mechanism, the interstitialcy mechanism, and the
vacancy mechanism. For each species, we assemble diffusion coefficients from the
literature and fit them with the Arrhenius law to extract diffusion parameters.
Collected diffusion coefficients and Arrhenius fits are reported in Supplementary
Fig. 1. In aluminum single crystals, we gather diffusion parameters for species
diffusing via the direct interstitial mechanism, and the vacancy mechanism. We
report, in Supplementary Information, the exhaustive list of references we used to
collect the data in silicon and aluminum, and provide in Supplementary Table 1 all
diffusion parameters displayed in Fig. 1a.

Ground states of crystalline silicon with defects. The analysis of experimental
compensation data in silicon (see the main text) shows that kinetic and thermo-
dynamic compensation effects are quantitatively equivalent and do not depend on
the nature of diffusing impurities. We therefore study compensation in crystalline
silicon configurations containing different vacancy or self-interstitial structural
defects—to access a richer set of activated events29—but no chemical impurity. We
simulate these pure silicon systems with three of the most widely used empirical
descriptions of Si atoms interactions: the three-body Stillinger and Weber model30

(SW), the environment-dependent interatomic potential31 (EDIP), and a recently
modified version of the bond order Tersoff potential32 (T07). To create vacancy and
interstitial defects, we start by removing one atom or two neighboring atoms, or

inserting one atom or two atoms at neighboring positions, in diamond cubic crystals
containing 4096 atoms. We then relax the resulting defective configuration during
25 ns, at 800 K and at a fixed density corresponding to the crystal equilibrium
density at zero pressure and 800 K (ρSW= 2.309 g cm−3, ρEDIP= 2.322 g cm−3, and
ρT07= 2.296 g cm−3), while generating local points of stability by energy mini-
mization every 0.25 ns, with the criterion that any component of the force field is
lower than f ISmax ¼ 3 ´ 10�8 eVÅ−1. We estimate the ground-state (GS) configura-
tions as those of lowest potential energy among thereby probed local minima.

Inherent states of amorphous solids. We study amorphous silicon with the
modified Tersoff potential used for crystalline silicon, CuZr and Ni80P20 with
embedded atom method (EAM) potentials33,34 distributed on the eampotentials
website (version 10/5/2011 for CuZr and version 10/18/2011 for Ni80P20). The LJ
mixture is composed of 55% of small particles, of radius rS= 0.75Å, and 45% of
large particles, of radius rL= 1.25Å, which interact through the following poten-
tial: VijðrijÞ=ϵ ¼ 1=xij

12 � 2=xij
6 þ αxij

4 þ βxij
2 þ γ, where ϵ is the energy scale,

xij ¼ rij=ðri þ rjÞ, and α, β, and γ are constant parameters set to ensure first and
second derivatives of Vij are continuous at the cutoff xcij ¼ 2 (α= 747/65, 536, β=
−117/1, 024, and γ= 313/1, 024). Molar masses of both small and large particles
are equal to 50 g mol−1. To generate inherent states of amorphous solids, we
equilibrate a liquid melt at Teq that we then quench down to Trelax at a constant
quench rate q (values of the different parameters are given in Supplementary
Table 2). Finally, we let the obtained configuration relax at Trelax for a time trelax.
These steps are performed at zero pressure, except in the case of LJ, whose density
is fixed at ρN=N/L2= 0.2832 Å−2. Finally, inherent states are obtained by energy
minimization at constant volume, with the criterion that any component of the
force field is lower than f ISmax. Contrarily to the other systems, the LJ mixture
reaches equilibrium at Trelax (we let this system relax for more than 3000 ns at
~980 K, a temperature at which the relaxation time of shear stress was estimated to
be around 0.5 ns in an almost identical model35). For each solid type, 50 inde-
pendent inherent states are generated. Crystalline GSs and amorphous ISs were
prepared using LAMMPS36.

Sampling of activated events. Starting from crystalline GSs or amorphous ISs, we
sample reaction paths connecting two neighboring local minima of the potential
energy landscape (PEL) using the open-ended saddle point search method,
ARTn17,18. In amorphous solids, we only probe events centered around a limited
set of atoms. To do that, we randomly pick atoms lying in a cube of volume Nac/ρN,
with Nac given in Supplementary Table 2, and ρN the number density, then we
randomly displace all atoms lying within a distance Ra from the picked (center)
atom, away from the initial minimum until a direction of negative curvature of the
PEL is found. We decompose a reaction path in three configurations—the initial
minimum (the GS or IS), the saddle point, and the final minimum—, and impose
that the maximum absolute value of any force component is lower than f ISmax at
initial and final minima and lower than f zmax at the saddle point (see Supplementary
Table 2 for the values of these different parameters). To ensure that reaction paths
contain a single potential energy barrier, we slightly displace atoms at the saddle
point along the direction of negative curvature (eigenvector, of the Hessian matrix
for potential energy, whose eigenvalue is negative) and minimize energy until any
force component is lower than f ISmax. The two resulting minima are then compared
with the initial and final ones, and the path is validated if elements of the two pairs
of minima match, i.e., their energy difference is less than ΔEcon and the norm of the
displacement field separating them is lower than Δrcon. Finally, we filter activated
events to remove duplicates. To do that, we start by computing the activation
barrier ΔEb (ΔE in main text) and asymmetric potential energy difference ΔEa
(difference of energy between the final and initial minima), the indexes p and q of
the most displaced atoms at saddle point and final minimum, respectively, and
their displacement, r!p and r!q , from the initial minimum to the saddle point and
to the final minimum, respectively. Then, in crystalline configurations, we consider
two reaction paths i and j are equal if jΔEi

b;a � ΔEj
b;aj ≤ ΔEdup. In amorphous

solids, we additionally impose that k r!i
p;q � r!j

p;q k ≤ Δrdup. These conditions
clearly distinguish unique and duplicate activated events in amorphous solids
because we use strict force convergence criteria (low values of f ISmax and f zmax).

Arrhenius diffusion parameters in crystalline silicon. We represent in Supple-
mentary Fig. 2, raw measurements of activated events properties—activation
energies versus diffusion pre-exponential factors—, obtained in crystalline silicon
configurations. For all potentials, many events have activation energies higher than
2 eV; they correspond to reorganizations of the crystal structure far from the
defect, so that an artificially high number of such events would be obtained in a
large-size configuration. An overrepresentation of such events would bias the
evaluation of the compensation effect. To circumvent this issue, we group transi-
tion states according to the GS they occur in, and their activation energy, using
uniform energy bins of width 0.4 eV, from 0 to 4.8 eV. This upper limit is close to
the highest experimental activation energy reported for silicon in Fig. 1a. For each
GS, we average properties of events according to the energy bin they lie in, and
then average the obtained local properties over all GSs. Finally, we extract the
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compensation factor by fitting thereby computed local average values of logarithms
of diffusion pre-exponential factors as a function of activation energies with the
compensation law. The typical squared distance of the most displaced atom at final
minimum, that we use to compute per-event diffusion pre-exponential factors in
silicon crystals, is around 1.3Å in this material.

The harmonic transition state theory. Although the harmonic transition state
theory (hTST) has been tested against the compensation effect in the past, unex-
plained contradictory results were reported. Indeed, compensation for diffusion on
the surface of metals was both captured37 and missed5,38 by hTST computations.
Moreover, the compensation effect was reported for bulk diffusion in aluminum39,
silicon carbide40, and silica41, while anti-compensation was shown to govern rates
of activated events in a non-physical LJ glass21. These contradictions are difficult to
interpret, especially because numerical compensation factors are never compared
with experimental ones in these works. Here, we apply the hTST by computing
dynamical matrices Dpα;qβ ¼ ð∂2V=∂xpα∂xqβÞ= ffiffiffiffiffiffiffiffiffiffiffiffimpmq

p (with V the total potential
energy, xpα the cartesian coordinate of atom p along the axis α, and mp its mass)
with finite differences. We use the centered-difference formula at order 2, with
normalized finite displacements, multiplied by a factor δ small enough to converge
prefactors (see Supplementary Table 2).

First-principles computations in aluminum. We combine numerical computa-
tions of the literature—obtained using the density functional theory and the har-
monic approximation—of pre-exponential factors and activation energies for self-
and impurity diffusion in aluminum. The exchange-correlation energy was esti-
mated using the generalized gradient approximation (GGA) for impurities dif-
fusing via the direct interstitial mechanism42 (H, N, B, O), and using the local
density approximation (LDA) for self- and impurity diffusion mediated by
vacancies39 (Al, Mg, Si, Cu). We exclude carbon from the data set because its
diffusion path in aluminum contains multiple barriers of comparable amplitude42

and, in principle, the compensation effect studied here applies only to processes
dominated by a single free energy barrier. We also exclude the data for 3d tran-
sition metal impurities obtained using the LDA+U approach43 since reported
activation energies are quite different from experimental results. Finally, we note
that the LDA method seems to systematically underestimate diffusion pre-
exponential factors compared with the GGA method39. Given that activation
energies of impurities diffusing through vacancies (obtained using LDA) are in
average higher than those of interstitials (obtained using GGA), see Fig. 1a, the
compensation factor estimated from our data set might be underestimated because
of such a systematic difference between these two methods. This would lead to an
even closer correspondence with experimental data.

Analysis of vibrational contributions to the compensation factor. To wipe out
the dispersion of vibrational responses between activated events in amorphous
solids, we follow the local averaging procedure used for crystalline silicon, that is
we group transition states according to the inherent state they occur in, and their
activation energy, using here non-uniform energy bins. Denoting In the nth energy
interval, we then average properties of all events e lying in In and occurring in the
inherent state s. Finally, we compute the macroscopic limit by averaging the
obtained properties over all ISs. We use this local averaging procedure to compute
local compensation factors as:

γcðΔEnÞ ¼
log ν?nþ1 � log ν?n
ΔEnþ1 � ΔEn

; ð1Þ

where ΔEn is the center of the nth energy interval, ΔEn ¼ hhΔEðe; sÞie2In is , and
log ν?n ¼ hhlog ν?ðe; sÞie2In is . Using the hTST formula (see main text) and the fact

that all events occurring in a same sample share the same initial minimum, we can
write

γcðΔEnÞ ´ ΔEnþ1 � ΔEn

� � ¼X
i

log νz
� �

i;n � log νz
� �

i;nþ1; ð2Þ

with log νz
� �

i;n ¼ hhlog νzi ðe; sÞie2In is , and ν
z
i positive frequencies at transition

states arranged in ascending order. Values of the ith frequency over TSs lying in a
same activation energy bin are distributed closely around the average frequency
ν
z
i;n ¼ hhνzi ðe; sÞie2In is, so that we can finally compute the cumulative local com-

pensation factor γc(ν, ΔEn) as:

γcðν;ΔEnÞ ’ log
Y
i

ν
z
i;n=ν

z
i;nþ1

 !
= ΔEnþ1 � ΔEn

� �
; ð3Þ

where the product runs over indexes i such that 0< ν
z
i;n ≤ ν. Finally, cumulative

shifts of non-normalized VDOSs for TSs in the nth energy interval, reported in
Fig. 2b, are computed at the frequency ν asZ ν

0þ
hhρzðν0; e; sÞ � ρISðν0; e; sÞie2In isdν

0: ð4Þ

Local average of participation ratios. At each IS, we compute the vibrational
modes of the dynamical matrix, and calculate their participation ratio44. The
participation ratio P(νi) of the ith eigenmode, with frequency νi, expresses as:

PðνiÞ ¼
P

p
ei;pk k2

� �2

Nat

P
p

ei;pk k4 , where sums run over the total number of atoms, Nat, and ei,p

is the displacement vector of atom p in the ith mode. The participation ratio
measures the fraction of atoms that significantly contributes to a given eigenmode;
it varies between 1/Nat (when only one atom moves) and 1 (when all atoms
contribute equally). Finally, we average results over uniform frequency bins and
over all ISs.

Data availability
The data that support the findings of this study are available from the corresponding
authors.

Code availability
The ARTn code is distributed freely upon request to the corresponding authors.
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