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Abstract

Persistence is a prime example of phenotypic heterogeneity, where a microbial population splits into two distinct
subpopulations with different growth and survival properties as a result of reversible phenotype switching. Specifically,
persister cells grow more slowly than normal cells under unstressed growth conditions, but survive longer under stress
conditions such as the treatment with bactericidal antibiotics. We analyze the population dynamics of such a population for
several typical experimental scenarios, namely a constant environment, shifts between growth and stress conditions, and
periodically switching environments. We use an approximation scheme that allows us to map the dynamics to a logistic
equation for the subpopulation ratio and derive explicit analytical expressions for observable quantities that can be used to
extract underlying dynamic parameters from experimental data. Our results provide a theoretical underpinning for the
study of phenotypic switching, in particular for organisms where detailed mechanistic knowledge is scarce.
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Introduction

The life of microorganisms is characterized by two main tasks,

rapid growth and proliferation under conditions permitting growth

and survival under stressful conditions [1]. One strategy to cope

with such varying environmental conditions is phenotypic

heterogeneity, the splitting of a genetically homogeneous popula-

tion into subpopulations that execute different strategies for

survival [2–4]. Phenotypic tolerance to antibiotics (persistence) is

a prime example of such phenotypic heterogeneity: When a

bacterial culture is treated with an antibiotic, typically a small

fraction of the population, the persisters, survives and allows the

culture to grow back once the antibiotic has been removed (Fig. 1),

thus making it difficult to eradicate the population [5–7]. The re-

grown culture remains susceptible to the antibiotic with the

exception of yet again a small fraction of persisters, indicating that,

in contrast to resistance, persistence is a phenotypic effect. Indeed

observations at a single cell level have shown that cell switch in a

stochastic fashion between the persister state and the normal state

[8]. Moreover these experiments have shown that persistence is

not an adaptive response to the antibiotics, but rather that

persisters are present in the population before the antibiotic

treatment [8] (there is however evidence that adaptive responses

also play a role in some situations [9,10]). The persister cells

present in the population before treatment were shown to grow

much more slowly than normal cells [8,11], indicating that

persistence while providing a fitness benefit (survival advantage)

under stress conditions also invokes a fitness cost under unstressed

conditions. Persistence is thus based on the coexistence of

subpopulations growing with different growth rates. Mechanisti-

cally, the formation of persisters has been linked to the expression

of chromosomal toxin-antitoxin systems [12–15], which are

believed to give rise to a genetic circuit that exhibits bistable

behavior resulting in subpopulations with different phenotypes

characterized by different growth rates [16–19]. Indeed, experi-

mental and theoretical studies of the coupling of gene expression

and cell growth indicate that such growth bistability should be

considered a rather generic phenomenon that can arise when gene

circuits modulate cell growth [17,20].

The molecular mechanisms for the generation of persisters are

currently a topic of very active research. Persistence has been

observed in a wide range of bacterial species [6,7,21], but on the

mechanistic level, so far relatively little is known for bacteria other

than the model organism E. coli. In the absence of detailed

mechanistic knowledge, the main window into persistence is the

study of the population dynamics upon antibiotic treatment, in

particular, the survival upon administration of the drug and the re-

growth of the population upon removal of the drug. Here we study

a theoretical model for this dynamics that was originally proposed

by Balaban et al. [8]. We make use of an excellent approximation

(based on the assumption that the rates of phenotype switching are

small, which is typically the case) to derive explicit analytical

expression for a number of observable quantities for several typical

experimental scenarios: constant environment, shift from growth

to stress conditions or vice versa and periodically switching

environments. Our analysis is similar to previous theoretical

studies on phenotype switching [22,23]. A small but important

difference to the systematic perturbative approach used in Ref.

[22] is that our theory is based on the approximation of small

phenotype switching rates (as compared to the growth and death

rates), while the approximation of Ref. [22] is based on long

durations of environmental durations, such that populations

structures reach their steady state before the environment changes.

The latter is not required in our approximation and our approach

thus allows us to study both short and long environmental

durations (while long durations are expected to be typical for the

natural environment, and thus appropriate for an evolutionary

comparison of different modes of phenotype switching, such as

stochastic and adaptive [22], short durations may be of

importance for some experimental situations, such as resuscitation
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experiments after short periods of antibiotic treatment). We also

note that while the mathematics of ours and the previous study are

closely related, the scope of the studies is different. Rather than

aiming at a general theoretical framework for phenotype switching

phenomena, our goal here is to obtain simple explicit expression

for measurable quantities. These expressions can be used to

analyze experimental data for population growth and decay to

provide insights into the mechanism of persistence based on simple

population-scale experiments. The key results that may be used for

the analysis of experimental data are summarized in a section

’Overview of key results’ directly after the description of the

model, while the remaining sections report the systematic analysis

of the population dynamics.

Model

We consider a bacterial population where an individual cell can

have two distinct phenotypic states (Fig. 1) which are characterized

by different sensitivities to given environmental conditions. The

environmental sensitivity is reflected in growth and decay rates of

the subpopulation in the given environment. For instance, in the

case of persister cell on which we focus, normal cells are more

sensitive to various stresses, i.e. they decay faster under various

stress conditions such as antibiotic treatment [8] and phage attack

[24], but also grow faster in unstressed conditions.

A cell in the normal state can switch to the persister state with

rate a and a cell in the persister state can switch back to the normal

state with rate b. The instantaneous switching between phenotypic

states leads to distinct subpopulation of normal and persister cells

which compose the total population. We denote the growth rate of

normal cells (n) and persister cells (p) by mm
n and mm

p respectively,

where m indicates the growth medium or, more generally the

growth conditions. Below we will use indices ’g’ and ’s’ to denote

unstressed growth and stress conditions, respectively (e.g., growth

medium not containing or containing an antibiotic). The resulting

population dynamics can be described by the following system of

equations [8],

dn

dt
~mm

n n{anzbp

dp

dt
~mm

p pzan{bp: ð1Þ

These equations are linear and their exact solution can be

obtained [8]. Below we will obtain approximative solutions based

on the assumption that the switching rates are small compared to

the growth rates, which allows us to derive relatively simple

explicit expressions for observable quantities.

Results and Discussion

Overview of key results
Before we embark on a detailed and systematic analysis of the

model defined by Eq. 1, we provide an overview over the results

that can be directly used for the quantitative analysis of

experimental data. In a given environment (growth medium),

the model as given by Eq. 1 has four parameters, the growth or

death rates of normal cells and persisters and the two switching

rates. While the growth or death rates can be measured directly,

the switching rates are not directly observable, because switching

occurs in individual cells and is also relatively rare. One way to

obtain the switching rates is from the fraction of persisters in a

population of cells. In particular, in a constant growth environ-

ment (medium without antibiotics), the population will grow

exponentially and after some transient period, the population

structure (the relative size of the subpopulations) will reach a

steady-state and the fraction of persisters in the population is

constant. In this situation, the persister fraction is found to be

given by

p

nzp
&

a

mn{mp

: ð2Þ

This result indicates that the persister fraction in an exponentially

growing culture is not determined by the two-way switching

between the two phenotypes. Rather, the balance is between

growth and one-way switching. Normal cells, which grow more

rapidly, outgrow the persisters, but they also replenish the persister

Figure 1. Phenotypic heterogeneity in a bacterial population. (a) Dynamics of heterogeneous population consisting of normal (white) and
persister (black) cells: The persisters survive the addition of an antibiotic, and allow the population to grow back after the removal of the antibiotic.
(b) Phenotype type switching: Cells stochastically switch between the normal and persister state with rates a and b.
doi:10.1371/journal.pone.0062814.g001
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subpopulation by switching to the persistent phenotype (the

analogous argument can be made for stress conditions, where

persisters outlast the normal cells and normal cells are re-

generated by back-switching). In conditions of unstressed growth,

switching of persister to the growing state has almost no impact on

the persister fraction. It becomes important, however, in non-

growing stationary phase cultures, which we discuss briefly below

by introducing a carrying capacity of the environment into the

model. In the absence of growth, the persister fraction is given by

p

nzp
&

a

azb
, ð3Þ

i.e. it is indeed determined by the balance of switching between the

phenotypes. This observation implies that even for constant

switching rates, the persister fraction increases as the cells enter

stationary phase (as shown in Fig. 2). No regulatory response of the

cells (to increase persister formation) is needed for this increased

persister fraction. An increase of the persister subpopulation is

indeed observed when cells enter stationary phase [7].

A second way to determine the switching rates is via the kinetics

of killing and re-growth upon addition or removal of an antibiotic.

As shown in Figs. 3(a) and (b), the total population typically

displays a biphasic behaviour under these conditions: Upon

addition of an antibiotic, a phase of rapid decay of these

population is followed by a phase of slower decay. The two

phases of the double-exponential decay can be interpreted as the

killing of normal cells and persisters, respectively. The time after

after which killing is slowed down (Ts) is related to the population

structure at the time of addition of the antibiotic and provides

another estimate of the switching rate a via

a&Dge{DsTs , ð4Þ

where Dg and Ds are the differences in growth and death rates,

respectively, between the normal cells and the persisters. Likewise,

upon removal of an antibiotic, the re-growth of the population is

delayed by a time Tg for which a similar relation is obtained, see

Eq. (24).

In the following sections we will derive these expressions

through a systematic analysis of the equations for phenotype

switching, Eq. (1), under conditions of a constant environment, in

reaction to an environmental shift and in periodically switching

environments. In addition to the quantities summarized here, we

will also obtain expressions for other quantities such as the growth

rate and address the existence of optimal switching rates that

maximize growth in periodic environments.

Dynamics in constant environment
Exponential growth. In a constant environment, i.e. for

fixed growth or death rates, the overall population grows or decays

exponentially at long times and the relative size of the

subpopulation becomes stationary. To study the fractions of the

two subpopulations in the population, it is instructive to consider

the time evolution of the subpopulation ratio f ~n=p, which is

given by

df

dt
~b{af 2zDmf ~{a(f {f

0
)(f {f �), ð5Þ

where

f �~
Dmz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Dm)2z4ab

q
2a

,

f
0
~

Dm{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Dm)2z4ab

q
2a

ð6Þ

and Dm~(mm
n {a){(mm

p {b). f � and f ’ are fixed points of Eq. (5):

f ’ is an unstable fixed point (which moreover can be negative) and

f � is a stable fixed point and always positive. Thus, the steady state

population ratio is given by f �.
In conditions of unstressed growth, Dm is positive. When the

switching rates are small compared to the growth rates, as it is

typically the case (Table 1), the steady state ratio can be

approximated by f �&Dm=a or

n�

p�
&

(mm
n {mm

p )

a
: ð7Þ

The last equation has a simple, but instructive interpretation: the

steady state population structure with a certain ratio of normal and

persister cells in conditions of unstressed growth is determined by a

balance of two processes: The fast-growing normal cells outgrow

the slow-growing persisters (with Dm&mm
n {mm

p ), but they also

replenish the persister population via switching to the persistent

state (with rate a). We linearize Eq. (5) around the fixed point f � to

determine the time scale in which the steady state is approached,

df

dt
&{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

mz4ab

q
(f {f �): ð8Þ

This equation shows that the subpopulation ratio f approaches the

steady state f � with rate (½(mm
n {a){(mm

p {b)�2z4ab)1=2, which,

Figure 2. Subpopulations in exponential and stationary phase.
Persister and normal subpopulation growth (with mg

n~2 hr{1 , mg
p~0:2

hr{1 , a~0:0001 hr{1 , b~0:01 hr{1) in an growth medium of carrying
capacity K~108 over a long period (50 hours). The inset shows the
time evolution of subpopulation ratio (p=n) from exponentially growth
phase to stationary phase. The dashed lines indicate the limits for
exponential growth and no growth discussed in the text.
doi:10.1371/journal.pone.0062814.g002
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for small switching rates a and b, is approximately equal to the

growth rate difference between the two subpopulations.

Likewise, the same approximation applied to stress condition

(with Dmv0), leads to the steady state f �&{b=Dm or

p�

n�
&

(mm
p {mm

n )

b
: ð9Þ

In this case, the steady state population structure is determined by

the balance of persisters outlasting the normal population (with

{Dm&mm
p {mm

n ) and reproducing it through phenotype switching

(with rate b).

The existence of a finite steady state in the subpopulation ratio

indicates a stable coexistence of the two cells types that grow (or

decay) with different rates. It is worth noting that such coexistence

is an effect of phenotype switching, as normally a faster growing

subpopulation will outgrow a slow-growing one, so that the

subpopulation ratio will approach either zero or infinity. Here

however, switching of cells between the two phenotypes that

correspond to the two subpopulations can replenish the slower-

growing (or faster-decaying) subpopulation and balance the

outgrowth effect.

So far we have only considered the subpopulation ratio or the

fractions of total population that belong to the two phenotypes.

Within the model of Eqs. (1), these fractions approach a steady

state, while the overall population always grows or decays

exponentially on long time scales. Thus, both subpopulations

grow or decay with the same average rate in the steady state,

which corresponds to the effective growth rate (or decay rate) of

the total population. The steady state growth rate of the total

population (mst) is obtained from Eqs. (1) by substituting Eq. (6)

and is given by

mst~
(mm

n {a)z(mm
p {b)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

mz4ab

q
2

: ð10Þ

We use again an approximation of small switching rates and

neglect terms of quadratic order in the switching rates (terms

proportional to ab). With this approximation the steady state

growth rate is simplified to

mst^mg
n{a ð11Þ

in unstressed growth (mg
n wmg

p w0) and to

mst^ms
n{b ð12Þ

under stress conditions (ms
n vms

p v0).

The comparison of these two approximate expressions shows

that the presence of persister cells causes a small reduction in the

steady state growth rate under unstressed conditions (of order a),

but leads to a significant reduction in the steady state death rate of

the total population under stress conditions as compared to a

population without any persister cells. Therefore one can expect

the presence of persister cells to be beneficial provided that stress

conditions do regularly occur.

In the following we will discuss the time evolution of the two

subpopulations in more detail. We start by considering a constant

environment. To solve the time-dependence of the coupled

equations in Eqs. (1), we make once more use of the approxima-

tion for small switching rates (D2
m&ab).

Figure 3. Biphasic killing kinetics. (a) Numerical integration of Eqs. (1) over a growth period of 15 hours (with mg
n~2 hr{1 , mg

p~0:2 hr{1) followed
by a stress period (with ms

n~{2 hr{1, ms
p~{0:2 hr{1) of another 15 hours. The switching rates were chosen to be a~0:001 hr{1 and b~0:0001

hr{1 . The killing curve of total population show two distinct phases, a fast-decaying phase and a slow-decaying phase. (b) Numerical integration of
Eqs. (1) over a stress period of 15 hours followed by a regrowth period of another 15 hours. The regrowth curve of the total population shows two
distinct phases, a slow-growing phase followed by a fast-growing phase. The parameters are the same as in (a).
doi:10.1371/journal.pone.0062814.g003

Table 1. Rates for switching between the normal and
persister phenotype.

organism

growth
rate mg

n

[hr{1]

growth
rate mg

p

[hr{1]

Switching
rate a (n?p)

[hr{1]

switching
rate b (p?n)

[hr{1] reference

E. coli 2 0–0.2 10{6{10{3 10{6{10{1 [8]

S. aureus 1.24 &0 10{5{10{3 10{2{10{1 [25]

doi:10.1371/journal.pone.0062814.t001
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If the constant environment is one of unstressed growth (with

Dmw0), the fixed points can be approximated by f
0
&0 and

f �&
Dg

a
. The differential equation for the subpopulation ratio (f ) is

thereby reduced to a logistic equation,

df

dt
~Dgf 1{

af

Dg

� �
, ð13Þ

where Dg~(mg
n{a){(mg

p{b). Its solution has the following form:

f (t)~
Dg

az(Dg=f0{a)e{Dg t
, ð14Þ

where f0 is the initial ratio of normal to persister cells.

For Dmv0, i.e. in stress conditions, a similar differential

equation like Eq. (5) is obtained for the time evolution of ratio of

the persister subpopulation to the normal subpopulation, w~p=n.

The differential equation of w has two fixed points w�&{Dm=b

and w
0
&a=Dm, of which w�~1=f � is stable. In this case, using the

approximation w
0
&0, we obtain

dw

dt
~Dsw 1{

bw

Ds

� �
ð15Þ

with Ds~(ms
p{b){(ms

n{a). With an initial ratio w0, the solution

has the form

w(t)~
Ds

bz(Ds=w0{b)e{Ds t
: ð16Þ

For large times, these expressions approach the steady state results

derived previously and given in Eq. (7) and Eq. (9), respectively. As

a consequence, under unstressed growth conditions, the effective

growth rate of the persister subpopulation approaches the growth

rate of the normal subpopulation in a logistic fashion and vice

versa.

The functional form of f (t) and w(t) derived here will be used as

the basis for our further analysis. Because of the symmetry

between the two cases, we will calculate quantities in only one

condition (growth or stress). The results for the other condition are

obtained by simultaneously exchanging symbols and indices

according to the rules g<s, f0<w0, a<b, and p<n.

Transition to stationary phase. The balance between

phenotype switching and outgrowing of one subpopulation by

the other that we have discussed above is intricately linked to the

exponential growth or decay of the total population. While

exponential growth phase is the main focus of our study, we want

to briefly address the case where the population reaches a

stationary phase due to a finite carrying capacity (K ) of the growth

environment, a typical situation in both natural habitats and in the

test tube. To this end, we modify the growth terms in Eq. (1) by

multiplying them with ½1{(nzp)=K �. We consider the case of

overall growth of the population, which is then described by

dn

dt
~mg

nn 1{
nzp

K

� �
{anzbp

dp

dt
~mg

pp 1{
nzp

K

� �
zan{bp: ð17Þ

Fig. 2 shows the time evolution of the two subpopulations for an

unstressed growth environment (i.e., with positive growth rates).

During exponential growth phase, the total population increases

exponentially with a stationary population structure as discussed

above. The persister fraction is given by Eq. (7), i.e. determined by

the balance of growth and persister formation. At long times,

however, the population size reaches the steady-state value

nzp~K . During the transition into stationary phase, the persister

fraction increases. In the long-time limit, the growth terms are

zero. The ratio between persisters and normal cells is then

determined not by a balance of one-way phenotype switching and

growth, but by a balance between switching in both directions,

given by an{bp~0. As a consequence, the ratio f is given by

f ~n=p&b=a. Using the parameters from Table 1, this indicates

that the persister level is several orders of magnitude larger in

stationary phase than than the corresponding value obtained for

exponential growth, Eq. (7). This result is consistent with the

observation that typically the fraction of persisters in the

population is larger in stationary phase than in exponential

growth phase (e.g., a 100-fold effect in E. coli) [7]. It is worth noting

that the increase in persister level is not due to increased formation

of persisters (which could for example be induced by stress

responses), but by the slow-down of growth that effectively changes

which processes dominate the population structure. The two

limiting cases, balance between growth and one-way switching and

balance of both way switching are indicated by the dashed lines in

the inset of Fig. 2. Note that the approach the the long-time limit is

rather slow due to the small switching rates.

Response to environment shift
Characteristic time scales of the population

dynamics. Next we turn to the dynamics after an environmen-

tal shift. Experimentally, one typically considers two situations

[4,8,25]: (i) a population that has been growing under unstressed

conditions for a sufficiently long time is exposed to an antibiotic or

(ii) a population that has been exposed to an antibiotic for some

time is shifted back to a medium without the antibiotic. In both

cases, one typically observes a biphasic dynamics. For instance, a

population exposed to an antibiotic typically shows biphasic decay.

Such kinetics is obtained as a consequence of the coexistence of

the two phenotypes and the time at which the global decay rate

changes provides an easily observable signature of phenotype

switching that allows to infer its microscopic parameters.

Fig. 3(a) shows a numerical example of such dynamics: Here

Eqs. (1) have been integrated to reach a steady population ratio

under growth conditions with a small persister fraction. At time

t~15 hours, the parameters were changed to those for stress

condition. After the shift to stress conditions (by the addition of an

antibiotic), the total population displays the biphasic decay

behavior. In the fast-decaying phase, the decay of the total

population is dominated by the death of normal cells, while in the

second, slower-decaying phase, the total population consists

predominantly of persister cells and the decay rate is governed

by the death rate of the persisters. The transition between the two

different phases occurs when both subpopulation becomes equal in

size, i.e. at a time Ts for which w(Ts)~1. Therefore, the transition

time (Ts) from the fast-decay phase to the slow-decay phase after

the shift to stress conditions or to antibiotic-containing medium is

given by

Population Dynamics of Bacterial Persistence
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Ts~
1

Ds

ln
Ds=w0{b

Ds{b
, ð18Þ

where 1=w0 is the initial ratio of normal cells to persister cells at the

time antibiotic treatment. During the growth phase, the normal

cells make up the majority of the population and persister cells

account for only a small fraction of the total population, which

means 1=w0&b. In the limit Ds&b, i.e. if the growth rate

difference is larger compared to switching rate, the exit time can

be approximated by

Ts&
1

Ds

ln
n0

p0
: ð19Þ

The expression for Ts shows that the population will exit sooner

from the fast-decaying phase if it has a large ratio of persister cells

initially. It shows that the longer survival or persistence of the

bacterial populations in antibiotic treatment depends on the

fraction of persister cells that the population has formed

beforehand as its survival strategy against unpredictable bad

conditions.

It is worth mentioning that the time Ts, which characterizes the

transition between the two phases of the decay of the total

population, is not the characteristic time for reaching the new

steady-state population ratio. The latter occurs later and is

characterized by a time T’s that can be determined as the

inflection point of the time-dependent decay rate of the normal

subpopulation (calculated below), which leads to

Ts
0~

1

Ds

ln
Ds

bw0

z1

� �
&

1

Ds

ln
Ds

b

n0

p0

� �
~Tsz

1

Ds

ln
Ds

b

� �
: ð20Þ

The last expression here shows directly that equilibration of the

population structure occurs later than the transition in the growth

rate. The delay between the two time scales is determined by a

balance between the two effects that dominate the population

structure under stress conditions [as in Eq. (9)], persisters taking

over the population by outlasting the normal cells and switching of

persisters to the normal state.

The re-growth of a population after the removal of the

antibiotic is also biphasic with an initial slow-growth phase

followed by a phase of rapid growth (Fig. 3(b)). The transition

between the two phases can be analyzed in the same way. The

transition time from the slow-growing phase to fast growing phase

is given by

Tg&
1

Dg

ln
p0

n0
ð21Þ

and depends on the initial persister subpopulation. Therefore, a

larger persister fraction under stress conditions (e.g. due to longer

exposure to the antibiotic) results in a delay in resuming the

maximum growth rate after the shift to conditions of unstressed

growth. As above, the steady state population ratio is reached at

the later time T’g, given by

Tg
0&

1

Dg

ln
Dg

a

p0

n0

� �
~Tgz

1

Dg

ln
Dg

a

� �
: ð22Þ

In both types of experiments, both times scales can be determined

experimentally, but Ts and Tg are much more easily accessible

than T’s and T’g, as they only require measurements of the total

population size, e.g. by colony counting, while measuring T’s or T’g
requires to determine the time-dependent persister fraction. We

note that the transition time Tg or Ts are closely related to the

"delay times" defined in Ref. [22]. In fact these delay times are

obtained from Tg or Ts by further approximating Dg&mn and

Ds&mp. The underlying picture of Ref. [22] is that after an

environmental shift, the population grows (or decays) exponen-

tially with a new growth rate after a delay during which the

population structure adjusts to the new environment. In contrast,

our analysis indicates that the new steady state of the population

structure is reached later than the macroscopically observable

delay or transition time.

If the subpopulation ratio has reached the steady state before

the shift from one environmental condition to the other, the

expressions for the time scales Ts and Tg can be further simplified

using Eqs. (19) and (21). As a result the transition times of total

population growth or decay can be expressed in terms of the

switching rates as

Ts&
1

Ds

ln
Dg

a
and Tg&

1

Dg

ln
Ds

b
: ð23Þ

With the exception of the switching rates a and b, all quantities

entering these equations are directly accessible though the time-

dependence of the total population size (as shown in Figs. 3(a) and

3)(b) and discussed below in more detail). Thus, the phenotype

switching rates can be determined from time courses of the total

population size in a set of two shift experiments: (i) a sufficiently

long period of of unstressed growth long followed by stress

(addition of the antibiotic) and (ii) a sufficiently long stress period

followed by a growth period (via shift to medium without the

antibiotic). Then, the switching rates a and b can be calculated

from the parameters of the growth (or decay) curves by inverting

the two equations above,

b&Ds e{Dg Tg and a&Dg e{Ds Ts : ð24Þ

Time-dependent growth rates. The numerical integration

of the population dynamics as plotted in Figs. 3(b) show that the

growth of normal subpopulation under unstressed growth

conditions is exponential with growth rate approximately given

by (mg
n{a), as obtained from our approximation for small

switching rates above. By contrast, the growth of the persister

subpopulation is biphasic and can be characterized by a time-

dependent effective growth rate _pp(t)=p(t). Note that this effective

growth rate describes the overall growth of the persister

subpopulation and includes the effects of persister proliferation

and of phenotype switching.

Alternatively, it can be characterized by the average of that

effective growth rate up to time t,

Smg
pT~

1

t

ð�t0z�t

�t0

_pp(t)

p(t)
dt: ð25Þ

The latter quantity has the disadvantage to depend on a

somewhat arbitrary initial time t0, but can easily be determined

experimentally from the overall increase of the persister subpop-
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ulation. The growth rate can be calculated from Eqs. (1) by

substituting n(t)~p(t)f (t), where f (t) is the time-dependent

subpopulation ratio that we have already calculated in Eq. (14).

Therefore, the average growth rate of the normal (n) and persister

(p) subpopulation over a growth period tg is

Smg
nT~(mg

n{a)

Sms
pT~(mg

n{a)z
1

tg

ln
af0z(Dg{af0)e{Dg tg

Dg

: ð26Þ

Likewise, the average growth rate for the normal (n) and persister

(p) subpopulation over a stress period ts is given by

Sms
pT~(ms

p{b)

Sms
nT~(ms

p{b)z
1

ts

ln
bw0z(Ds{bw0)e{Ds ts

Ds

: ð27Þ

Note that in both cases the effective growth rates growth rate of

both subpopulation approach the same value for large times ts or

tg.

Growth of the total population. Explicit expression for the

effective growth rate and the time evolution of the total population

can also be computed using the the results of analytical approach.

The time evolution equation of total population P(t)~nzp under

unstressed growth conditions can be expressed in terms of

subpopulation ratio f (t) as

d

dt
P~ mnz(mp{mn)

1

1zf (t)

� �
P: ð28Þ

The time dependent average growth rate of the total population in

a growth period tg is given by

Smg
PT~mg

nz(mg
p{mg

n)
1

tg

ð�t0z�t�g

�t0

1

1zf (t)
dt

~mg
pz

(mg
n{mg

p)

(Dgza)tg

ln
(Dgza)eDgtgz(Dg=f0{a)

Dg(1=f0z1)
, ð29Þ

where the last expression has been obtained by substituting the

explicit functional form of f (t).

Similarly, the average growth rate of the total population during

stress conditions is given by

Sms
PT~ms

nz
(ms

p{ms
n)

(Dszb)ts

ln
(Dszb)eDstsz(Ds=w0{b)

Ds(1=w0z1)
: ð30Þ

The above expression can be further simplified using again an

approximation for small switching rates (compared to Dg and Ds).

As a consequence f0&1, w0&1. Within this approximation, the

total population follows a double exponential dynamics both

during unstressed growth,

P(t)&p(t~0) e
m

g
pt

zf0 em
g
nt

� �
ð31Þ

and under stress,

P(t)&n(t~0) ems
ntzw0 e

ms
pt

� �
: ð32Þ

The dynamics of the total population is accessible to direct

experimental observations. These expressions can therefore be

used for the quantitative analysis of experimental killing curves or

regrowth experiments. By fitting such data with these expressions,

the growth (or death) rates and the initial fractions of the

subpopulation can be obtained [25].

Dynamics in periodically switching environment
Finally, we consider an environment that switches periodically

between growth and stress conditions. The duration of the

conditions are denoted by tg and ts (for a test of our approximation

in this case, see Text S1 and Fig. S1) To address the evolutionary

consequence of phenotype switching in varying environmental

conditions, we calculate the average growth of the population over

one environmental cycle. The average growth rate of the

subpopulation over one environmental cycle of duration tgzts

are given by

SmnT~
Smg

nTtgzSms
nTts

(tgzts)
ð33Þ

SmpT~
Smg

pTtgzSms
pTts

(tgzts)
: ð34Þ

In general, these expressions depend on the initial subpopulation

ratio during growth and stress. Here we are most interested in the

long-time behaviour, where the population sizes are periodic. In

that case, the effective growth rates of both subpopulations are

equal. Expressions for the growth rates for several cases are given

in Text S1.

Here we focus on the case, where both phases of the

environmental cycle are sufficiently long such that a steady state

of the population structure is reached in each condition. In that

case, the average growth rate is given by

SmT~
(mg

n{a)tg

tgzts

z
(ms

p{b)ts

tgzts

z
ln ( ab

DsDg
)

tgzts

: ð35Þ

It is tempting to speculate that the population might adapt

under such repeated environmental conditions to maximize the

average growth rate. The growth and killing rates of the normal

and persister cells are environment-dependent but the switching

rates can be tuned to maximize the average growth rate for a given

environmental periodicity [23,26], as shown in Fig. 4(a). (In a

more realistic description, the environment may be varying

stochastically rather than in a strictly periodic fashion. Here we

take this duration in our period environment as representative of

the typical duration of a cycle in a stochastically varying

environment, but note that in the stochastic case, extremes of

the duration, e.g. very short growth persiods or very long stress
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periods, may have additional impact.) The optimal values for a

and b can be calculated by maximizing above expression, which

leads to

1

aopt

~tgz
1

Ds

{
1

Dg

1

bopt

~ts{
1

Ds

z
1

Dg

: ð36Þ

The dominant term in the expression for the optimal switching

rates (36) are the environmental durations tg and ts. The

correction terms are in principle dependent on the switching

rates. As these expressions are valid for long environmental

durations, and thus small switching rates, this dependence can be

neglected. So the correction terms in this expression should

therefore be taken at zero switching rates. Alternatively, Eqs. (36)

can be interpreted as implicit equations and solved for the

switching rates. These expressions in Eq. (36) are similar to the

expression given by Kussel et al. [23], which indicates the

consistency between different theoretical approaches. Similar

results on the existence of such optimal switching have also been

obtained in a number of other previous studies [22,26,27].

It is worth noting that a maximum of the growth rate and thus

optimal switching rates are found only when the environment

changes very slowly, as shown in Fig. 4(b). This is different from

the behaviour described in previous studies [22,23], which focused

on the limit of long environmental durations. Approximations for

this limit cannot predict the growth rates for cases, where one of

the environmental durations is short (e.g., for very brief exposures

to antibiotics). Within our approximation this case can be

addressed. We find that if one of the environmental duration is

short, the growth rate decreases with the increasing phenotype

switching rate, which suggests that phenotype switching is

unprofitable under such conditions (see the expressions for cases

2 and 3 given in Text S1).

In our analysis, we have focused on exponentially growing cells,

but as mentioned already, in natural environments, growth is

usually limited by the carrying capacity of the environment, so we

want to briefly mention how the dynamics is affected by such

carrying capacity. We have shown above that, under constant

conditions promoting growth, the total population will eventually

reach the carrying capacity and that in this steady state the

subpopulation ratio is determined by the phenotype switching

rates, p=n~b=a (as shown in Fig. 2). In stress conditions, the

dynamics is unaffected by the environmental carrying capacity.

The dynamics in periodically switching environments depends on

whether the average growth rate (in the absence of a carrying

capacity) is positive or negative. In the case of net decay, our

analysis remains valid, as the carrying capacity is irrelevant. But if

there is net growth per environmental cycle, the population will

eventually grow to the carrying capacity during a growth period.

From then on, the population will oscillate between decaying away

from the maximal population size during the stress period and

growing back to it in the growth period. The long term growth

rate is zero in this case.

Concluding Remarks

One way bacterial population cope with environmental stresses

is by setting aside a small fraction of the total population, the

persister cells, in a slow-growing, but stress-tolerant phenotypic

state. These persisters provide a pool of cells from which the

population can recover via a phenotypic switch to the normal

growth state after the environmental conditions have improved.

Here we have analyzed a simple mathematical model to

understand the dynamics of phenotype switching. Typically, the

fitness cost associated with the switching of few normal cells to the

persister phenotype under growth-permissible conditions is small

compared to the fitness benefit of the presence of persister cells

under stress conditions. We have used an approximation valid for

small switching rates that allows us to obtain explicit analytical

expression for many quantities that are directly accessible to

experiments. Within this approximation, the population dynamics

is mapped to a logistic equation for the ratio of the population

fractions corresponding to the two phenotypes. For constant

environmental conditions, stable coexistence of the two subpop-

ulations that grow with different growth rates is achieved by a

balance between fast-growing cells outgrowing the slow-growing

Figure 4. Optimal switching rate. (a) The average growth rate over an environmental cycle is plotted as a function of the phenotype switching
rate (a~b) for different environmental durations (tg~ts~T ). The figure shows the existence of an optimal switching rate for a given cycle duration
(tgzts). (b) Existence of an optimal switching rate: Average growth rate as function of the switching rate (a~b). An optimal switching rate is seen for
slowly varying environment, but not if one environmental duration is short. The growth rates are the same as in Fig. 3.
doi:10.1371/journal.pone.0062814.g004
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ones and phenotype switching, by which the slow-growing

subpopulation is replenished.

We have then considered shifts between environmental

conditions as well as periodically switching environments. Specif-

ically, we have identified several characteristic time scales for

changes in the overall population growth or decay and for the

approach to a constant ratio between the two subpopulations.

Simple analytical expressions for these time scales provide a

window into the phenotype switching process and more specifi-

cally allow to determine the switching rates from population-scale

shift experiments [25], which are typically governed by double-

exponential population growth or decay. Finally, we determined

the average growth rates for a periodically switching environment.

If growth and stress periods have long durations, the phenotype

switching rates can be tuned for optimal growth of the total

population.

The results derived are based on the assumption that phenotype

switching is a stochastic process, independent of the environment.

This assumption may not always be valid, as in some cases,

persistence may also involve an adaptive response to the stress

conditions. One case, where this has been demonstrated is

persistence of E. coli cells upon treatment with the antibiotic

Ciprofloxacin, where persistence is actively induced via the SOS

response [9,10]. Analysis of such cases with our model would lead

to condition-dependent apparent switching rates. In such cases,

the model may be used as a ’null model’ to identify deviations from

the simple dynamics discussed here.

Finally, we want to emphasize that the analysis we have

developed here, can also be applied to other cases of ’growth

bistability’, i.e. cases of phenotypic heterogeneity, where geneti-

cally identical subpopulations grow with different growth rates.

One interesting case is bacterial competence, a program for

genetic transformation (quasi-sexual exchange of genetic material),

which is typically activated in only a subpoulation [3]. In this case,

it has been proposed that phenotypic heterogeneity provides a

evolutionary advantage in a homogeneous environment [28].

Recent studies of growth effects on various genetic circuits suggest

that growth bistability may be a rather generic consequence of the

coupling of gene expression and cell growth [17,20,29,30].

Supporting Information

Figure S1 Comparison of the approximation for small
switching rates with the exact numerical result. Steady-

state ratio of the normal to the persister subpopulation at the end

of an environmental cycle (T~tg~ts). The parameters are the

same as in Fig. 3.

(TIF)

Text S1 Average growth rate in periodic environmental
conditions, steady state ratio of subpopulations.

(PDF)
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