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A B S T R A C T

Even though MRI visualization of white matter lesions is pivotal for the diagnosis and management of multiple
sclerosis (MS), the issue of detecting diffuse brain tissue damage beyond the apparent T2-hyperintense lesions
continues to spark considerable interest. Motivated by the notion that rotating frame MRI methods are sensitive
to slow motional regimes critical for tissue characterization, here we utilized novel imaging protocols of rotating
frame MRI on a clinical 3 Tesla platform, including adiabatic longitudinal, T1ρ, and transverse, T2ρ, relaxation
methods, and Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank 4 (RAFF4), in 10 relapsing-
remitting multiple sclerosis patients and 10 sex- and age-matched healthy controls. T1ρ, T2ρ and RAFF4 re-
laxograms extracted from the whole white matter exhibited a significant shift towards longer relaxation time
constants in MS patients as compared to controls. T1ρ and RAFF4 detected alterations even when considering
only regions of normally appearing white matter (NAWM), while other MRI metrics such as T1w/T2w ratio and
diffusion tensor imaging measures failed to find group differences. In addition, RAFF4, T2ρ and, to a lesser
extent, T1ρ showed differences in subcortical grey matter structures, mainly hippocampus, whereas no func-
tional changes in this region were detected in resting-state functional MRI metrics. We conclude that rotating
frame MRI techniques are exceptionally sensitive methods for the detection of subtle abnormalities not only in
NAWM, but also in deep grey matter in MS, where they surpass even highly sensitive measures of functional
changes, which are often suggested to precede detectable structural alterations. Such abnormalities are con-
sistent with a wide spectrum of different, but interconnected pathological features of MS, including the loss of
neuronal cells and their axons, decreased levels of myelin even in NAWM, and altered iron content.

1. Introduction

More than a third of a century has elapsed since the first MRI studies
of white matter lesions in multiple sclerosis (MS) patients (Lukes et al.,
1983; Young et al., 1981), paving the path for the current role of MRI as
a staple for MS diagnosis and monitoring (Filippi et al., 2016;
Wattjes et al., 2015). Routine clinical practice is dominated by

conventional MRI sequences such as T2-weighted imaging with fluid
attenuated inversion recovery (FLAIR) and contrast-enhanced T1-
weighted scans, which provide important, albeit limited information on
subclinical disease activity and effectiveness of treatment. Notably, the
derived measures such as T2 lesion load do not strongly correlate with
the clinical findings of MS patients (Barkhof 2002) and neglect some
aspects of central nervous system damage visible at the histological
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level, calling for more sensitive MRI markers of microstructural injury
accumulation and disease progression, even more so with the advent of
new disease modifying therapies (DMT) (Torkildsen et al., 2016).

Substantial research efforts have been invested into the detection of
alterations in grey matter (GM) (Burgetova et al., 2010;
Cercignani et al., 2001; Crespy et al., 2011; Gracien et al., 2016;
Sarchielli et al., 2002), impending plaques in the normal appearing
white matter (NAWM) (Filippi et al., 1998; Tartaglia et al., 2002;
Werring et al., 2000; Wiggermann et al., 2013; Wuerfel et al., 2004),
and the recognition of subtle microstructural changes in the NAWM
itself (Beer et al., 2016; Giannetti et al., 2014; Moll et al., 2011). Myelin
reduction, axonal pathology and diffuse microglial activation in NAWM
(Moll et al., 2011) are thought not only to contribute to the clinical
picture, but to reflect the very nature of MS as a global inflammatory
response in the whole brain originally stemming from a few focal flares
of demyelination (Kutzelnigg et al., 2005). One way of addressing these
issues is offered by quantitative MRI techniques, including magnetiza-
tion transfer (MT) (Ropele and Fazekas 2009) and diffusion tensor
imaging (DTI) (Cercignani and Wheeler‐Kingshott, 2019). Although not
commonly used in clinical practice, magnetization transfer ratio has
been proven to correlate inversely with myelin loss, axonal damage
(Schmierer et al., 2004) and disease severity measures
(Traboulsee et al., 2003). Also, macromolecular proton fraction map-
ping provides direct measure of demyelination in the brain
(Yarnykh 2012; Yarnykh et al., 2014). Diffusion tensor imaging (DTI)
indices such as mean diffusivity (MD), fractional anisotropy (FA), axial
diffusivity (AD) and radial diffusivity (RD) are sensitive to tissue in-
tegrity, axonal damage and myelin loss (Mottershead et al., 2003), and
the reduced T2* relaxation time is thought to be associated with GM
iron deposition as a sign of neurodegeneration in MS patients
(Langkammer et al., 2010). Moreover, the ratio of T1-weighted and
T2-weighted images (T1w/T2w ratio) has recently emerged as a viable
candidate for the assessment of white matter (WM) injury in MS
(Beer et al., 2016). Unfortunately, the reported differences in T1w/T2w
ratio between healthy individuals and MS patients are subtle and re-
quire large sample sizes, impeding adoption of these techniques in
clinical practice.

The emerging pharmacological methods specifically targeting se-
lected pathways of MS pathology, such as drugs aimed at augmenting
remyelination or preventing neurodegeneration, necessitate new ap-
proaches for monitoring microstructural disease activity (Wattjes et al.,
2015). Several lines of theoretical and experimental evidence indicate
that rotating frame quantitative MRI mapping techniques which utilize
frequency swept pulses are valuable tools for tissue characterization in
MS (Mangia et al., 2014) and other diseases (Mangia et al., 2017;
Michaeli et al., 2007; Sierra et al., 2008; Nestrasil et al., 2010;
Liimatainen et al., 2012). Whereas free-precession T1 and T2 relaxa-
tions due to dipolar interactions depend on magnetic field fluctuations
at frequencies near the Larmor frequency in the MHz range, the rotating
frame relaxations detect additional information from lower frequencies
in the kHz range of the effective fields generated by the radio-frequency
pulse. This inherent sensitivity of adiabatic T1ρ (Michaeli et al., 2006),
T2ρ (Michaeli et al., 2004) and non-adiabatic RAFF (Relaxation Along a
Fictitious Field) (Liimatainen et al., 2010) to slower motional regimes
provides the ability to capture the large spectrum of water dynamics
closely associated with the fine microstructure of various tissues. In-
deed, the highly compartmentalized nature of WM consisting of axons,
myelin sheaths and inter-axonal space, and the very character of MS
disrupting myelin as the main barrier to inter-compartmental water
exchange, demand acquisition protocols focused on slow motional re-
gimes, as the mean residence time of myelin water protons varies in the
range of hundreds of milliseconds to microsecond time scale
(Dortch et al., 2013). Ergo, of particular relevance in this context is
RAFFn (n standing for the rank of the rotating frame) due to the pos-
sibility of “fine-tuning” the contrast to different motional regimes and
therefore tissue characteristics, as evidenced by the recent confirmation

of RAFF4 and RAFF5 as a highly sensitive marker of myelin content
(Hakkarainen et al., 2016; Satzer et al., 2015).

The overall goal of this cross-sectional study was to detect subtle
abnormalities of multiple tissue types in patients with relapsing-re-
mitting MS, including the whole WM, NAWM, diffusely abnormal WM
(DAWM), cortical GM and subcortical GM. Towards this aim, we uti-
lized imaging protocols of rotating frame MRI on a clinical 3 Tesla
platform, in combination with DTI and conventional T1- and T2-
weighted images as additional markers of microstructural damage, and
resting-state functional MRI (rsfMRI) as a marker of functional im-
pairment of relevant regions of interest. Based on our previous pilot
study in MS patients (Mangia et al., 2014, 1), we hypothesised that both
RAFF4 and T1ρ are able to detect significant differences between MS
patients and controls, specifically in NAWM, superior to the capabilities
of DTI and conventional protocols, including their derivatives as T1w/
T2w ratio.

2. Methods

2.1. Subjects

Ten patients with relapsing-remitting MS diagnosed in accordance
with the 2010 revised McDonald Criteria (Polman et al., 2011) were
recruited from the University of Minnesota MS Clinic between June
2015 and April 2016. Demographic (sex, age) and basic neurologic data
including disease history were obtained on the day of the MRI acqui-
sition at the Center for Magnetic Resonance Research, complemented
with the following quantitative measures: Expanded Disability Status
Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), Fatigue
Severity Scale (FSS), Symbol Digit Modalities Test (SDMT), center for
Epidemiologic Studies Depression Scale (CES-D), and the Multiple
Sclerosis Quality of Life-54 instrument (MSQOL). Additionally, we re-
cruited ten frequency sex- and age-matched healthy controls. We did
not include patients with a history of recent MS relapse or MS therapy
change (within 6 months of enrollment), individuals with MRI contra-
indications, comorbid psychiatric or neurological disorder other than
MS, or evidence of significant vascular or space occupying lesions in
MRI scans.

This study was carried out in accordance with the recommendations
of The Code of Federal Regulations. The protocol was approved by the
Institutional Review Board: Human Subjects Committee of the
University of Minnesota. A written informed consent was provided by
each subject in accordance with the Declaration of Helsinki.

2.2. Imaging protocol

The MRI acquisition was performed using a 3 Tesla Siemens Prisma
system. T1-weighted, T2-weighted images and DTI covered the whole
brain. Magnetization-prepared rapid gradient-echo (MPRAGE) se-
quence was used for T1-weighted acquisitions, with the repetition time
(TR) of 2150 ms, time to echo (TE) of 2.47 ms, inversion time (TI) of
1100 ms, voxel size of 1 × 1 × 1 mm3, flip angle of 8° and generalized
autocalibrating partial parallel acquisition (GRAPPA) = 2. T2-weighted
images were collected using the SPACE sequence, voxel size =
1 × 1 × 1 mm3, TE = 147 ms and GRAPPA = 2. Manufacturer-im-
plemented pre-scan normalized algorithm was employed in both T1-
weighted and T2-weighted scans. DTI datasets were acquired utilizing
the following parameters: TR = 2820 ms, TE = 72.6 ms, multi band
(MB) = 4, in 128 directions, with 5 additional non-diffusion weighted
(b0) images, b-value = 1500 s/mm2, voxel size = 1.8 × 1.8 ×
1.8 mm3. The acquisitions were repeated with opposite phase encoding
along the antero-posterior and postero-anterior axis. rsfMRI data was
obtained using gradient echo Echo Planar Imaging (EPI) sequence, with
TR = 900 ms, TE = 30 ms, and multi band factor = 4. Voxel size of
3 × 3 × 3 mm3 and matrix size of 64 × 64, 48 slices with interleaved
slice acquisition was used to acquire 502 volumes in total. Rotating

P. Filip, et al. NeuroImage: Clinical 26 (2020) 102234

2



frame relaxation measurements including adiabatic T1ρ, T2ρ and
RAFF4 were obtained from 30 slices aligned to the anterior and pos-
terior commissure and covering the whole supratentorial area and a
part of the brainstem and cerebellum (voxel
size = 1.6 × 1.6 × 3.6 mm3, GRAPPA = 3, TE = 3.18 ms and
TR = 2 s). The rotating frame MRI protocols have been described
previously (Mangia et al., 2017). Briefly, hyperbolic secant pulses
(Silver et al., 1984; Garwood and DelaBarre 2001) with adiabaticity
factor R = 10, pulse duration = 6 ms, bandwidth BW = 1.3 kHz, peak
power ω1

max/(2π) = 800 Hz, and number of pulses = 0, 4, 8, 12, 16
MLEV phase cycled (Levitt et al., 1982) were used for adiabatic T1ρ and
T2ρ measurements. For RAFF4 acquisitions, pulse duration was
4.56 ms, number of pulses = 0, 4, 8, 12, 16 and ω1

max/(2π) = 327 Hz.
Segmented gradient echo readout (2 segments) was used for imaging
readout in all rotating frame relaxation measurements.

2.3. Image analysis

In the preliminary pre-processing step, manually defined masks of
all T2-hyperintense WM lesions were used to reduce the intensity
contrast within the WM lesion areas in T1w scans of MS subjects uti-
lizing the previously published “lesion-filling” process (Battaglini et al.,
2012). The aim of this procedure was to avoid incorrect automatic
segmentation of juxtacortical MS lesions as GM in the subsequent
analysis. Further analysis was performed using the human connectome
project (HCP) minimal preprocessing pipeline (Glasser et al., 2013),
consisting of the PreFreesurfer, FreeSurfer (FreeSurfer 5.3-HCP; http://
surfer.nmr.mgh.harvard.edu/) and PostFreesurfer step for the structural
data. The accuracy of the segmentation in each subject was visually
inspected by a trained operator (P.F.). The PostFreesurfer step and all
subsequent relevant analyses utilized the T1-weighted scan without the
preliminary lesion correction so that correct T1w/T2w ratios were
obtained for lesion areas.

The following masks for regions of interest (ROIs) were derived
from the automatic labelling results in each subject: whole WM, cortical
GM, basal ganglia, thalamus, hippocampus and amygdala.
Furthermore, the whole WM was carefully segmented into three distinct
WM types (NAWM, DAWM and lesions) utilizing a hybrid, semi-auto-
matic approach, where two specific T2 intensity thresholds (distin-
guishing NAWM / DAWM and DAWM / lesions) were individually se-
lected for each MS patient based on thorough visual evaluation by two
neurologists (A.C., an MS specialist, and P.F.) in the normalized T2-
weighted scans coregistered to the T1-weighted scan (see Fig. 1). For

the purposes of this study, DAWMwas considered WMwith T2 intensity
above the normal values expectable for healthy WM but still below
intensities which were considered true lesions. This approach con-
sistently identified DAWM in all MS patients. No further cluster
thresholding or erosion of these masks were performed, as these steps
introduced inconsistent results across individuals and did not improve a
possible major concern of the interference of partial volume effects.
Nonetheless, this concern was solved at a later step of processing during
the coregistration of these masks to lower resolution images, where
only coregistered voxels with an intensity of at least 0.9 after trilinear
interpolation of the original binary WM masks were considered in
further analyses (see the Supplementary figure 2 for visualisation). This
value is generally recommended as a conservative threshold. The ac-
quired MRI scans were not optimized for the detection of cortical GM
lesions, so no corresponding GM segmentation was performed. T1w/
T2w ratio as calculated in the HCP minimal preprocessing data was
used in the subsequent analyses.

A 2-step 3D rigid body motion correction was performed in T1ρ, T2ρ
and RAFF4 scans utilizing the MCFLIRT algorithm implemented in FSL
5.0.6 (Jenkinson et al., 2012, 2002). All acquired scans were co-regis-
tered to the first acquisition of the relevant sequence utilizing the de-
fault MCFLIRT parameters (6 degrees of freedom, trilinear interpolation
and normalized correlation as cost function). It is important to em-
phasize that the contrasts of individual scans with rising numbers of
pulses are at the borderline between the requirements for within-
modality and between-modality cost functions, i.e. similar, but not
completely identical as presumed for normalized correlation. However,
both visual inspection of the coregistered scans and motion inspection
(root-mean-squared voxel displacement) showed that MCFLIRT yielded
a satisfactory result (motion less than one voxel). Afterwards, the re-
laxation time constants of individual sequences were calculated using
custom routines based on the Aedes software package (http://aedes.
uef.fi) in MATLAB R2016a (MathWorks, Inc., Natick, MA). 2-parameter
non-linear fitting was used to estimate M0 and relaxation time in T1ρ
and T2ρ acquisitions, and a 4-parameter non-linear fitting for M0, Mss
(steady state value of magnetization), Mz (initial magnetization value
measured from the negative hemisphere) and relaxation time for RAFF4
acquisitions. In the following step, T1ρ, T2ρ and RAFF4 maps were co-
registered (3D rigid body co-registration) to the anatomical scan using
the BB-register algorithm as implemented in FreeSurfer 6.0 with
mri_robust_register initialisation (Reuter et al., 2010), to create co-re-
gistration matrices used in the subsequent steps for inverse co-regis-
tration of structural masks to these lower resolution images.

Fig. 1. Image slice from a representative MS subject:
(A) native T2-weighted image depicting significant
white matter (WM) abnormalities; (B) superimposed
WM ROIs created by a semi-automated approach
based on individual T2 intensity thresholds, including
normal appearing WM (green), diffusely abnormal
WM (brown) and lesions (red). Radiological laterality
conventions (with the right side of the figure corre-
sponding to the left side of the brain) are used.
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DWI datasets were processed utilizing the HCP minimal preproces-
sing pipeline (Glasser et al., 2013), with subsequent diffusion tensor
fitting to generate FA, MD, AD and RD (Andersson and Stamatios, 2016;
Andersson et al., 2003). rsfMRI acquisitions were also analysed using
the HCP minimal preprocessing pipeline followed by the HCP rsfMRI
post-processing pipeline (Smith et al., 2013). HCP training data was
used for the FIX auto-classification algorithm (Salimi-Khorshidi et al.,
2014) with subsequent manual examination and amendments to the
FIX-derived labelling of artefactual components before the regression of
their contribution out of the rsfMRI data. The AFNI package
(Cox, 1996) was utilized to calculate voxel-wise degree centrality
(DeCe) and regional homogeneity (ReHo) based on the cleaned volu-
metric output of the pipeline.

Subsequently, the masks derived from automatic segmentation and
semi-automatically created WM masks (NAWM, DAWM, and lesions)
were co-registered to the images with lower resolution to avoid over-
sampling and the inherently associated obscurity. The inverse matrices
created by 3D rigid body co-registration of T1ρ, T2ρ and RAFF maps to
the T1-weighted scan were utilized and the resulting co-registrations of
individual images and masks were visually inspected in every subject.
Only voxels with a probability of inclusion in the relevant ROI of at
least 0.9 were utilised in the subsequent image masking to avoid the
“bleeding” of mixed information from adjacent voxels located at the
interfaces of individual tissue types / ROIs.

2.4. Statistical analyses

Equivalence analysis (two one-sided tests) was used to confirm the
absence of statistically significant differences (type I error = 0.05) in
sex and age between the MS patients and healthy controls, with the
differences of 33% and 10 years for sex and age considered clinically
relevant. Quantitative clinical data were summarized using descriptive
statistical approaches.

Means of the MRI metrics (adiabatic T1ρ, and T2ρ, RAFF4, FA, MD,
AD, RD and T1w/T2w ratio; and DeCe and ReHo for GM masks only)
were calculated within the individual ROIs per subject. Normality of
these mean values was assessed with the Kolmogorov–Smirnov test per
ROI. T1ρ, T2ρ, RAFF4, T1w/T2w ratio, FA, MD, AD and RD per-subject
histograms were created for the whole WM ROI, separately for MS
patients and controls, and per-subject skewness and kurtosis were cal-
culated for these histograms to provide additional information about
eventual between-group shape differences. Note that we refer to his-
tograms of relaxation times as relaxograms.

Comparisons of MRI parameters were carried out between healthy
controls whole WM and MS patients for each of whole WM, NAWM,
DAWM, and WM lesions and between healthy controls and MS patients
for each of cortical GM, basal ganglia, thalamus, amygdala, and

hippocampus; two-tailed two-sample t-tests were used. A type I error
rate of 0.05 was used after false discovery rate (FDR) correction for
multiple modalities (8: T1w/T2w ratio, T1ρ, T2ρ, RAFF4, MD, FA,
DeCe, ReHo) and ROIs (9). Separate FDR correction with was im-
plemented for two-tailed two-sample t-tests of kurtosis and skewness,
incorporating 6 modalities (T1w/T2w ratio, T1ρ, T2ρ, RAFF4, MD, FA)
and 2 measures (kurtosis and skewness). Note that AD and RD were not
included among the primary modalities due to their redundancy with
FA and MD metrics. Pearson's correlation analysis was carried out to
correlate individual clinical measures of interest (7: disease duration,
EDSS, MSFC, SDMT, FSS, CES-D, MSQoL) with mean MRI parameter per
ROI (9 ROIs, with the exception of rsfMRI measures, where 5 ROIs were
considered, and 8 MRI parameters) with similar FDR correction.

2 scatter plots of mean T1ρ vs. mean T2ρ relaxation times were
added to further elucidate the results: (1) scatterplot in whole WM to
show the clustering of healthy controls and MS patients; and (2) scat-
terplot in segmented WM to show the clustering of NAWM, DAWM and
lesions in MS patients.

Lastly, the volumes of 7 ROIs (WM, cortical GM, lateral ventricles,
basal ganglia, thalamus, amygdala, hippocampus) and the volume of
the whole brain, as provided by the automatic segmentation algorithm
of FreeSurfer, were compared between the MS patients and healthy
subjects using two-sided two-sample t-tests.

3. Results

3.1. Demographics

The two one-sided tests confirmed the equivalence of both sex and
age distributions between the two study groups (sex, p = 0.048; age,
p = 0.030, for MS subjects and healthy controls, respectively).
Demographic information is provided in Table 1. The average disease
duration of the MS group was 12.10 years (SD 4.82). Four MS patients
reached EDSS stage 4 (gait impairment), the other six subjects ranged
from 1 to 2 (without gait impairment). All MS subjects were on a stable
DMT regimen: dimethyl fumarate – 4 subjects; glatiramer acetate – 2
subjects; natalizumab – 2 subjects; fingolimod and teriflunomide – 1
subject each. For further clinical information, see Table 1.

3.2. ROI masks

The mean thresholds for the individually created WM masks in MS
patients based on T2-weighted signal intensities (see Fig. 1, numbers in
a.u.) were 228.0 (range of 175–266) and 264.4 (range of 196–310) for
the NAWM/DAWM and DAWM/lesion cut-offs, respectively. This con-
siderable inter-subject variability and overlap of the ranges at the group
level (perceived even in T2-weighted images processed using the pre-
scan normalization implemented by the MRI scanner manufacturer)
precludes determining any simple numeric cut-off value plausible for all
the MS subjects. All the created NAWM, DAWM, and lesion masks were
manually inspected (A.C., an MS specialist, and P.F.), but no further
local manual corrections were performed. Although this approach also
labelled juxtacortical WM voxels with slightly increased intensities in
some areas as DAWM, it was not possible to truly differentiate between
partial volume effects due to insufficient resolution and juxtacortical
lesions.

Kolmogorov–Smirnov tests confirmed the absence of significant
deviations from the normal distribution (p > 0.05) for the averages of
voxel values for individual MRI sequences and all ROIs with sufficient
number of voxels, enabling us to use parametric statistical methods.
However, normality could not be confirmed for the lesional WM masks
in lower resolution methods, so not only the paucity of values, but also
the distribution of relevant values in these areas, call for caution in
eventual interpretation of borderline results.

Table 1
Demographics and clinical characteristics of all subjects. Scores provided as
mean ± standard deviation (range). EDSS Expanded Disability Status Scale,
MSFC Multiple Sclerosis Functional Composite, FSS Fatigue Severity Scale,
SDMT Symbol Digit Modalities Test, CES-D centre for Epidemiologic Studies
Depression Scale, MSQoL Multiple Sclerosis Quality of Life-54.

Healthy controls MS patients

N 10 10
Gender (female/male) 8/2 8/2
Age [years] 46.0 ± 13.4 (20–62) 47.3 ± 11.8 (19–59)
Disease duration [years] – 12.1 ± 4.8 (5–17)
EDSS – 2.7 ± 1.2 (1.0–4.0)
MSFC – 0.28 ± 0.49 (0.79–0.84)
SDMT – 52.9 ± 14.0 (35–83)
FSS – 39.6 ± 14.2 (17–60)
CES-D – 11.2 ± 9.4 (1–34)
MSQoL, physical section – 65.7 ± 18.0 (35.2–86.1)
MSQoL, mental section – 74.4 ± 15.7 (42.6–87.5)
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Fig. 2. T1-weighted (left), T2-weighted (middle)
and T1ρ (right) images with reconstructed surfaces
for better orientation of 4 MS subjects with con-
spicuous T1- and T2-negative T1ρ lesions in the
periventricular white matter (A and B), in the bi-
lateral thalami (C) and in the genu of corpus cal-
losum (D). The MS subject in (D) had also a similar
lesion in the head of the right caudate (not de-
picted). Black arrows point to the lesions of in-
terest. The scales denote relaxation time in [ms].
Radiological laterality conventions (with the right
side of the figure corresponding to the left side of
the brain) are used. The dark regions in the cere-
brospinal fluid in the T2-weighted images are
probably caused by the inherent susceptibility of
the T2-weighted scans to the loss of phase in highly
heterogeneous substances and possibly flow
changes, sometimes described as “flow void”.
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Table 2
MRI metrics in the regions of interest. T-test, false discovery rate corrected for multiple modalities (6 for white matter and 8 for grey matter) and ROIs (9).
Statistically significant results (p < 0.05, corrected) are marked in bold italics. For AD and RD, no FDR correction is provided, as these are only included for
completeness and mirror their compound variable – MD. Positive T-values denote higher values of respective parameters in MS patients. WM: white matter; NAWM:
normal appearing WM; DWM: “dirty” WM.

MRI metric Region of Interest Controls (mean ± SD,
n = 10)

MS patients (mean ± SD,
n = 10)

difference (patients
minus controls)

T-value p-value,
uncorr

p-value, FDR-
corr

RAFF4 [ms] Whole WM 253 ± 7 269 ± 9 6.4% 4.63 0.0002 0.0011
NAWM 253* ± 7* 262 ± 7 3.5% 2.88 0.0099 0.0317
DWM 253* ± 7* 266 ± 8 5.3% 3.94 0.0010 0.0038
WM lesions 253* ± 7* 356 ± 41 40.9% 7.88 0.0000 0.0000
Thalamus 272 ± 8 278 ± 7 2.1% 1.74 0.0987 0.1707
Amygdala 329 ± 12 338 ± 7 2.6% 1.91 0.0717 0.1391
Hippocampus 314 ± 10 328 ± 7 4.5% 3.62 0.0019 0.0069
Basal ganglia 296 ± 8 305 ± 10 3.0% 2.16 0.0449 0.0991
Cortex 334 ± 9 342 ± 8 2.3% 2.06 0.0545 0.1163

T1ρ [ms] Whole WM 131 ± 5 142 ± 4 8.1% 5.59 0.0000 0.0002
NAWM 131* ± 5* 136 ± 2 3.3% 2.64 0.0167 0.0485
DWM 131* ± 5* 146 ± 4 11.2% 7.25 0.0000 0.0000
WM lesions 131* ± 5* 203 ± 24 54.4% 9.27 0.0000 0.0000
Thalamus 146 ± 4 149 ± 1 2.0% 2.29 0.0341 0.0840
Amygdala 170 ± 5 172 ± 4 1.2% 1.03 0.3156 0.4489
Hippocampus 166 ± 3 172 ± 7 4.0% 2.73 0.0137 0.0417
Basal ganglia 148 ± 3 152 ± 4 2.5% 2.36 0.0297 0.0761
Cortex 163 ± 3 166 ± 4 1.6% 1.85 0.0808 0.1520

T2ρ [ms] Whole WM 71 ± 2 75 ± 3 6.2% 4.25 0.0005 0.0024
NAWM 71* ± 2* 71 ± 2 0.4% 0.32 0.7490 0.8560
DWM 71* ± 2* 80 ± 3 13.3% 7.89 0.0000 0.0000
WM lesions 71* ± 2* 113 ± 14 59.4% 9.52 0.0000 0.0000
Thalamus 72 ± 1 73 ± 2 1.6% 1.55 0.1389 0.2279
Amygdala 88 ± 2 89 ± 2 1.6% 1.99 0.0618 0.1236
Hippocampus 86 ± 2 89 ± 2 3.8% 4.03 0.0008 0.0036
Basal ganglia 66 ± 2 66 ± 3 1.0% 0.60 0.5545 0.6824
Cortex 80 ± 2 81 ± 2 1.4% 1.31 0.2074 0.3238

T1w/T2w ratio Whole WM 1.21 ± 0.06 1.13 ± 0.05 −6.7% −3.12 0.0059 0.0197
NAWM 1.21* ± 0.06* 1.15 ± 0.05 −5.1% −2.41 0.0271 0.0723
DWM 1.21* ± 0.06* 0.86 ± 0.07 −29.1% −11.95 0.0000 0.0000
WM lesions 1.21* ± 0.06* 0.61 ± 0.08 −49.3% −17.87 0.0000 0.0000
Thalamus 1.22 ± 0.04 1.20 ± 0.06 −1.6% −0.83 0.4175 0.5463
Amygdala 0.80 ± 0.03 0.79 ± 0.02 −2.3% −1.67 0.1128 0.1899
Hippocampus 0.81 ± 0.03 0.78 ± 0.03 −3.6% −2.52 0.0216 0.0601
Basal ganglia 1.16 ± 0.05 1.14 ± 0.08 −1.7% −0.65 0.5208 0.6535
Cortex 0.80 ± 0.03 0.78 ± 0.03 −2.0% −1.14 0.2705 0.3935

FA Whole WM 0.50 ± 0.02 0.48 ± 0.02 −4.2% −2.22 0.0396 0.0938
NAWM 0.50* ± 0.02* 0.48 ± 0.02 −3.5% −2.04 0.0565 0.1167
DWM 0.50* ± 0.02* 0.43 ± 0.04 −14.1% −4.78 0.0002 0.0009
WM lesions 0.50* ± 0.02* 0.31 ± 0.05 −38.3% −10.92 0.0000 0.0000
Thalamus 0.34 ± 0.02 0.35 ± 0.03 3.9% 1.32 0.2043 0.3238
Amygdala 0.17 ± 0.01 0.18 ± 0.02 5.3% 1.18 0.2548 0.3792
Hippocampus 0.14 ± 0.02 0.13 ± 0.01 −7.2% −1.81 0.0877 0.1600
Basal ganglia 0.18 ± 0.02 0.19 ± 0.03 5.6% 0.97 0.3449 0.4798
Cortex 0.14 ± 0.01 0.14 ± 0.01 −0.5% −0.23 0.8191 0.8885

MD x 10−3 [mm2/s] Whole WM 0.63 ± 0.02 0.66 ± 0.03 5.7% 3.68 0.0017 0.0065
NAWM 0.63* ± 0.02* 0.63 ± 0.02 −0.2% −0.18 0.8566 0.8987
DWM 0.63* ± 0.02* 0.69 ± 0.05 9.8% 3.99 0.0009 0.0036
WM lesions 0.63* ± 0.02* 1.07 ± 0.15 70.5% 9.12 0.0000 0.0000
Thalamus 0.65 ± 0.01 0.65 ± 0.02 0.7% 0.70 0.4901 0.6273
Amygdala 0.71 ± 0.02 0.71 ± 0.02 −0.1% −0.12 0.9085 0.9229
Hippocampus 0.75 ± 0.02 0.77 ± 0.02 2.5% 2.16 0.0442 0.0991
Basal ganglia 0.64 ± 0.02 0.64 ± 0.02 0.1% 0.08 0.9394 0.9394
Cortex 0.67 ± 0.01 0.67 ± 0.01 0.7% 0.90 0.3783 0.5151

AD x 10−3 [mm2/s] Whole WM 1.042 ± 0.02 1.077 ± 0.02 3.4% 4.07 0.0007 N/A
NAWM 1.042* ± 0.02* 1.032 ± 0.02 −1.0% −1.07 0.3005 N/A
DWM 1.042* ± 0.02* 1.121 ± 0.05 7.6% 5.01 0.0001 N/A
WM lesions 1.042* ± 0.02* 1.513 ± 0.19 45.2% 7.66 0.0000 N/A
Thalamus 0.896 ± 0.01 0.912 ± 0.02 1.8% 2.44 0.0255 N/A
Amygdala 0.855 ± 0.03 0.864 ± 0.03 1.1% 0.73 0.4720 N/A
Hippocampus 0.889 ± 0.03 0.903 ± 0.02 1.6% 1.25 0.2274 N/A
Basal ganglia 0.768 ± 0.03 0.776 ± 0.03 1.0% 0.75 0.4646 N/A
Cortex 0.818 ± 0.02 0.823 ± 0.01 0.6% 1.03 0.3151 N/A

(continued on next page)
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3.3. T1ρ focal abnormalities

Visual inspection of the processed scans revealed multiple con-
spicuous T1ρ focal abnormalities in 4 MS patients (out of 10) (see
Fig. 2), while no healthy controls showed comparable findings. Inter-
estingly, no other sequence, including the T2-weighted images, de-
tected any corresponding lesions in these areas (mostly WM in the vi-
cinity of the lateral ventricles, namely several parts of the corpus
callosum, but also caudate and thalamus). Notably, while T2-hyper-
intense lesions displayed prolonged relaxation time constants in T1ρ
maps, the T1ρ relaxation time constants in these focal abnormities were
substantially shorter. As the true nature of these T1ρ focal abnormalities
is unclear as of now, no further changes in the T2w-based NAWMmasks
were performed to exclude these regions. Nonetheless, due to the
scarcity of these abnormalities, even excluding these areas from NAWM
masks resulted in negligible numerical differences in the averages and
standard deviations beyond the precision of values provided in the
Table 2.

3.4. Comparison of rotating frame relaxation protocols with other
modalities

The T1ρ and T2ρ relaxation time constants (Table 2) were in line
with our previous reports (Mangia et al., 2017, 2014). All the rotating
frame methods were able to detect differences between the healthy
controls whole WM and MS patients whole WM. T1ρ and RAFF4 ad-
ditionally detected differences between healthy controls whole WM and
each of the 3 segmented WM ROIs (NAWM, DAWM, WM lesions) for MS
patients (Table 2). Specifically, there was a significant shift of the re-
laxograms in MS patients to longer relaxation times in T1ρ, T2ρ, and
RAFF4 (Fig. 3). In NAWM, there was a significant relaxation pro-
longation in both T1ρ and RAFF4 as compared to healthy controls’
whole WM. Although T1w/T2w ratio and MD detected certain differ-
ences in the whole WM masks, these methods were unable to distin-
guish the two groups in the NAWMmask. DAWMmean relaxation times
(T1ρ, T2ρ and RAFF4) in MS patients were once again significantly
longer than in the WM of healthy controls. Mean differences in DAWM
as compared to healthy control WM were also picked up by the T1w/
T2w ratio, FA and MD. Lastly, all the MRI protocols relevant for WM
confirmed significant changes between the respective parameters in
WM lesions of MS patients and whole WM of healthy controls. For
details, see Table 2.

Analogous analyses, which included also rsfMRI parameters, were

performed for cortical GM and several subcortical regions. Only T1ρ,
T2ρ and RAFF4 were able to reveal statistically significant results,
namely prolonged relaxation time constants in hippocampus (Table 2).
No further cortical or subcortical GM differences were found between
MS and controls. Interestingly, these microstructural changes were not
reflected at the macrostructural level, as no significant differences in
GM volume were found (see Supplementary Table 1).

3.5. Histogram and scatterplot analyses

The relaxograms of whole WM for healthy subjects and MS patients
exhibit a clear shift of the mode towards longer relaxation time con-
stants in T1ρ and RAFF in MS patients (Fig. 3). Additional histograms of
DTI metrics and T1w/T2w ratio are presented in Fig. 4. While there
were substantial MS-related deformations of T1ρ and T2ρ relaxograms,
as reflected visually and in significant differences in kurtosis and
skewness (p< 0.01 for both kurtosis and skewness in both T1ρ and T2ρ;
see Table 3), the shapes of RAFF relaxograms in MS patients and
healthy controls exhibited substantial similarities (neither kurtosis, nor
skewness between-group differences were found, p > 0.20). Further-
more, the group difference relaxograms shown in Fig. 3 clearly confirm
the shift of the above described relaxograms, with the peak differences
in the relaxation time constants observed at about 70 ms, 130 ms, and
240 ms in T2ρ, T1ρ and RAFF4, respectively. Note that there is a trend
of broader histograms also for MD and RD in MS patients (Fig. 4),
however kurtosis differences did not reach significance for either MD
(see Table 2) or RD (data not shown).

The scatterplot analysis (Fig. 5A) presents an appreciable clustering
of the two subject groups, allowing us to estimate a T1ρ cut-off line of
about 137 ms. Fig. 5B shows a clear separation between the ROI-
averaged values for NAWM, DAWM and lesional WM in MS patients.
Finally, the correlation analysis of individual clinical parameters of
interest with mean ROI values for relevant MRI metrics failed to pro-
vide any significant findings.

4. Discussion

Building on our previous pilot study utilizing rotating frame re-
laxation parameters for the characterization of NAWM of MS
(Mangia et al., 2014), here we extended the imaging protocol to a
clinically relevant platform (3 Tesla), to multi-slice acquisitions for
extensive brain coverage, and to the inclusion of RAFF4, a measure
exceptionally sensitive to myelin content (Satzer et al., 2015). In

Table 2 (continued)

MRI metric Region of Interest Controls (mean ± SD,
n = 10)

MS patients (mean ± SD,
n = 10)

difference (patients
minus controls)

T-value p-value,
uncorr

p-value, FDR-
corr

RD x 10−3 [mm2/s] Whole WM 0.439 ± 0.02* 0.477 ± 0.03 8.7% 3.21 0.0048 N/A
NAWM 0.439* ± 0.02* 0.452 ± 0.02 3.0% 1.36 0.1916 N/A
DWM 0.439* ± 0.02* 0.528 ± 0.06 20.3% 4.65 0.0002 N/A
WM lesions 0.439* ± 0.02* 0.914 ± 0.15 108.2% 9.98 0.0000 N/A
Thalamus 0.531 ± 0.01 0.53 ± 0.03 −0.2% −0.17 0.8662 N/A
Amygdala 0.658 ± 0.02 0.652 ± 0.02 −0.9% −0.72 0.4787 N/A
Hippocampus 0.71 ± 0.02 0.732 ± 0.02 3.1% 2.59 0.0184 N/A
Basal ganglia 0.588 ± 0.02 0.587 ± 0.02 −0.2% −0.09 0.9291 N/A
Cortex 0.65 ± 0.01 0.656 ± 0.01 0.9% 0.95 0.3530 N/A

Degree Centrality Thalamus −0.264 ± 0.196 −0.134 ± 0.120 −49.3% 1.79 0.0900 0.1600
Amygdala −0.498 ± 0.173 −0.533 ± 0.269 7.1% −0.35 0.7319 0.8560
Hippocampus −0.186 ± 0.215 −0.213 ± 0.210 14.1% −0.28 0.7860 0.8825
Basal ganglia −0.329 ± 0.236 −0.224 ± 0.138 −32.1% 1.22 0.2376 0.3620
Cortex 0.089 ± 0.036 0.092 ± 0.041 3.7% 0.19 0.8518 0.8987

Regional Homogeneity Thalamus 0.142 ± 0.020 0.138 ± 0.021 −2.8% −0.43 0.6751 0.8152
Amygdala 0.123 ± 0.021 0.120 ± 0.017 −2.4% −0.34 0.7371 0.8560
Hippocampus 0.134 ± 0.017 0.127 ± 0.017 −4.7% −0.83 0.4182 0.5463
Basal ganglia 0.153 ± 0.015 0.151 ± 0.019 −1.2% −0.24 0.8096 0.8885
Cortex 0.262 ± 0.048 0.259 ± 0.047 −0.96% −0.12 0.9072 0.9229

⁎ since controls did not have MS pathology, the value used for the group comparison is the same as for the whole WM.
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general, the currently presented findings confirmed the ability of ro-
tating frame methods to detect abnormalities of the NAWM and also
GM structures, where well-established DTI metrics seem to fail. The
calculation of the relaxograms for the various MRI metrics provided a
robust characterization of the regions of interest which goes beyond
what can be implicated by the mean values alone. This approach indeed
enabled us to appreciate more delicate changes as skewness and kur-
tosis alterations in T1ρ and T2ρ WM relaxograms together with a shift to
longer relaxation times, presumably reflecting a combination of diffuse
WM changes and focal effects leading to the deformation of the right-
side tail of the relaxogram. This notion is of major interest considering
the ability of T1ρ to distinguish also general MS-related changes in
NAWM, contrary to T2ρ. On the other hand, the simple shift of RAFF4
WM relaxogram to longer relaxation times without any shape de-
formation and its sensitivity to NAWM changes points to a rather un-
ique ability of rotating frame protocols, when used in combination, to
distinguish MS changes of diverse nature.

In the light of the previously demonstrated sensitivity of T1ρ to
neuronal cellular density (Michaeli et al., 2007, 2009) and T2ρ to iron
levels (Mitsumori et al., 2009; Michaeli et al., 2007), the interpretation
of these alterations may not be as straightforward as in RAFF4, which
strongly correlates with the myelin content (Satzer et al., 2015). In-
terestingly, the ability of rotating frame relaxation protocols im-
plemented in this study to detect different, although partly overlapping
motional regimens, beyond the spectrum of imaging methods widely
used in clinical practice, might be reflected in different and relevant
aspects of WM changes. The prolongation of T2ρ relaxation in the whole
WM, accentuated in DAWM, corroborate well with current theories of
iron level dysregulation in MS and its depletion in WM, mainly in
chronic lesions (Stephenson et al., 2014). Considering the crucial im-
portance of iron levels for maintaining proper function of enzymatic

systems essential for oligodendrocyte progenitor cells and hence re-
myelination, the ability to monitor its concentration might prove of
paramount importance for newer generations of DMTs (Green et al.,
2017; Rae-Grant et al., 2018). Moreover, it is rather tempting to hy-
pothesize that T1ρ relaxation prolongation in NAWM, a marker related
to neuronal density as confirmed by histological studies in animals
(Michaeli et al., 2009), should capture axonal degeneration, corrobo-
rated by the RAFF4 changes in both NAWM and whole WM ROIs.
Furthermore, T1ρ, T2ρ and RAFF4 were able to identify significant
differences from controls in hippocampus – a deep grey matter structure
of paramount importance for the clinical condition and well-being of
each MS patient. These findings may yet prove to be of utmost re-
levance for the detection of early MS changes, as even rsfMRI measures,
previously often hypothesized as early markers of impeding structural
alterations in MS patients (Faivre et al., 2016; Rocca et al., 2016;
Chen et al., 2018), failed to find any between-group differences in our
study.

4.1. T1ρ focal abnormities

Furthermore, the unique focal T1ρ abnormities which appeared as
faster T1ρ relaxation and were undetectable by other MRI protocols,
were observed in several MS patients, but not in healthy controls, and
raise several intriguing questions. Not only the nature of pathology
leading to these changes is of major interest, but also the implications of
highly suspected lesions merit further research, as the current clinical
MRI protocols and even several rotating frame relaxation methods such
as RAFF4 and T2ρ are blind to them. In fact, the ability of a relaxation
method to detect changes in tissue properties ultimately requires in-
herent sensitivity to the relevant relaxation channels while avoiding
excessive shortening (or lengthening) of the relaxation time to avoid

Fig. 3. Relaxograms of white matter (WM) MRI parameters RAFF4 (A), T1ρ (B), and T2ρ (C). Logarithmic y-axis scale (voxel count) and linear x-axis scale (relaxation
parameter). Lines correspond to average values and shadows to ranges in the respective groups. Healthy controls depicted in green, MS patients in red. Furthermore,
the group differences in average relaxogram (healthy controls minus MS patients) are shown (D), providing further information on the character of the observed
relaxogram shift and maxima/minima of differences. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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compromising accurate signal detection. As we have demonstrated
previously, short T1ρ relaxation in tissue could arise from a pool of
spins experiencing dipolar interactions with short correlation time, in
the range of tens of nanoseconds or less, indicative of restricted mobi-
lity (Mangia et al., 2009). Notably, the T2ρ of these spins with restricted

mobility would be even shorter than T1ρ. If such spins are also in ex-
change with free-like moving spins at a different chemical shift (due for
instance to the presence of iron) and since the dynamic range of T2ρ is
greater than T1ρ, the resulting anisochronous exchange –induced re-
laxation would not significantly affect T1ρ, but would make T2ρ as well

Fig. 4. Histograms of diffusion tensor imaging parameters [fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD)] and
T1w/T2w ratio in white matter (WM). Logarithmic y-axis scale (voxel count), linear x-axis scale (individual parameters). Lines correspond to average values and
shadows to ranges in the respective groups. Healthy controls depicted in green, MS patients in red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Between-person averages of within-ROI histogram kurtosis and skewness for respective parameters in MS patients and healthy controls in whole white matter. T-test,
false discovery rate corrected for multiple modalities (6) and histogram shape measures (2). Statistically significant results (p < 0.05, corrected) are marked in bold
italics. Positive T-values denote higher values of respective parameters in MS patients.

Average Kurtosis Average Skewness

Healthy controls MS patients t-value p Healthy controls MS patients t-value p

RAFF4 20.44 19.79 −0.692 0.594 4.21 4.14 −0.730 0.594
T1ρ 37.32 30.74 −3.915 0.003 5.80 5.21 −4.137 0.003
T2ρ 18.66 13.77 −4.475 0.002 4.02 3.40 −4.593 0.002
T1w/T2w ratio 130.66 122.47 −1.113 0.421 10.93 10.40 −1.753 0.166
FA 2.06 2.08 0.343 0.735 0.73 0.75 0.618 0.594
MD 23.20 20.13 −1.849 0.162 4.49 4.15 −1.966 0.156
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as T2 so short that could escape detection in T2ρ and T2 acquisitions.
On the other hand, RAFF4 relaxation times generally become sub-
stantially shorter in presence of more restricted motions than those
shortening adiabatic T1ρ (Hakkarainen et al., 2016), and they are not
significantly impacted by fast exchange especially if the periodicity of
RAFF4 irradiation is not tuned to the difference in chemical shifts of the
two pools (Liimatainen et al., 2018). These qualitative arguments de-
monstrate the importance for rotating frame relaxation techniques to be
tuned to the relevant regimes of motion, and explain why some lesions
may appear in T1ρ, but not in T2ρ, T2 or RAFF4 acquisitions. None-
theless, all these parameters likely provide complementary information
on NAWM/WM changes encompassing multiple factors, including fac-
tors relevant to disease pathology, and also perhaps associated with
tissue characteristics not affected by MS. There were no differences in
the clinical characteristics of MS patients with and without these focal
T1ρ abnormities. However, as there were no comparable findings in any
healthy controls and considering our previous studies showing T1ρ
abnormalities in MS patients (Mangia et al., 2017), these findings are
intriguing in terms of T1ρ providing a novel non-invasive method for
detecting CNS pathology in MS. Although an artefactual explanation for
these “lesions” cannot be completely excluded, the size, shape and lo-
cation of them are completely consistent with the well-established CNS
pathology of MS. Further studies will be necessary to elucidate this
issue fully.

4.2. Comparison of rotating frame relaxation protocols with other
modalities

Other modalities such as DTI (Schmithorst et al., 2002), magneti-
zation transfer (Ropele and Fazekas 2009), T1w/T2w ratio (Beer et al.,
2016) or multi-exponential T2 (McCreary et al., 2009) have the po-
tential to assess tissue organization as well. However, the specificity of
DTI measures to the underlying macroscopic-level organization of fibres
was not a marker sufficient to provide results comparably significant to
the approaches based on rotating frame relaxation in our study. FA and
MD indeed failed to reach statistical significance in NAWM ROIs, while
FA revealed relevant differences only in the areas previously marked as
suspicious based on the T2-weighted intensities. Furthermore, even
though T1w/T2w ratio in WM was previously reported in MS studies
(Beer et al., 2016), it may not necessarily reflect the content or integrity
of myelin (Uddin et al., 2018), lacking histological studies except for
cortical regions (Glasser and Van Essen 2011). It is nonetheless a
parameter exhibiting plausible ability to detect WM changes in MS and
as such definitely deservers further attention. All in all, the main ob-
jective of the presented study – to show the superiority of the novel
rotating frame MRI protocols to the commonly used metrics as DWI,

T1w/T2w ratio for white matter and rsfMRI metrics for grey matter has
been clearly met. Interestingly, rotating frame MRI protocols were the
only ones able to detect any GM changes, surpassing functional MRI
metrics, even though functional connectivity changes are often thought
to precede MRI-detectable structural changes.

The promises of advanced quantitative MRI techniques have not
been actualized in clinical practice yet, where T2-weighted and con-
trast-enhanced T1-weighted MRI scans remain the modalities of choice
for monitoring clinically silent disease progression and detection of
acute inflammation (Massimo Filippi et al., 2016; Wattjes et al., 2015).
These “traditional” approaches unfortunately fail to provide informa-
tion possibly integral to MS clinical management like early detection of
microstructural changes and more specific subclinical disease progres-
sion, with the ultimate goal to evaluate the response to advanced
therapeutic regimens. Despite the promising results, one limitation of
the current study is the absence of validation in a longitudinal manner
and between individual MS centres. Because of the cross-sectional de-
sign, we are not able to provide further information on the stability of
parameters in individual subjects over time, even though the narrow
inter-subject range of values would suggest favourable prospects in this
regard. Further study on the temporal evolution in a cohort larger than
in the present study would likely shed light on this matter and would
avoid problems inherently associated with higher number of metrics
and statistical analyses in a smaller cohort of subjects as is the case in
the currently presented study. In addition, integration of the current
imaging protocols into general practice might be partially limited by
the length of the acquisition protocol (about 20 min for all three ro-
tating frame relaxation measurements) and the relatively low spatial
resolution. On a positive note, both limitations may be solved using
faster readout schemes and parallel acquisition protocols. Secondly, the
semi-automatic approach implemented in the differentiation of NAWM,
DAWM and lesions with fixed thresholds is associated with a risk of
several artefact types (e.g. the inclusion of juxtacortical WM voxels into
DAWM mask). However, these small problematic regions are not re-
flected in the relevant ROI analyses due to the lower resolution of ro-
tating frame and DWI protocols and the conservative thresholding of
coregistered ROI masks. All in all, this approach provided the most
reasonable NAWM, DAWM and lesion masks as the thresholds of T2w
intensities corresponding to DAWM and lesions were chosen by an
experienced MS specialist. Finally, it is worth mentioning that motion
artefacts did not appear to be a problem which may have compromised
data quality, as confirmed by the very tight distribution of relaxation
values in healthy controls. Despite the relatively low resolution im-
plemented here, the rotating frame relaxations provided valuable in-
formation on WM characteristics, to the extent allowing for differ-
entiation between healthy and MS subjects based on both T1ρ and T2ρ

Fig. 5. Scatter plots, displaying mean T1ρ (x-axis) and mean T2ρ (y-axis) relaxation times of (A) white matter (WM) in healthy controls (green dots) and MS patients
(red squares); and (B) normal appearing WM (NAWM) (blue diamonds), diffusely abnormal WM (yellow triangles) and lesions (red squares) in MS patients. Both (A)
and (B) show significant clustering tendencies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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relaxation times with viable sensitivity and specificity of the chosen
threshold; however, validation in a much larger cohort is warranted.

5. Conclusions

Taken together, the rotating frame relaxation techniques demon-
strated the ability to detect abnormalities not only in WM and specifi-
cally NAWM, but also in deep grey matter, possibly describing a wide
spectrum of different, albeit interconnected pathological features of MS,
including the loss of neuronal cells and their axons, decreased levels of
myelin even in NAWM, and reduced iron content. Ergo, these methods
hold promise as potential non-invasive tools for monitoring MS activity
and eventually for the evaluation of therapeutic effects, even though
substantial efforts will need to be invested to ensure the implementa-
tion, harmonization and full interpretation of rotating frame relaxation
protocols for clinical practice in MS.
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