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Abstract: Hydrogels represent 3D polymeric networks specially designed for various medical
applications. Due to their porous structure, they are able to swollen and to entrap large amounts
of therapeutic agents and other molecules. In addition, their biocompatibility and biodegradability
properties, together with a controlled release profile, make hydrogels a potential drug delivery system.
In vivo studies have demonstrated their effectiveness as curing platforms for various diseases and
affections. In addition, the results of the clinical trials are very encouraging and promising for the use
of hydrogels as future target therapy strategies.

Keywords: hydrogels; drug delivery; target therapy; polymers; biocompatibility; in vivo
administration

1. Introduction

Hydrogels are three-dimensional (3D) polymeric networks, whose hydrophilic structure allows the
absorption of large amounts of water (thousands of times their dry weight) [1]. Hydrogels consisting
of synthetic polymers are currently gaining more interest than natural-derived polymers due to their
enhanced life-time, higher capacity to absorb water [2], improved mechanical properties [3] and
finely-tuned degradation [4]. Depending on their structure, hydrogels can be chemically stable or
easily degradable [5]. According to the type of cross-linking between the polymers, hydrogels can be
classified in physical, held together by non-covalent, reversible interactions and chemical hydrogels,
linked by non-reversible covalent bonds [4].

Their unique properties, including reliable biocompatibility, tunable mechanical and degradation
features, sensitivity to various stimuli and the ability to be easily conjugated with hydrophilic
and hydrophobic therapeutic compounds [4] has made them important candidates in biomedical
applications including drug delivery [6], tissue engineering [7–9], 3D cell cultures [10], in vitro
diagnostics and stem cell research [1] (Figure 1).

In the therapeutic area, drug delivery approaches require outstanding improvements in obtaining
safe transport systems in order to achieve the desired therapeutic effect and to avoid the side effects.
Biomimetic strategies involving polymers describe innovative industrial products orientated to target
therapy and controlled release. Hydrogels inspired design offer favorable conditions for therapeutic
compounds encapsulation and protection. Furthermore, they are becoming biological responsive
structures which ensure adequate biocompatibility and biodegradability.
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the starting material influence the formation of soluble branched polymer networks [12]. The 
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because most of the body tissues are composed of large amounts of water [25]. Swelling features of 
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2. Hydrogel Synthesis Methods

Hydrogel synthesis is an essential step in developing new structures with beneficial properties for
drug delivery action. The hydrogel structure is defined by the hydration of hydrophilic groups and
domains of the polymers involved. Therefore, these groups and their interconnected chains create
three-dimensional networks via crosslinking, avoiding their dissolution in the aqueous phase [2,11].

The standard synthesis procedures imply polymerization and crosslinking. These techniques can
happen in parallel in one step, or one after the other in multiple steps [2].

Polymerization process is part of the gelation process. The structure and the conformation of the
starting material influence the formation of soluble branched polymer networks [12]. The starting
material refers to polymer monomers, prepolymers, or hydrophilic polymers [13]. The monomers and
polyfunctional comonomers act as crosslinkers in network development. Sometimes polymerization is
generated by radical initiators [14,15] or photoinitiators [16,17] like irradiation [18–20].

Hydrophilic polymers are often used for hydrogel synthesis due to their biocompatibility [21,22]
in aqueous environments [23] and mostly due to their loading drug potential [24].

The swelling property of a hydrogel is significant for further use in medical applications because
most of the body tissues are composed of large amounts of water [25]. Swelling features of
various polymers are advantageous for functionalization with therapeutic agents. On the other
side, the effectiveness of such systems could consist of their capacity to deliver these agents without
side outcomes.

The crosslinker agent plays a significant role in hydrogel swelling [26] and degradation [27].
It influences the physical properties of the final hydrogel product [28]. Crosslinking methods imply covalent
or non-covalent interactions between polymer monomers providing elastic characteristics [2,11,29,30].
For this reason, two different types of hydrogels were identified: chemical gels based on covalent
interactions (Figure 2C) and physical gels based on non-covalent interactions [11] (Figure 2B).

On the other hand, there are factors involved in altering hydrogels assembly [31]. Chemical stimuli
(pH [32,33], ionic strength [34,35], solvent composition [36], and molecules [37]) (Figure 2A) lead to
permanent gels. Physical stimuli (temperature [38], electric field [39], magnetic field [40], light [16,41],
pressure [42]) (Figure 2A) determine the reversible conversion between un-swollen and swollen
state called phase transition. Biological stimuli (enzymes [43], antigens [44], and nucleic acids [45])
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(Figure 2A) affect the physical properties of the hydrogels like solubility [46]. These stimuli-responsive
polymers belong to the group of intelligent or smart materials [47,48].
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Figure 2. Stimuli sensitive hydrogels structural changes. (A) Stimuli categories: physical, biological
and chemical. (B) Physical hydrogels are non-covalently crosslinked and in an aqueous environment,
they swell. Under various stimuli presence, they undergo reversible structure modifications and release
the compound. (C) Chemical hydrogels describes covalently crosslinked formulation that swells in
aqueous conditions and then suffers reversible or irreversible alterations depending on stimuli presence
and crosslinking strength, which influence their discharge.

Smart polymers can form self-assembly structures through two significant procedures: using
peptide/protein materials or using hybrid systems containing minimum a synthetic macromolecule
and a peptide/protein motif [49]. Their synthesis includes supramolecular chemistry and the control
of the dynamic of supramolecular interactions and bonds for future media conditions [50]. Proteins
and peptides extend the system properties to degradability, stimuli-responsive phase transition, and
also biological molecules targeting [51]. Such smart hydrogels own convenient characteristics for
drug delivery systems through their structural, morphological, and functional modifications occurred
due to stimuli detection [52]. These modifications ensure a time-dependent controlled release of the
therapeutic agent with long circulation time converging to minimal side effects [53].

3. Classification

Hydrogels can be classified considering different parameters like: polymer origin, ionic charge
and biodegradability [54].

According to the polymer origin, the hydrogel composition can be synthetic, natural or it can
contain both synthetic and natural polymers and is called hybrid [55]. Lately, the synthetic hydrogels
are preferred due to their high water absorption properties, long life, and also a variety of chemistry
which confers better strengthens and resistance in different conditions [2].

Ionic charge influences the uptake of the charged drug molecules. A positively charged hydrogel
will embed and release negatively charged low molecular weight molecules [56]. Furthermore, the
ionic charged hydrogels have implications on cellular interactions and behavior [57].

Biodegradable hydrogels need to meet some specific features as biocompatibility and adaptability
to various media conditions and preparation procedures. Such hydrogels are potential candidates for
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drug delivery applications because of their flexibility. Biodegradation process describes a chemical
decomposition of a complex hydrogel into a simple structure through solubilizing or hydrolysis
dictated by various external stimuli like pH, ionic strength, temperature or enzymes [27]. Therefore,
these hydrogels can be divided into chemical, physical and biological stimuli responsive categories.

Otherwise, non-biodegradable hydrogels offer multiple possibilities for tissue engineering
applications by encapsulating growth factors, proteins [58]. Other medical fields that are exploiting
these type of hydrogels are plastic and reconstruction surgery, orthopedic implants, ocular lens, and
microfluidic devices [59].

Table 1 summarizes important classes of hydrogels and their properties and applications.

Table 1. Hydrogel classification according various parameters, their properties and corresponding
applications.

Parameter Hydrogel Type Hydrogel Composition Properties Applications

Chemical
stimuli

pH responsive

Carboxylated agarose/tannic acid
hydrogel scaffolds cross-linked with

zinc ions [60]
Poly(acrylamide-co-acrylic acid)

poly(AAm-co-AAc) hydrogels [61]

Sustained release of the
incorporated drugs [60]

Biocompatibility [60]
Strong electrostatic

interactions and stability [61]
Increased hydrophilicity and

swelling [62]

Drug delivery [54,60]
Sensing [63]

Ionic strength
responsive

2-acrylamido-2-methylpropane
sulfonic acid crosslinked with

N,N’-methylene(bis)acrylamide [34]
Poly(N-isopropylacrylamide)

crosslinked with
imidazolium-based dicationic ionic

liquid [64]

Increased swelling
properties [34]

Controllable porous
structure [34]

Biodegradability [65]

Depollution of
aqueous ecosystems

[64]
Drug and gene

delivery [47]
Tissue engineering [47]

Solvent
composition
responsive

Fluorenylmethoxycarbonyl
diphenylalanine [36]

Poly(N-isopropylacrylamide) and
poly(N,Ndimethylacrylamide)

mixtures [66]
Poly(N-isopropylacrylamide)

[67,68]

Uniform networks [36]
Swelling behaviour

responsive to temperature
too [66]

High porosity,
Heterogeneous structure [67]

Sensing [68]

Molecules
responsive

N-isopropylacrylamide crosslinked
with

N,N′-methylenebis(acrylamide) [69]
Acrylamide crosslinked with

polyethylene glycol [70]

Achieves molecular
recognition, High affinity

and specificity [71]
Controlled assembly [72]

Controlled release [43]
Enzyme responsive [70]
Antigen responsive [69]

Sensing [73]
Drug delivery [37]

Cell culture [72]

Physical
stimuli

Temperature
responsive

N-trimethyl chitosan chloride
polymers crosslinked with
poly(ethylene glycol) and

glycerophosphate [74]
Poly(N-vinylcaprolactam) grafted

with poly(ethylene oxide) [75]
Poly(N-isopropylacrylamide) and

aminated alginate [76]
Poly(N-vinylcaprolactam) [77]

Methoxy poly(ethylene
glycol)-poly(pyrrolidone-co-lactide)

[78]

Two categories: low critical
solution temperature [74]
and upper critical solution

temperature [75]
Sol –gel transition at 37 ◦C

[79]
Easy functionalization with
drug molecules [80] Unique
physical properties similar
to extracellular matrix [81]

Controlled degradation [76]

Tissue engineering
[76–78,82], Drug
delivery [80,82]

Electric field
responsive

Polypyrrole polymeric
nanoparticles loaded in poly

lactic-co-glycolic acid and
poly(ethyleneglycol) hydrogel [83]

Controlled release of the
cargo [84] depending on the
strength or the duration of
applied electric field [83]

Biocompatibility, Minimal
invasiveness [83]

Drug delivery [84]

Magnetic field
responsive

Hemicellulose crosslinked with
O-acetyl-galactoglucomannan [85]

Gelatin hydrogels loaded with
magnetic nanoparticles [86]

Successful absorption and
controlled release of drugs

[85]
Some of them dispose of

anisotropic properties [87]

Tissue engineering [86]
Microfluidics, drug
delivery, contrast

agents [88]
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Table 1. Cont.

Parameter Hydrogel Type Hydrogel Composition Properties Applications

Physical
stimuli

Light
responsive

Hydroxypropyl methylcellulose
and Carbopol hydrogels

containing diclofenac-sodium
chitosan microspheres [89]
Poly[2-((4,5-dimethoxy-2-

nitrobenzyl)oxy)-N-(2-
(methacryloyloxy)ethyl)-N,
N-dimethyl-2-oxoethan-1-

aminium] [90]

Reasonable strengthens
according to application [89]
Reversible and irreversible,
Spatiotemporal control over

functional groups,
Controlled release [91]

Drug delivery [89]
Self-sterilization and

self-cleaning [90]
Microfluidics [92]

Pressure
responsive

Polyacrylamide and
poly(acrylamide-hydroxyethyl

methacrylate) [93]

Thermo- and pH sensitive
[94]

Adhesion capacity, elasticity
[93]

Sensing [95]
Drug delivery [96]

Polymer origin

Natural

Nanofibrillar cellulose [97]
Thiolated gelatin-poly(ethylene

glycol) diacrylate [98]
Methacrylated gelatin [99]

Polycaprolactone sandwiched in a
gelatin-chitosan hydrogel [100]

Biomimetic and adhesion
capacity [101]

Mechanical support for cell
development [102]

Tissue engineering
[101,103,104], Drug

delivery, Sensing [102]

Synthetic

Low acyl gellan gum bilayered
hydrogel scaffolds [105]

N-isopropylacrylamide and
itaconic acid [106]

Poly(ethylene
glycol)—poly(propylene glycol)

copolymers [107]

Controllable structure and
other physico-chemical

properties [102]
Stimuli responsive [106]

Drug delivery [106]
Tissue engineering

[108]

Hybrid

Alginate-polymethacrylate [109]
Chondroitin sulfate and

poly(ethylene glycol) [110]
Chitosan/hyaluronic acid

hydrogels loaded with poly
(lactic-co-glycolic acid)

microspheres [111]

Biomimetic capacity [109]
Multicomponent [112]

Heterogeneous composition
[113]

Responsive to environment
changes [114]

Tissue engineering,
drug delivery [112]

Wound-healing [111]

Biodegradability

Biodegradable
Chitosan-gelatin [115]

Pectin-co-poly(methacrylic acid)
[116]

Stable and biocompatible
[116]

Biomimetic capacity [117]
Natural and synthetic

polymeric structure [117]
Stimuli responsive [118]

Drug delivery [116]
Tissue engineering

[117]

Non-biodegradable

Poly(2-hydroxyethyl
methacrylate) [58]

Poly(2-hydroxyethyl
methacrylate)/trimethylolpropane

trimethacrylate [119]

Biocompatibility [58]
Sustained release and

recharge [119]

Tissue engineering [58]
Drug delivery [119]

Plastic and
reconstruction surgery

[120]

4. Hydrogel Functionalization with Therapeutic Agents

Crosslinking synthesis methods make possible the functionalization with drugs and other
therapeutic agents in order to develop new delivery systems [121]. The hydrogel design describes
cross-linked polymers and meshes that allow compound solution loading and diffusion. When
functionalizing, the size of the meshes is to be taken into consideration [122]. This procedure can be
performed at two different times of hydrogel synthesis: at the beginning by mixing the drug with the
other reagents or at the end after hydrogel is done [29]. In situ loading method suits for hydrophilic
drugs and is based on dissolving the drug into the water together with the polymer powder. The other
technique is called post-loading and refers to dry hydrogel films immersion into drug solution for
a certain period of time. In both of these cases, after drug incorporation, the hydrogel has a dried
state and confers protection. In addition, cross-linkers are essential factors in controlled release of
high or low molecular weight therapeutic agents, and in most cases the degradable cross-linkers are
preferred [56].



Pharmaceutics 2019, 11, 432 6 of 24

Wong and Dodou, 2017, synthesized poly(ethylene oxide) hydrogels cross-linked with
pentaerythritol tetra-acrylate using ultraviolet light for cross-linking reaction. These hydrogel films
were loaded with various drugs (lidocaine hydrochloride, diclofenac sodium and ibuprofen) using
post-loading and in situ loading methods. The study results revealed that in situ loading procedure
was more successful regarding drug encapsulation [123].

Prince et al., 2019, used in situ loading technique for thermoresponsive poly(ε-caprolactone-co-
lactide)-block-poly(ethylene glycol)-block-poly(ε-caprolactone-co-lactide) hydrogels functionalization
with celecoxib. PEG’s length affects hydrogel loading capacity and 2000 g/mol was found to be the
optimal length for drug delivery applications [124].

Many drugs and small molecules, especially the hydrophobic ones, can be encapsulated in order
to enter the gel for further medical applications. For instance, many nanosystems (metallic [125],
lipid [126], polymeric [127], peptides [128]) are used for targeted delivery [129]. Nanoparticles are
fashioned to ensure drug pharmacokinetics and pharmacodynamics [130].

The use of nanoparticles can help the crosslinking reaction by adsorbing or attaching to polymer
chains [131], but also they can modify the hydrogel assembly properties [132]. Due to the porous
hydrogel structure, nanoparticles are easily embedded within a polymeric 3D network. This aspect is
mandatory for achieving controlled release profile and can impede in choosing the right nanoparticles
for drug molecules delivery, respectively those for hydrogel functionalization [133]. Other nanoparticle
physico-chemical properties like size, polydispersity index, and spatial orientation inside the gel need
to be carefully adjusted [134].

High loading capacity combined with controlled drug release and prolonged stability, will
represent advantages for the newly designed system [135].

Nanoparticle functionalized gels can perform targeted drug delivery in different ways:
passive [136], stimuli-responsive [137], site-specific [138] or detoxification manner [139].

5. Characterization Methods

When considering hydrogel characteristics usually investigated, the typical protocol will most
probably compose of two kinds of tests: structural and functional. For structural analysis, an assortment
of microscopy techniques have become, to a degree, the golden standard. As hydrogels are three
dimensional, commonly optically clear, materials, conventional bright field microscopy is sparsely
used. By far, the most common technique is Scanning Electron Microscopy (SEM). An extensive review
of morphological characterization of hydrogels has been recently published [140], and it implies that
an SEM is a go-to instrument for hydrogel characterization regardless of composition. SEM imaging
does require specialized sample preparation instrumentation, but the methodology was standardized
to most gel types. Briefly, formalin fixed samples are dehydrated and freeze-dried, followed by either
Au or Au/Pd sputtering under vacuum before imaging [141]. Newer protocols forgo the fixation and
dehydration steps [142] even though there is evidence that liquid nitrogen snap freezing followed by
freeze-drying induces gel shrinkage and incorrect evaluation of pore size [143,144]. SEM is generally
used to asses pore formation and pore size [145], crosslinking status [146] and the effect certain loading
compounds have on general gel structure [147].

While SEM does provide valuable qualitative information, alternatives do exist and can
potentially provide complementary information to the limited capacity of regular SEM of generating
two-dimensional projections. Laser scanning confocal microscopy (LSCM), used in combination with
fluorescent dyes is capable of generating Z-stacks to evaluate similar aspects (i.e., pore dimensions
and shape) to SEM [140,148]. Where LSCM shines is the complementary characterization capacity
it has. Hydrogel loading and unloading of solutes [149], dispersion and mobility of the solute [150]
or distribution of solid loading materials [151] are tested with the condition that the solute (or other
compounds of interest) is fluorescent or can be spiked/bound to a fluorescent marker. Structural
characteristics, along with mechanical proprieties, can also be observed by different variations of
Scanning Probe Microscopy. It was proved that the elastic modulus of the gel correlates is correlated
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with cell differentiation [152] and migration [153]. As the modulus of the hydrogel correlates with
the degree of polymer cross-linkage [154] and cross-linkage to solute mobility through the gel [155],
Atomic Force Microscopy is a powerful multimodal analysis tool in the characterization of hydrogels,
allowing not only topological and roughness investigations but also functional ones. Of course, all the
techniques presented can be used in parallel or correlatively to offer complementary information or
potentially highly specific characteristics such as individual pore mechanics [156].

Functional analysis is paramount to understanding the effects that solute/external stimuli have
on the hydrogel. The most important ones seem to be: absorption capacity and rate, absorbency
under load, lowest solute, and extra monomer level, pH, and photostability [2]. Drug release from
the hydrogel is usually a function of the diffusion capacity of the drug and the retention capacity
of the gel. This is most commonly measured by dynamically probing the concentration of the drug
in the medium of interest and plotting the concentration against a certain time interval or as a
percentage. The actual analysis is highly dependent of the nature of the tested compound and can
range from HPLC for peptides [157], electrochemical probing for gases such as H2S [158] or various
fluorescence/colorimetric/absorbancy tests.

The controlled release can be achieved through various strategies based on hydrogel composition
and properties. For instance, there are some molecules that can initiate and enhance the degradation
rate [159,160]. Matrix-metalloproteinases family members can cleave the oligo-peptide bonds [161].
Other examples are represented by glucose [162] and thrombin [163], which are playing important
roles in physiological processes. On the other hand, external stimuli [164,165] can determine hydrogel
networks disruption. Hydrogels swelling capacity is an important target for the sustained release
mechanism [166] and is also influenced by stimuli sensitivity [167].

In addition, hydrogel mechanical deformation using magnetic field or ultrasounds is a very
common procedure. In this regard, Liu et al., 2006, proposed an intelligent magnetic hydrogel loaded
with drug molecules capable of tunable controlled release profile time dependent [168]. Ultrasound
guided drug release approach was digitally integrated into ionically crosslinked hydrogels [169].

Many mathematical models are used for predicting the drug delivery efficiency of polymeric
hydrogels. These determinations are based on mesh size, mechanical, mass-transport and diffusion
behavior using hydrodynamics, obstruction, free volume and combined theories [166,170].

6. In Vivo Biocompatibility and Biodegradability

In order to compare and investigate the effects of hydrogels in vivo, it is necessary to evaluate
its biocompatibility, since living organisms are prone to develop inflammatory reactions which are
facilitated by the degradation of the synthetic polymers [171]. As stated in a review by Naahidi et al.,
hydrogel toxicity and biocompatibility is dependent on the breakdown of the polymer into monomers
or oligomers, the crosslinking agents or trace polymerization agents [172]. Besides achieving favorable
hydrogel formulations for drug delivery, the main challenges are performing toxicity screening [173],
maintaining long-term stability, and controlling the release properties of the therapeutic agents.
One favorable aspect of hydrogel research has been its longevity. The over 100 years of research
have produced gel-like biopolymers with low toxicity and high biocompatibility, especially those
derived from natural molecules such as collagen, chitosan, fibrin, and hyaluronic acid [174]. However,
while previous in vitro studies have shown promising results regarding the biodegradability and
biocompatibility of these compounds, further in vivo studies are necessary at this point [175].

7. Hydrogel Administration

As mentioned above, a complex problem regarding the administration of various biomaterials
in vivo reflects the ability of the material to conserve and promote a biologically safe environment for
the subjected animals. In vivo testing is challenging because there still is a need for an established
and reliable animal model in order to achieve biomechanical restoration. Following these standards,
different injectable hydrogels protocols were developed and optimized, which because the body very
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well tolerated them, are ideal candidates for performing in vivo testing on rodents [176]. Given the fact
that these delivery systems are suitable for clinical use, the most accessible routes of administration
are subcutaneous [177], oral [178], rectal [179], topical and transdermal [180], orthotopic [181],
intraperitoneal [182] and ocular [183]. Figure 3 represents all these administration routes.
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in vivo administration of hydrogel based products depending on the pathological conditions and their
localization. Subcutaneous injection plays a crucial role in toxicological effects evaluation. Topical
or transdermal application is preferred for skin associated problems. Orthotopic and intraperitoneal
injections are non-invasive techniques which ensure good therapy results. On the other hand, oral
administration has some limitations because of digestive enzymes.

7.1. Subcutaneous Hydrogel Delivery System

One of the most efficient methods to evaluate the response to the therapy and assessing the
toxic response in vivo in mice is performing a subcutaneous injection. Since the subcutaneous area is
vascularized, the implanted hydrogels or other biomaterials are immune privileged, so a mild reaction
to foreign moieties is to be expected [176]. Bare polyethylene hydrogels have been proven to not
exhibit cytotoxicity in murine models even after 60 days when injected subcutaneously [184]. Similar
results regarding biocompatibility were obtained with ellagic acid hydrogels [185], nano-patterned
poly-acrylamide hydrogels [186] chitosan and gelatin hydrogels [187,188], alginate [189] and pectin [190].
It is worth mentioning that the majority of the studies do report mild inflammatory responses.

7.2. Oral Delivery

The oral delivery route represents by far the most convenient solution under adjustable parameters
and patient compliance [191]. Orally administered hydrogels should provide bioavailability depending
on medium particularities, such as pH variations along the intestinal tract [192]. MPEG, caprolactone
and, itaconic acid pH-sensitive hydrogels were tested for acute oral toxicity in BALB/c mice and showed
no signs of toxicity [193]. When considering oral ingestion, the metabolic effect that monomers have
on the organism is very significant. Poly-glycolic and poly-lactic-co-glycolic acid hydrogel degradation
have been shown to affect healthy metabolism [172], leading to some limitations in terms of hydrogel
therapy such as:

1. Presence of digestive enzymes could lead to denaturation;
2. Low permeability through the epithelial membrane into the bloodstream;
3. Superior and inferior digestive systems can represent potential therapeutic targets [194].
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7.3. Rectal Delivery

Rectal administration offers plenty of advantages such as rapid absorption of the compound,
avoidance of the gastrointestinal tract, limited adverse reactions of the therapeutics, and provides
controlled release of the compound in the context of the stable environmental conditions encountered
in the rectum. Based on an earlier study that showed excellent biocompatibility on the digestive
tract [195], rectally administrated catechol-chitosan- based hydrogels with mucoadhesive properties
have been tested in murine models and show no toxic effects after 10 days [196]. Regarding this issue,
Afaf A. et al., developed a hydrogel-based product and made a correlation between in vitro and in vivo
profile with promising results [179].

7.4. Topical and Transdermal Delivery

Hydrogel therapy is suitable for the topical and transdermal approach. Nowadays, the general
concept about nanosystems in the context of skin penetration is that the skin barrier restricts the
delivery via epidermis and dermis. In truth, hydrogel penetration through the skin seems unlikely as
the macroscale mesh-like structure would prohibit penetration and has been shown, in the case of
collagen hydrogels, to not even affect burn models [197]. Various alternative hydrogel formulations
are commonly tested on graft donors with no discernable side effects compared to other gel-based
formulations commonly used in hospital environments [198]. Recent studies demonstrated that this
method of delivery is reliable as a delivery system for nanoparticles with various roles, and it only
depends on nanoparticles diameter, charge, and structure. The coating influences the penetration rate.
Peptide layered nanocarriers are more efficient than pegylated ones. Ex vivo studies were carried out,
using skin samples collected from mouse and human through surgical resection [199].

7.5. Orthotopic Injections

Administration of hydrogels via intratumoral injection is a practical approach, which requires
the release of the nanostructure system loaded in a hydrogel matrix. These hydrogel structures are
so-called “macroscopic gels” that are coming with the imperative need to decrease potential damages
of associated tissues during an injection [200]. Qinjie Wu et al., 2015 synthesized a smart hydrogel
responsive to temperature, which prevented the formation of peritoneal adhesion on a damaged
abdominal wall [181]. Where orthotopic treatment using hydrogels seems to show promise is in the
post-resection cavity where it can act as a slow release to improve long term survival [201,202].

7.6. Intraperitoneal Delivery

Intraperitoneal administration of hydrogel systems shows promising results and is considered to
be a noninvasive option, as well as an optimal formulation for various pharmaceutical agents. One of
these structures was prepared by Chih-Hao Chen et al., in 2018 and was successfully incorporated in
the mouse peritoneum achieving dual action: drug delivery and postoperative anti-adhesiveness [203].
Similarly to orthotopic injected hydrogels, intraperitoneal hydrogels (mostly gelatin based gels) by
themselves show no cytotoxicity and high degrees of biocompatibility [204]. It is worth mentioning
that the capacity of the gels to absorb high amounts of water could be detrimental in the case of any
injectable formulations [182].

7.7. Ocular Delivery

Formulations for ocular delivery are complicated to develop; several implications are creating
limitations like inferior bioavailability and absorption [183]. Eye topical applications can be performed
but with minimal disease addressability. Delivering therapeutic agents in maximum concentrations
needed in the posterior segment encounters failure in most of the cases [205]. However, for a better
approach of the posterior segment, intraocular injections are more operative, but in this case, ocular
complications are the primary concern. There are still other approaches like intravitreal, intracameral
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or peri-ocular injections, but with a significant risk of side effects [206]. Improvements in protocols
alongside adaptations of in vivo performance for sustainable results are needed. The standard
hydrogels used for contact lenses (silicone and polymethylemethacrylate) are, however, generally
highly biocompatible with almost 50 years of results proving it [207]. Some issues with silicone
hydrogels causing eye inflammation have been reported [208] but, the only specific limitation to
capable hydrogel based therapeutics seem to be those mentioned above.

7.8. Tissue Engineering and Bone Repair

Innovative biocompatible and biodegradable injectable hydrogels have been synthesized for
cartilage and bone tissue [209], vascular tissue, skin, and other soft tissues engineering [210]. In this
regard, the viscosity of the hydrogel plays a significant role together with sol-gel transition in specific
physiological environment [210].

The injectable systems have the flexibility to fill irregular-shaped defects and offer the possibility
to reduce surgical invasion [211]. Significant current research strategies have been reported regarding
the use of autografts in bone implantation therapy, due to the advantage of minimized rejection
rates [212]. Recent attempts have been made in injectable bio hydrogels (collagen [213], chitosan [214],
gelatin [215], cellulose [97]) in cell-based therapies to increase biomimetic capacity. For instance, Park
and Lee developed an oxidized alginate/hyaluronic acid hydrogel construct and tested it together with
chondrocytes in vivo on mice, and obtained positive results on cartilage regeneration [216].

Among these, stem cell delivery systems are focusing on microfluidics to avoid microenvironment
interactions. Various hydrogel constructs like microspheres were fromulated for stem cells
encapsulation. For example, Zhao et al., 2016, synthesized light responsive hydrogel microspheres
made by gelatin and methacryloyl chloride. Bone marrow-derived mesenchymal stem cells were
encapsulated using post-loading procedures and then tested in vivo on rabbit femoral condyle animal
model following orthotopic implantation protocol. This microfluidic approach demonstrates the
feasibility of this method in osteogenesis [217].

In situ gel forming tissue implants are suitable for transplantation during invasive surgeries
directly into defects. The difficult regeneration of articular cartilage represents a very challenging
problem. Due to the fact that this tissue is not presenting vascularization, the immune response is absent
and it allows the use of allogenic constructs in the context of tissue engineering matter. Perrier-Groult
et al., 2019, implemented a protocol for subcutaneous administration of agarose hydrogels embedded
with human chondrocytes in order to promote their differentiation to cartilage matrix. In this regard,
humanized mouse models are preferred for the evaluation of such implants acceptance [218].

Considering the aspects mentioned above, when choosing the experimental design for in vivo
studies using murine models, the age of the animal should be considered because it can influence the
outcomes through various metabolic pathways involved in hydrogels degradation and clearance [175].

Regarding hazard assessment, many different hydrogel systems aim to deliver the therapeutic
agent in a controlled manner for better effects at the target site [219]. In a general approach to a pathology,
orthotopic murine models simulate clinical conditions with better accuracy than cell line-based models,
due to proper exposure to a microenvironment that is more similar to the pathological status in
human [220]. Therefore, orthotropic animal models should be implemented in order to improve the
response to therapy significantly.

8. Clinical Trials

Bringing together the advantages of a biocompatible hydrogel with the therapeutic effect of various
molecules provides new efficient configurations adapted for medical devices development. Polymer
science is holding up the attention of scientists because of the promising properties of biomedical
clinical applications.

In the last decade, an increasing number of clinical trials investigated the use of hydrogel
structures for drug delivery systems. According to ClinicalTrials.gov, over 300 completed studies are

ClinicalTrials.gov
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presenting encouraging results for hydrogel use with significant applicability in visual disorders and
dermatological affections. Table 2 emphasizes prominent examples of such products.

Table 2. Different completed clinical trials using hydrogel based products (ClinicalTrials.gov).

Condition Product Benefits Reference

Prostate cancer
radiotherapy Hydrogel spacer

Minimal side effects and toxicity
Improves rectal dosimetry

Reduces the rates of rectal toxicity
[221,222]

Gynecologic
laparoscopic surgery

Crosslinked
hyaluronan gel

Safety use
Minimizes postoperative adhesion

formation throughout the
abdominopelvic cavity

[223]

Corneal epithelial
permeability Silicone hydrogel

contact lenses

Improves epithelial permeability when
used with ophthalmic solutions [224]

Corneal infiltrates

Identification of bacterial species during
continuous wear of contact lenses

Improved cornea response to contact
lenses

[225,226]

Myopia Good ocular comfort
High oxygen transmissibility [227]

Dry eye syndrome

Crosslinked
hyaluronic acid with

liposomes and
crocin

Safety profile
Promotes re-epithelialization [228]

Urinary incontinence Polyacrylamide
hydrogel

Facilitates urinary incontinence
symptoms for patients that are

ineligible for midurethral sling surgery
Low rate of adverse effects

[229]

Cerebrospinal fluid
leak Fibrin sealant Efficient adjunct to dural sutures repair

Safe profile [230]

Diabetes, foot ulcer Hydrogel/hydrocolloid
Promotes wound healing

Confers protection
Stimulates epithelial migration

[231]

Intracranial aneurysm Hydrogel coils
Efficient endovascular coil embolization

Safe profile [232]

Cerebral aneurysm Improves aneurysm packing
Decreases major recurrence [233]

Submucosal tumor of
gastrointestinal tract Calcium-alginate gel No adverse events and no tissue injuries

Increases mucosa-elevating capacity [234]

Oral mucositis Mucoadhesive
hydrogel

Safety profile and tolerability
Reduces oral mucositis symptoms [235]

Myoma Resorbable hydrogel
Safety and efficacy

Reduces post-operative adhesions
formation following myomectomy

[236]

Pulmonary
emphysema Fibrin hydrogel

Safe profile and no major adverse effects
Promotes the formation of scar tissue

Improves lung function
[237,238]

Lung cancer biopsy Hydrogel plug
Reduces postbiopsy pneumothorax and
other complications associated with CT

guided coaxial needle biopsy
[239]

ClinicalTrials.gov
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Table 2. Cont.

Condition Product Benefits Reference

Ischemic
cardiomyopathy Gelatin hydrogel

Controlled release of fibroblast growth
factor

Increases the formation of
cardiovascular networks

Improves ventricular function

[240]

Heart failure Alginate hydrogel
Efficiency and safety profile
No serious adverse effects
Increases exercise capacity

[241,242]

Elective cranial
procedures with dural

incision
PEG hydrogel

Safe profile
Dural closure augmentation

Rapid preparation and application
[243]

Neuropathic pain Lidocaine plaster Safety and tolerability profile
Relevant pain reduction [244]

9. Future Perspectives

In the frame of current work, hydrogels aim to become feasible tools for microfluidics, biosensing
and tissue regeneration engineering (potential scaffold for new tissues and organs). Future proposed
designs highlight the control over structural and morphological properties in order to improve their
biomimetic capabilities.

Furthermore, hydrogel usage in generating complex 3D multi-cell models offers promise in
reducing the number of animals used for testing and while at the same time provides medium that
more closely resembles aspects of the human body. All of these considerations will inevitably lead
to accelerating pharmaceutical formulation development and deployment on the market. It is truly
difficult to exemplify the role and applications that hydrogels have in biomedical research mainly due
to their usage not being restricted to the topics described in this review. It is, however, easy to observe
the capacity that this technology has to transcend a certain niche and in a very timely manner be
implemented in a completely new field of work. The most difficult hurdles for medical and biological
research seem to have been overcome and hydrogels have become a common day item in not only
researchers’ lives but the general public’s lives too.

Recently, electronics progress relieves the use of hydrogel technology for healthcare oriented
applications. Lab-on-a-chip microfluidic devices are considered practical and compelling for diagnostic
and drug screening investigations. The generation of wearable sensors represents an innovative
platform able to monitor pathological particularities of the human subject. Such devices can also
perform a controlled release of pharmaceutical formulations according to the monitored parameters.

What is clear is the fact that hydrogels have been and are continuing to be relevant “scaffolds”
in biomedicine and biomedical research. When it comes to these constructs we have entered an era
of fine-tuning already existing structures and technology, where novel hydrogels are quick to reach
practical applications in the real world (contact lenses, wound dressing, 3D culture scaffolds) and more
exotic ones hold potential in a variety of fields such as robotics, aerospace engineering, solar cells and
photoreactors, environmental research and sports science.
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