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Activation of NF-kB affects multiple aspects of cancer
biology including cell survival and resistance to treatment.
Glioblastoma (GBM) is the most common primary malignant
tumor of the brain in adults and is resistant to treatment.
Recent studies have reported that NF-kB activation in GBM is
widespread and have elucidated the underlying regulatory
mechanisms. EGFR gene amplification and mutation are
among the key genetic alterations in GBM, and aberrant EGFR
signaling is a key activator of NF-kB in GBM. In this review we
discuss the evidence for activation of NF-kB in GBM and the
key signaling pathways involved. Substantial evidence
suggests a role for NF-kB in the pathogenesis of GBM and its
resistance to treatment, indicating that NF-kB pathways may
be useful targets for treatment.

Introduction

Glioblastoma (glioblastoma multiforme; GBM) is the most
aggressive primary brain tumor in the adult nervous system and
is associated with a poor prognosis.1 GBM is also the most com-
mon type of primary malignant brain tumor in adults. Relative
survival estimates for glioblastoma are quite low and only approx-
imately 4.5% of patients survive 5 years after diagnosis.2 Glioma
is grouped into 4 histologic grades based on the degree of differ-
entiation, anaplasia, and aggressiveness as WHO Grade I-IV
tumors. Malignant gliomas include anaplastic astrocytoma, ana-
plastic oligodendroglioma, and anaplastic oligoastrocytoma
(Grade III) and GBM (Grade IV).3

The molecular pathogenesis of glioma is thought to involve
multiple genetic alterations that result in aberrant activity of
pathways involved in proliferation, cell cycle regulation, and apo-
ptosis.4,5 A series of genetic events have been identified in the
clonal evolution of these tumors. The genetic changes detected
most frequently in primary GBM include INK4A loss, EGFR
amplification and mutation, PTEN loss, and MDM2 amplifica-
tion, among other abnormalities.4,5 More recently, The Cancer
Genome Atlas (TCGA) has provided a comprehensive picture of
genetic abnormalities in GBM. Based on the molecular signature,
GBM has been classified into 4 subclasses: classical, mesenchy-
mal, proneural, and neural. Epidermal growth factor receptor
(EGFR) gene amplification and mutation is one the most com-
mon and striking abnormalities in GBM4,6 and is usually found
in the classical subtype of the disease.6

Recent studies suggest an important role for nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) signaling
in GBM and implicate NF-kB activation as an important driver
of the malignant phenotype that confers a negative prognosis in
patients with GBM.7,9 NF-kB activation is a hallmark of inflam-
mation and has been a focus of intense interest in inflammation-
induced cancer.10 Signs of inflammation in GBMs can be detected
in the form of infiltration by macrophages/microglia and lympho-
cytes, production of inflammatory cytokines, and activation of
NF-kB,11,13 suggesting that inflammation may play a role in glio-
magenesis. However, signs of significant inflammation are not
prominent in most GBMs and the activation of NF-kB in GBM
is likely secondary to genetic changes and aberrant signaling. In
this review we discuss recent advances in our understanding of the
role of NF-kB signaling in the pathogenesis of GBM.

Activation of NF-kB

NF-kB is a family of transcription factors that bind to the
enhancer element of the immunoglobulin kappa light-chain of
activated B cells.14 Structurally, NF-kB is composed of homo-
dimers and heterodimers of the 5 members of the Rel family,
namely NF-kB1 (p50/p105), NF-kB2 (p52/100), RelA (p65),
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and c-Rel. In unstimulated cells, NF-kB is kept inactive by its
interaction with the inhibitor IkBa and the complex is usually
located in the cytoplasm. In response to stimuli such as cytokines
or DNA damage, IkB kinases IKKa or IKKb become activated
and phosphorylate IkBa leading to its degradation by a K48
ubiquitin-mediated proteasomal mechanism. The free NF-kB
now translocates to the nucleus and acts as a transcription factor
for various downstream target genes.15 Cytokines such as TNFa,
TRAIL, EGF, and VEGF and DNA damaging agents are able to
induce NF-kB by this canonical pathway. Activation of the IKKs
involves the participation of a number of upstream components
including IKK gamma (also known as NEMO), RIPK1, TAK1,
TRAF1/2, and cIAP1/2.16 In the non-canonical pathway of NF-
kB activation, IKKa phosphorylates the p100 precursor leading
to the formation of a p52/RelB dimer that translocates to the
nucleus and initiates transcription.

NF-kB is activated in GBM
Immunohistochemical staining for the p65 subunit of NF-kB

with a p65-specific antibody revealed increased expression of p65 in
glioma cells compared to normal brain.17 The same study found
that overexpression of p65 correlated well with the histologic grade
of the glioma, being higher in malignant glioma compared to low-
grade glioma. The pattern of staining was reported as diffuse cyto-
plasmic with scattered nuclear staining. Immunohistochemical
staining with antibody specific for phospho-p65 revealed increased
staining in GBM compared to lower grade glioma.17 This antibody
detects the activated form of the p65 subunit of NF-kB when it is
phosphorylated at serine 536. Increased phosphorylation of p65 in
GBMs was also confirmed by western blot analysis of frozen tissue
derived from tumors.17 In another study, primary cultures derived
from GBMs revealed constitutive NF-kB activation, and increased
nuclear localization of the p65 and p50 subunits was detected in
GBM but not in normal astrocytes.18 In a recent study we also
showed that NF-kB p65 is frequently phosphorylated in GBM; p65
was phosphorylated in 20 out of the 23 GBM tumors tested.19 Fig-
ures 1A and 1D show increased expression of p65 in one GBM, a
moderate level of expression in another GBM (Fig. 1B and E), and
absent or weak staining for p65 in normal brain (Fig. 1C). Nuclear
localization of p65 in GBM can be seen in Fig. 1F. Increased phos-
phorylation of the p65 subunit in GBM is shown in Fig. 2A and C,
whereas a low level of phopsho-p65 staining in normal brain is
depicted in Fig. 2B. Thus, upregulation and activation of NF-kB is
common in gliomas, and particularly in GBM. Activation of NF-
kB in GBM in response to cytokines and growth factor signaling is
depicted in Fig. 3.

In addition to the p65–p50 heterodimer, other members of
the NF-kB family are also reported to mediate NF-kB signaling
in glioma. For example, p68 RNA helicase induces an increased
nuclear abundance of p50 resulting in NF-kB activation in gli-
oma cells.20 In mesenchymal glioma the non-canonical pathway
of NF-kB, in which RelB has a prominent role, is also involved.21

Targets of NF-kB in glioma
NF-kB target genes include cell cycle regulatory genes, antiapop-

totic genes, inflammatory cytokines, and cell adhesion molecules

that regulate tumor growth and metastasis. The major NF-kB tar-
gets include the cell cycle regulatory protein cyclin D1,22-26 the anti-
apoptotic protein XIAP1,27,28 and inflammatory proteins such as
IL-6,29 IL-8,30-32MMP-9,33-35 MMP-13,36 and Cox2.33 The regu-
lation of signal transduction pathways mediating proliferation,
release of inflammatory cytokines, and expression of metalloprotei-
nases in the tumor microenvironment by NF-kB activation facili-
tates tumor growth. It is also important to note that there is
extensive crosstalk between NF-kB and oncogenic and tumor sup-
pressor signaling pathways, including those active in GBM.37-39

Major Mechanisms of NF-kB Activation in Glioma

Although a large number of stimuli can activate NF-kB in gli-
oma cells, 2 common mechanisms appear to to be particularly
important. First, EGFR signaling is known to activate NF-
kB.40,41 Since EGFR gene amplification and mutation are com-
mon in GBM, aberrant EGFR signaling is likely to be an impor-
tant mechanism of NF-kB activation in GBM. Second, a genome
wide analysis study of 790 clinical glioblastoma samples showed a
23.4% rate of deletion of the NFKBIA gene that encodes IkBa.8

Loss of this key inhibitor of NF-kB activation results in constitu-
tive NF-kB activation. Importantly, deletion of NFKBIA was
detected in non-classical forms of GBM. Since EGFR gene ampli-
fication and mutation are detected in the classical subtype of
GBM, this suggests a pattern of mutual exclusivity between these
2 major mechanisms of NF-kB activation.8 NF-kB activation has
been reported to promote a mesenchymal phenotype in GBM.7

EGFR-mediated NF-kB activation in glioma
EGFR gene amplification and mutations are detected in 40–

50% of GBMs and result in increased levels of EGFR wild type
(EGFRwt) and mutant forms in tumor cells. EGFRvIII is the
most common mutant form found in GBM, being present in
approximately 25% of tumors, and has received intense scrutiny
because of its increased oncogenic potential compared to
EGFRwt.42-44 EGFRvIII has an in-frame deletion of exons II-
VII, resulting in a truncated EGFR that is missing part of the
extracellular ligand binding domain and is constitutively active.
Both EGFRwt and EGFRvIII have been reported to activate NF-
kB but the mechanisms involved appear to be distinct. EGFRwt
has been reported to activate NF-kB in glioma cells via a SHP-2-
and Gab1-dependent pathway45 and via a PLC gamma- and
PKC epsilon-dependent pathway.46 At least 2 mechanisms have
been described for EGFRvIII-mediated activation of NF-kB,
including an mTORC2-dependent pathway.47

We recently found that receptor-interacting protein (RIP1,
RIPK1) is a key link between EGFR and NF-kB signaling in
GBM.19 RIP1 is known to be an essential component of stress-
induced NF-kB activation and is also a central mediator of both
apoptotic and necrotic cell death. Thus, depending on the cellu-
lar context, RIP1 can induce either cell death through engage-
ment of the cell death machinery or cell survival by activating
NF-kB. We have shown that RIP1 is commonly overexpressed in
GBMs and confers worse survival.38 EGFRvIII recruits ubiquitin
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ligases to RIP1, resulting in K63-linked ubiquitination of RIP1.
Polyubiquitinated RIP1 binds to TAK1 and NEMO forming a
EGFRvIII-associated signaling platform that activates NF-kB.
RIP1 is essential for EGFRvIII-mediated NF-kB activation and
oncogenicity in an orthotopic model and correlates with NF-kB
activation in GBM.19 Intriguingly, activation of EGFRwt by
EGF results in novel negative regulation of EGFRvIII with rapid
dissociation of the EGFRvIII-RIP1 signalosome, loss of NF-kB
activation, and subsequent formation of a complex of RIP1 with
the death adaptor FADD and caspase-8 that results in EGF-
driven cell death that requires the kinase activity of RIP1.19

Thus, RIP1 is also a key life/death switch in a major receptor
tyrosine kinase (RTK) signaling system that turns a normally tro-
phic signal into a death signal.

Other activators of NF-kB
In addition to the 2 major mechanisms of NF-kB activation

in glioma described above (aberrant EGFR signaling and NFKBI
deletion), a number of other mechanisms that can activate NF-
kB in glioma cells have been identified. For example, we reported
that TRADD, a key adaptor in TNFa-mediated activation of
NF-kB, is commonly expressed at high levels in GBM and con-
fers a worse prognosis.48 TRADD is required for TNFa-medi-
ated NF-kB activation in glioma cells. Additionally, GBMs have
a high frequency of deletion of chromosome 10, which contains
the TNAIP3 (A20) gene locus encoding a negative regulator of
NF-kB.49 Constitutive STAT3 activation in tumors maintains
NF-kB activation by sustained acetylation of p65.50 STAT3 was
shown to physically interact with the p65 subunit of NF-kB.51

Figure 1. NF-kB is upregulated and activated in GBM. (A) and (D) Strong staining for the p65 subunit of NF-kB signaling in formalin-fixed paraffin-
embedded sections from a GBM tumor. (B) and (E) Moderate staining for p65 in another GBM. (C) Weak staining for p65 in normal brain (cerebral cortex).
(F) Nuclear localization of the p65 subunit (arrows) in GBM.
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Interestingly, one study reports that the NF-kB downstream tar-
get IL-6 is able to activate STAT3,29 which suggests a feed-for-
ward loop in glioma. Astrocyte elevated gene 1 (AEG-1) has also
been reported to activate NF-kB in glioma cells.52 Interleukin-8,
NIP3 like protein X (NIX),53 Inhibitor Of Growth Family
Member 4 (ING4),54 and PH domain and Leucine rich repeat
Protein Phosphatases (PHPLPS)55 are among other stimuli
reported to influence NF-kB activation in glioma cells. Table 1
lists known activators of NF-kB in GBM.

NF-kB Activation Plays A Role in The Pathogenesis
of GBM and in Resistance to Treatment

NF-kB activation is widespread in cancer and there is substan-
tial experimental evidence suggesting its involvement in both
cancer development and resistance to treatment.56-60 NF-kB acti-
vation may be linked to the resistance of glioblastoma cells to O6-
alkylating agents.61-63 Various studies involving glioma-derived
cell lines and mouse models also clearly suggest a pathogenic role
for NF-kB in the regulation of gliomagenesis. Studies of TNFa-

induced NF-kB in a panel of
6 glioma cell lines confirmed
the presence of a p50/p65
heterodimer that controls cell
cycle progression.64 NF-kB
may influence proliferation
or invasion of glioma cells in
culture13,65,66 and NF-kB
activation has also been
implicated in the mainte-
nance of glioblastoma initiat-
ing stem-like cells.67 As
discussed previously, EGFR-
vIII-mediated activation is an
important driver of NF-kB.
Several studies have demon-
strated that inhibition of NF-
kB, either directly by silenc-
ing p65 or indirectly by
silencing Rictor or RIP1,
blocks EGFRvIII-mediated
oncogenicity in orthotopic
mouse models.19,32,47 As
described below, a number of
strategies to inhibit NF-kB
are effective in preclinical
models of GBM, further sup-
porting a key role for NF-kB
in the pathogenesis of GBM.
For example, RelB is a driver
of NF-kB that is expressed in
mesenchymal glioma and
RelB knockdown results pre-
vents tumor formation in
mice.21

Targeting NF-kB in Glioma

Glioblastoma is an intractable tumor that is resistant to cur-
rent treatment approaches. The main challenges in GBM treat-
ment may be the invasive nature of the tumor, which makes
complete resection of the tumor difficult; a dynamic tumor
genome; multiple pathways driving the malignant phenotype;
and the blood brain barrier, which limits the availability of drugs
to the tumor. Since the emergence of NF-kB as a driver of multi-
ple aspects of gliomagenesis and resistance to treatment the NF-
kB signaling network has become an attractive target for inter-
vention.59,68,69 Furthermore, a large number of drugs that target
NF-kB are available.70 Importantly, a number of preclinical
studies have documented that inhibition of NF-kB using various
strategies, including curcumin, non-steroidal anti-inflammatory
drugs, or antibodies, suppresses growth and chemoresistance
of human glioma cells.13,18,61,62,71-76 Sulfasalazine showed
promise in a mouse intracranial model, appearing to act via inhi-
bition of NF-kB, but was not effective in a clinical trial.18,77

Figure 2. NF-kB is activated in GBM as determined by phosphorylation of the p65 subunit of NF-kB. (A) and (C).
Strong staining for phospho-p65 in GBM. (B) Weak staining for phospho-p65 in normal brain (cerebellum).
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Anti-inflammatory drugs have also been used in combination
with other treatments but so far have not shown impressive
results78 although they appear to be safe.79,80 However, patients
were not stratified with respect to NF-kB status, and certain sub-
sets of patients may benefit from targeting NF-kB.

A number of other drugs that target NF-kB have shown
promise in preclinical studies either as single agents or in combi-
nation with temozolomide. Studies indicate that inhibition of
NF-kB may synergize with temozolomide to inhibit glioma cells.

Temozolomide is a first-line chemotherapy drug in the treatment
of GBM. It can cross the blood brain barrier and provides a mod-
est improvement in survival.81 A preclinical study reported that
BV6, a SMAC mimetic, sensitizes glioma cells to temozolamide-
induced death in a RIP1- and NF-kB–dependent manner.82

Niclosamide, a salicylanilide compound that may act in part by
inhibition of NF-kB, inhibits the growth of glioma cells; interest-
ingly, results of this study suggested that niclosamide synergizes
with temozolomide in glioma cells with NFKBIA deletion.83 Res-
veratrol, a natural phenolic compound commonly used in other
types of cancer, also inhibits NF-kB in glioma cells by inhibiting
mir-21,84 and embellin, a novel XIAP inhibitor, induces apopto-
sis in glioma cells by inhibiting NF-kB.85

Concluding Comments

As in other types of cancers, NF-kB has emerged as an impor-
tant regulator of the malignant phenotype in malignant glioma,
and in particular GBM. Important advances have been made
in identifying the genetic alterations that lead to deregulated

Figure 3. Major cytokine and growth factor receptor signaling pathways that activate NF-kB in GBM, including the EGFR signaling network. Most signal-
ing networks regulate the activation of IKKs, which in turn results in degradation of IKBa and the translocation of NF-kB subunits to the nucleus where
they initiate transcription of target genes.

Table 1. Regulators of NF-kB in glioblastoma multiforme

Regulator Mode of action Reference

EGFR, EGFRVIII Amplification, Mutation 8,19,20,27,28,52
IkBa deletion 8
TRADD Nuclear TRADD 29
A20 Deletion 30
Stat3 p65 acetylation 31
NIX p65 phosphorylation 35
ING4 p65 phosphorylation 36
PHPLPs I kappa B beta phosphorylation 37
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NF-kB activation in GBM. There is convincing evidence demon-
strating that NF-kB is activated in GBM and a number of studies
have elucidated the mechanisms involved in NF-kB activation in
GBM. EGFR signaling is an important driver of NF-kB activa-
tion in GBM and progress has been made in understanding the
mechanisms of NF-kB activation by wild type and mutant
EGFR. It has not been possible to determine whether NF-kB
activation is an early event in GBM, but it may have a role in the
maintenance of glioma-initiating stem-like cells. A large number

of preclinical studies suggest that the NF-kB signaling network is
a promising target for treatment in GBM. Whether targeting the
NF-kB network will prove effective in the treatment of patients
with GBM is an important question that may be answered in the
near future.
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