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Abstract

Insects possess highly developed olfactory systems which play pivotal roles in its ecological

adaptations, host plant location, and oviposition behavior. Bactrocera minax is an oligopha-

gous tephritid insect whose host selection, and oviposition behavior largely depend on the

perception of chemical cues. However, there have been very few reports on molecular com-

ponents related to the olfactory system of B. minax. Therefore, the transcriptome of B.

minax were sequenced in this study, with 1 candidate chemosensory protein (CSP), 21 can-

didate odorant binding proteins (OBPs), 53 candidate odorant receptors (ORs), 29 candi-

date ionotropic receptors (IRs) and 4 candidate sensory neuron membrane proteins

(SNMPs) being identified. After that, we sequenced the candidate olfactory genes and per-

formed phylogenetic analysis. qRT-PCR was used to express and characterize 9 genes in

olfactory and non-olfactory tissues. Compared with GFP-injected fly (control), dsOBP21-

treated B. minax and dsCSP-treated B. minax had lower electrophysiological response to D-

limonene (attractant), suggesting the potential involvement of BminOBP21 and BminCSP

genes in olfactory perceptions of the fly. Our study establishes the molecular basis of olfac-

tion, tributary for further functional analyses of chemosensory processes in B. minax.

Introduction

Many research workers have pointed out that biosynthesis and receptor molecular recognition

systems evolve in synchronous steps during animal signaling process [1–3]. Odors are a poten-

tial tool to control agricultural beneficial and injurious insects [4]. With highly sophisticated

olfactory system insects can recognize various volatile chemicals from their prey, host plants

and conspecifics [5, 6].

Sensory inputs can be converted into behavioral outputs by synaptic connections in highly

streamlined olfactory circuits [7]. Antennae and maxillary palps are two important olfactory

organs in the detection of olfactory signals and cues [8]. These organs are covered in sensilla

that contain the dendrites of stereotypical combinations of olfactory sensory neurons (OSNs),

odorant receptor (OR) or ionotropic receptor (IR) [9]. Normally, ORs are expressed in
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company with a co-receptor, which is called Orco [4, 10]. Compared with ORs, Orco is widely

expressed in olfactory sensory neurons and plays a vital role in olfactory transduction [7, 11].

IR families can be categorized into three subgroups, including “antennal IRs” “divergent IRs”

and iGluRs. iGluRs and “antennal IRs” which are extensively expressed in coeloconic OSNs of

antenna [12]. Odorant binding proteins (OBPs) and chemosensory proteins (CSPs) are typi-

cally located on antennae and mouthparts and are also major proteins involved in recognition

of volatiles. OBPs and CSPs play an important role in transporting incoming odorants to cor-

responding receptors and in transferring the odorant-degrading enzymes (ODEs) to the recep-

tors [13, 14]. Previous studies have shown that insects communicate with their environment

through detection of odorant molecules [15]. The olfactory systems of insects are highly selec-

tive for semiochemicals, which are of great importance to the mediation of their behavior pat-

terns such as location of mates and food sources [16, 17]. Therefore, investigating the gene

function in semiochemical detection is an essential step towards understanding the mecha-

nism of olfaction in insects.

As a univoltine, oligophagous tephritid, Bactrocera minax is mainly distributed in the citrus

production areas of China, India and Bhutan [18, 19]. The adult female oviposits and larvae

develop primarily in citrus. After hatching, larvae is fed and protected within the reproductive

structures of the host plant until completion of their larval stage [20]. The endophytic behavior

of larvae and pupal diapause make this insect difficult to control using conventional insecti-

cides [20, 21]. Some methods have been developed to monitor population outbreaks of B.

minax, and the transcriptome of B. minax has been determined [22]. Olfactory proteins that

are crucial in allowing the insect to locate potential oviposition substrates (citrus fruit), and

food lures to attract adult B. minax have been developed [23, 24]. Host plant volatiles which

synergize the response to sex pheromones in the orange have attracted attention [25]. How-

ever, the olfactory responses of B. minax to different host plants and the genes involved are yet

to be elucidated.

In our study, we identified functional olfactory molecules in B. minax and evaluated the

responses of the fly to its specific attractant volatile D-limonene. RNA interference technique

revealed the predominance of BminCSP and BminOBP21 genes in olfactory and non-olfactory

tissues, specifically in the antennae of B. minax. Compared with GFP-injected B. minax (con-

trol), RNAi-treated B. minax had significantly lower electrophysiological responses to D-limo-

nene. Our data add a unique understanding of the molecular olfactory responses of B. minax
that will facilitate the development of attractants for an effective biological control approach of

B. minax.

Methods

Ethical statement

Bactrocera minax is a pest insect which does not require any permission for their manipulation

and handling. The study was approved by the College of Plant Science and Technology, Huaz-

hong Agricultural University.

Insect rearing and maintenance

The third instar larvae of B. minax were retrieved from infested citrus fruits planted in San

Douping county, Hubei province, China. Adults were kept in cubical cages (50cm x 50cm x

50cm) and fed with sucrose and brewer’s yeast at 28˚C, under relative humidity of 70–80%

with light -dark ratio of 14 h: 10 h.
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Transcriptome analysis and functional annotation

B. minax heads were dissected from newly emerged females, sexually mature males, and sexu-

ally mature females, respectively. The heads were gently separated using sterilized forceps

under a stereomicroscope, washed twice in DEPC-ethanol 70% and used immediately. The

total RNA was isolated using RNAiso plus reagent (TaKaRa Biotechnology, China). Transcrip-

tome analyses were performed according to previously published methods [26].

The difference in gene expression at different stages was compared using FPKM of genes

from all samples of the transcriptome. The Blast2GO program was adopted for functional

annotation of the genes [27]. The open reading frame (ORF) of the identified unigene was pre-

dicted by ORF Finder and verified on the basis of protein BLAST results [28]. The signal pep-

tides of OBPs and CSPs were predicted by SignalP 4.0. The transmembrane domain (TMD) of

the identified OR was evaluated by TMHMM server v. 2.0 [29].

Phylogenetic analyses

Based on the amino acid sequences of candidate olfaction genes and collected olfaction genes,

the phylogenetic tree was established in MEGA 7.0 software. Clustal W was performed to align

the amino acid sequences. A bootstrap procedure was carried out to assess node support [30].

qRT-PCR-based analysis of candidate olfactory gene expression

qRT-PCR analysis was performed to evaluate the expression profiles of the putative olfactory

genes from different samples[15]. Total RNA was extracted according to the method men-

tioned above. cDNA was synthesized using a first strand cDNA Synthesis Kit. 10 μl of the PCR

master mix consisted of 5 μl of TB Green Premix Ex TaqII, 0.2 μl of ROX Reference Dye, 0.6 μl

of cDNA templates, 0.4 μl of each primer, and 3.4 μl of double-distilled water. Primers are

described in S4 Table. Three biological samples were analyzed for each experiment. The

expression level of olfactory gene was quantified and calculated using the 2−ΔΔCT method with

the Bmtubulin gene as control [31].

RNA interference and electrophysiological recordings

Full-length BminCSP and BmOBP21 dsRNA was synthesized through in vitro transcription

and purified using RNeasy MinElute Cleanup Kit. About 100 nl of dsRNA was injected into

sexually mature female B. minax with a micro Injector™ System MINJ-1. Two lines of injected

flies were generated, namely the dsRNA-injected and dsGFP-injected ones. Individual female

head was dissected 2 days after injection. RNA was extracted from each head and qRT-PCR

was conducted using the same methods as earlier described, three biological samples and three

technical repeats were analyzed for each treatment [32]. Primers used in RNAi for PCR and

qRT-PCR are described in the supporting information (S5 and S6 Tables).

An antennae of an adult B. minax female was excised and mounted on a Syntech EAG plat-

form. One metal conductive electrode was used for reference while the other was used as

recording electrode [33]. The antennal preparation was bathed in a humidified air stream

flowing at 20 ml/s. B. minax is sensitive to D-limonene [25]. D-limonene (99%, Sigma-Aldrich,

USA) was dissolved in normal hexane (99%), resulting in a stock solution of 1 μg/μl. 10 μl of

the stimulus was loaded onto a filter paper strip, and then introduced in 1 ml of polypropylene

syringe. Solvent blanks of equal volume served as controls. The order in which antennae

receive odor stimulation was solvent blank, then EAG (std1), followed by stimuli (EAG(A),

then another solvent blank, and finally EAG (std2). rEAG is the relative EAG response. Each
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treatment contained a minimum of five replicates.

rEAG ¼
2EAGðAÞ

EAGðstd1Þ þ EAGðstd2Þ

Statistical analysis

One-way ANOVA was performed to analyze the gene expression in SPSS 22.0 software. The

relative gene expression level between dsRNA treatment and control was evaluated by t-tests at

α = 0.05. In contrast, the rEAG between dsRNA treatment and control was evaluated by t-tests

at α = 0.05. The difference was statistically significant when P< 0.05.

Results

Putative chemosensory proteins identification

As shown in S1 Table, a candidate CSP was identified and predicted to have a full sequence

without signal peptide. From the Neighbor-Joining tree, it could be found that the sequences

were clustered with orthologous gene, which could be easily identified, as shown in Fig 1. The

unigene BminCSP was predicted to have the same function with BdorCSP3 in terms of feeding

and oviposition [34].

Putative odorant-binding proteins identification

By aligning the 21 candidate OBPs to each other, they were organized into different classes

according to the number of cysteine motifs present in each transcript and a phylogenetic was

constructed, as shown in Fig 2A. All putative OBPs were similar to known OBPs from other

Dipteran species. The identified OBP genes clustered in different subgroups and encoded a

variety of proteins. A few genes that clustered together with their counterparts from B. dorsalis

Fig 1. Phylogenetic tree of candidate BminCSP with other Dipteran CSP sequences. Dmel: Drosophila
melanogaster; Bdor: Bactrocera dorsalis; Cqui: Culex quinquefasciatus; Csty: Calliphora stygia; Gmor: Glossina
morsitans morsitans; Dant: Delia antiqua; Scal: Stomoxys calcitrans Asin: Anopheles sinensis; Agam: Anopheles
gambiae; Lsat: Liriomyza sativae.

https://doi.org/10.1371/journal.pone.0222193.g001
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were identified and named as BminOBP1, BminOBP2, BminOBP7, BminOBP9, BminOBP11,

and BminOBP16, respectively (S1 Table). According to the heatmap, BminOBP2, BminOBP6
were highly expressed in mature males (MM) while BminOBP9, BminOBP14, BminOBP12
were highly expressed in mature females (MF), and BminOBP4, BminOBP11, BminOBP13
were highly expressed in newly emerged females (EF) (Fig 2B).

Identification of candidate olfactory receptor proteins

Transcripts encoding 53 putative olfactory receptors (ORs) were identified. Among them, five

were full-length genes encoding proteins of more than 399 amino acids. The unigene refer-

ence, length, and BLASTx best hit of all OR are shown in S2 Table. The majority of OR candi-

date genes clustered with at least one orthologous gene, forming multiple lineages (Fig 3A).

Moreover, BminOR9, BminOR16, BminOR19, BminOR21, BminOR23, BminOR27, BminOR31
and BminOR32 genes were highly expressed in newly emerged flies (EF), while BminOR38
gene was highly expressed in sexually mature males (MM) (Fig 3B).

Identification of candidate ionotropic receptors

A total of 29 candidate IR sequences were identified in B. minax transcriptomic analyses, of

which, 5 IRs had complete open reading frames (ORF), whereas the others were represented as

partial ORF. An unrooted phylogenetic tree was established to reveal the relationship among

the IRs from B. minax and other Dipteran species (Fig 4A). The name, unigene reference,

length, and best BLASTx hit of all 29 IRs are shown in S3 Table. The heatmap revealed pre-

dominant expressions of BminIR1, BminIR11, BminIR12 in EF, while BminIR21 was highly

expressed in MM and MF (Fig 4B).

Identification of candidate SNMPs

Four candidate SNMPs were identified from the B. minax transcriptome, including.

BminSNMP1a, BminSNMP1b, BminSNMP1c, and BminSNMP2a. The protein sequences of

the SNMPs are shown in S1 Text.

Fig 2. Phylogenetic tree of candidate BminOBPs with known Dipteran OBP sequences and the candidate

BminOBP genes expression pattern in newly emerged females (EF), sexually mature females (MF), and sexually

mature males (MM). Dmel: D melanogaster; Bdor: B dorsalis; Agam: A gambiae.

https://doi.org/10.1371/journal.pone.0222193.g002
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Expression pattern of candidate olfactory gene

qRT-PCR was carried out to investigate the expression pattern of the candidate olfactory

genes in male antennae, female antennae, head, thorax, abdomen, leg, and wing. As shown

in Fig 5, all examined genes could be detected in B. minax antennae, but only some of the

genes could be identified in other parts of the body (Fig 5). It was worth noting that

BminCSP, BminOBP13, and BminOBP21 were highly expressed in antennae of both male

and female, BminOBP8 was highly expressed only in the leg, while BminOBP16, Bmi-
nOBP4, and BminOBP12 were highly expressed in the thorax and BminOR4 was highly

expressed in antennae of males only. Moreover, the expressions of BminCSP, BminOBP4,

BminOBP21, BminIR14 genes reached their peaks at the 13th day when B. minax was

becoming sexually mature, indicating their potential involvement in ovary development

and oviposition (Fig 6).

Fig 3. Phylogenetic tree of candidate BminORs with known Dipteran OR sequences and the candidate BminOR
genes expression pattern in EF, MF and MM. Dmel: D melanogaster; Bdor: B dorsalis; Agam: A gambiae.

https://doi.org/10.1371/journal.pone.0222193.g003

Fig 4. Phylogenetic tree of candidate BminIRs with known Dipteran IR sequences and the candidate BminIR
genes expression pattern in EF, MF and MM. Dmel: D melanogaster; Bdor: B dorsalis.

https://doi.org/10.1371/journal.pone.0222193.g004
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Electrophysiological recordings

The qRT-PCR analysis was performed to examine mRNA levels of BminCSP and BminOBP21
in the antennae of dsRNA-injected insects and GFP-injected insects (control). Compared with

GFP-injected insects, BminCSP and BminOBP21 transcript levels in dsRNA injected B. minax
were significantly reduced, as shown in Fig 7. Through investigating EAG response to attrac-

tant of control and RNAi-treated B. minax females, it could be known that silencing BminCSP
and BminOBP21 genes significantly influenced antennal response to D-limonene (Fig 7).

Discussion

OBPs and CSPs are highly expressed in the sensillum lymph and involved in the first critical

step in odorant detection [13]. It has been reported that OBPs and CSPs probably carry semio-

chemicals affecting the behavior [34].

B. minax, is a critical phytophagous pest, which has been largely spread across China in

recent years and gradually become a significant threat to worldwide citrus industry [21].The

mechanism underlying the chemical communication in B. minax has rarely been researched

[25]. Therefore, it is of great importance to determine the genes that are responsible for semio-

chemical perception [6, 16]. Candidate olfactory genes have been identified through transcrip-

tomic analyses and annotation. In an attempt to unravel the molecular basis of olfaction in B.

Fig 5. Tissue- and sex-specific expression patterns of candidate B. minax olfaction genes. The X-axis represents the different

tissues of B. minax. FA: female antennae; MA: male antennae; H: head (without antennae); T: thorax; A: abdomen; L: legs; W:

wings. Error bars represent the standard error of the measurement.

https://doi.org/10.1371/journal.pone.0222193.g005
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minax, we studied the whole transcriptomes from the head and antennae of this pest, and

then, we determined the number of genes involved in olfactory processes.

A total of 108 putative olfactory genes (1 CSP, 21 OBPs, 53 ORs, 29 IRs, and 4 SNMPs)

were identified from the transcriptome of B. minax. This number is somewhat lower than that

detected in B. dorsalis, a polyphagous insect pest with a diverse host range. For B. dorsalis, it

consists of 155 olfactory genes (3 CSPs, 35 OBPs, 74 ORs, 40 IRs, and 3 SNMPs) at the tran-

scriptome level (our unpublished data). This could be an indication that the development of

olfactory perception in fruit fly depends on the host plant range of the fly, either monophagous

(eating of one host plant), oligophagous (feeding on a few specific hosts) or polyphagous (feed-

ing on a broad spectrum of host fruits), since B. minax is an oligophgaous insect while B. dor-
salis is a polyphagous one. Another possibility is that B. minax may use visual as well as

olfactory signals to find and locate the suitable host plants and fruits [26].

Transcriptome analysis has been carried out to identify the differentially expressed genes in

a specific tissue of insects. The BLAST analysis of the OBP and CSP proteins identified in B.

minax allowed us to characterize the sequences [17]. In this work, the transcriptome analysis

revealed the identification of 1 CSP and 1 OBP (named as BminCSP and BminOBP21) which

were highly expressed in antennae of both male and female B. minax. The injection of dsRNA

targeting BminCSP and BminOBP21 genes significantly affected the antennal responses to D-

limonene, which is a putative attractant that normally activates antennal responsiveness for

Fig 6. Time expression patterns of candidate B. minax olfaction genes. Error bars represent 1 SE.

https://doi.org/10.1371/journal.pone.0222193.g006
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oviposition or host location. Moreover, BminOBP8 gene was highly expressed in the legs,

which may indicate its involvement in B. minax locomotion and host location.

The elementary functional and structural characteristics of insect olfactory receptor have

remained unknown [10, 35]. In this study, 53 odorant receptors (ORs) candidate genes were

identified. Male-specific ORs play a role in pheromone detection, while female-specific ORs

are expected to feature in oviposition-related odorant detection [36]. For most species, only

one obligate co-receptor (Orco) is expressed, which is a distinct complement of ORs [37].

The detection of one Orco gene (BminOR6) in our study could indicate the extent of its

involvement in the olfaction of B. minax. A similar result was obtained in the vinegar fly Dro-
sophila melanogaster, in which the odorant receptor gene was highly involved in its olfaction

system. Although the molecular mechanisms of olfaction driven by BminOR6 gene in B.

minax require further study, our results could constitute a starting point for implementing

novel control strategies by targeting the olfaction properties of the fly. The significant expres-

sion of BminIR21 (ionotropic receptor candidate gene) in mature stages of the fly is possibly

linked to the host maintenance and foraging ability. A recent study showed that a part of IR

subtypes is involved in the detection of food-derived odors, while the other part is tuned to

polyamines [12]. The two SNMPs of B. minax have been published [38]. BminSNMP1a identi-

fied in our study is nearly the same with BminSNMP1 in published paper, while BminSNMP2a
identified in our study is an orthologous gene with BminSNMP2.

Olfaction plays a key role in locating food, sexual partners, and oviposition sites [6, 39]. At

present, the techniques for studying gene function include RNAi [40] and CRISPR/Cas9 tech-

nologies [41]. Some olfactory genes functions have been identified in insects by RNAi [42]. In

B. dorsalis, silencing OBP genes reduced the fecundity of females [40]. Currently, reverse

Fig 7. EAG response of B. minax antennae to D-limonene for the sexually mature females. A: qRT-PCR result of

BminCSP gene silencing; B: qRT-PCR result of BminOBP21 gene silencing; C, D: Relative EAG response of GFP- and

RNAi-treated female to D-limonene.

https://doi.org/10.1371/journal.pone.0222193.g007
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chemical ecology, such as linking insect olfactory proteins to their respective pheromone and

plant kairomones is the key and could provide a novel method for researching sophisticated

mechanisms of chemosensory perception in insects [43].

Based on the present work, we are tentatively exploring the underlying molecular mecha-

nisms of olfaction and chemoreception in B. minax to better understand how those candidate

genes could be adequately manipulated for implementing effective management strategies of

B. minax in the near future.

Conclusions

Overall, we firstly identified a total of 108 new olfactory genes in B. minax, including 1 CSP, 21

OBPs, 53 ORs, 29 IRs, and 4 SNMPs. This provides theoretical basis for investigating the

mechanisms of olfaction in B. minax. In this study, we established a phylogenetic tree of olfac-

tory genes. The results indicated that most of olfactory genes were expressed in the chemosen-

sory organs while some genes showed antenna-biased expression. Moreover, the knock down

of BminCSP and BminOBP21 genes affected antennal responses to D-limonene, a putative spe-

cific attractant. This study provides theoretical basis for researches on olfactory system of B.

minax, and the variety of genes identified could constitute potential targets for genetic-based

pest management against this notorious pest and other related pests.

Supporting information

S1 Table. Unigenes of candidate chemosensory proteins and odorant binding proteins.

(DOCX)

S2 Table. Unigenes of candidate olfactory receptors.

(DOCX)

S3 Table. Unigenes of candidate ionotropic receptors.

(DOCX)

S4 Table. Primers used in the qRT-PCR experiments for expression patterns of candidate

olfactory genes.

(DOCX)

S5 Table. Primers used in RNAi for PCR.

(DOCX)

S6 Table. Primers used in RNAi for qRT-PCR.

(DOCX)

S1 Text. Fasta format of the protein sequences of OBPs, CSPs, ORs, IRs and SNMPs identi-

fied in this study.

(DOCX)

Acknowledgments

We thank Jiping Yi and Wenyan Zheng for their kind assistance with insect collection.

Author Contributions

Data curation: Penghui Xu, Yaohui Wang.

Funding acquisition: Chang-Ying Niu.

Olfactory genes in Bactrocera minax

PLOS ONE | https://doi.org/10.1371/journal.pone.0222193 September 11, 2019 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222193.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222193.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222193.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222193.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222193.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222193.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222193.s007
https://doi.org/10.1371/journal.pone.0222193


Project administration: Chang-Ying Niu.

Resources: Chang-Ying Niu.

Software: Penghui Xu, Yaohui Wang, Mazarin Akami.

Supervision: Chang-Ying Niu.

Validation: Chang-Ying Niu.

Writing – original draft: Penghui Xu.

Writing – review & editing: Mazarin Akami.

References
1. Fleischer J, Krieger J. Insect Pheromone Receptors–Key Elements in Sensing Intraspecific Chemical

Signals. Frontiers in Cellular Neuroscience. 2018; 12. https://doi.org/10.3389/fncel.2018.00425.

2. Niehuis O, Buellesbach J, Gibson JD, Pothmann D, Hanner C, Mutti NS, et al. Behavioural and genetic

analyses of Nasonia shed light on the evolution of sex pheromones. Nature. 2013; 494: 345. https://doi.

org/10.1038/nature11838 https://www.nature.com/articles/nature11838#supplementary-information.

https://doi.org/10.1038/nature11838 PMID: 23407492

3. Pickett JA, Weston LA. Possibilities for rationally exploiting co-evolution in addressing resistance to

insecticides, and beyond. Pestic Biochem Physiol. 2018; 151: 18–24. https://doi.org/10.1016/j.pestbp.

2018.03.007 https://doi.org/10.1016/j.pestbp.2018.03.007 PMID: 30704708.

4. Miyazaki H, Otake J, Mitsuno H, Ozaki K, Kanzaki R, Chui-Ting Chieng A, et al. Functional characteriza-

tion of olfactory receptors in the Oriental fruit fly Bactrocera dorsalis that respond to plant volatiles.

Insect Biochem Mol Biol. 2018; 101: 32–46. https://doi.org/10.1016/j.ibmb.2018.07.002 https://doi.org/

10.1016/j.ibmb.2018.07.002 PMID: 30026095.

5. Li Q, Liberles SD. Aversion and attraction through olfaction. Curr Biol. 2015; 25(3): R120–R129. https://

doi.org/10.1016/j.cub.2014.11.044 https://doi.org/10.1016/j.cub.2014.11.044 PMID: 25649823.

6. Clark JT, Ray A. Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact. J

Chem Ecol. 2016; 42(9): 919–930. https://doi.org/10.1007/s10886-016-0770-3 https://doi.org/10.1007/

s10886-016-0770-3 PMID: 27628342.
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