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Abstract: A solution cast technique was utilized to create a plasticized biopolymer-based electrolyte
system. The system was prepared from methylcellulose (MC) polymer as the hosting material and
potassium iodide (KI) salt as the ionic source. The electrolyte produced with sufficient conductivity
was evaluated in an electrochemical double-layer capacitor (EDLC). Electrolyte systems’ electrical,
structural, and electrochemical properties have been examined using various electrochemical and
FTIR spectroscopic techniques. From the electrochemical impedance spectroscopy (EIS), a maximum
ionic conductivity of 5.14 × 10−4 S cm−1 for the system with 50% plasticizer was recorded. From the
EEC modeling, the ion transport parameters were evaluated. The extent of interaction between the
components of the prepared electrolyte was investigated using Fourier transformed infrared spec-
troscopy (FTIR). For the electrolyte system (MC-KI-glycerol), the tion and electrochemical windows
were 0.964 and 2.2 V, respectively. Another electrochemical property of electrolytes is transference
number measurement (TNM), in which the ion predominantly responsibility was examined in an
attempt to track the transport mechanism. The non-Faradaic nature of charge storing was proved
from the absence of a redox peak in the cyclic voltammetry profile (CV). Several decisive parameters
have been specified, such as specific capacitance (Cs), coulombic efficiency (η), energy density (Ed),
and power density (Pd) at the first cycle, which were 68 F g−1, 67%, 7.88 Wh kg−1, and 1360 Wh kg−1,
respectively. Ultimately, during the 400th cycle, the series resistance ESR varied from 70 to 310 ohms.

Keywords: methylcellulose; FTIR; ion transport studies; electrochemical properties; charge-discharge
profile; capacitance; electrochemical energy storage device

1. Introduction

Solid polymer electrolytes (SPEs) have recently received much interest due to their
technical relevance in energy storage devices, including batteries, supercapacitors, fuel cells,
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and hybrid power sources [1–3]. Alkali metal salts are frequently dissolved in polar poly-
mers to produce SPEs [4]. Several characteristics, such as high ionic conductivity, relatively
high energy density, absence of leakage, low weight, solvent-free, wide electrochemical
windows, and easy handling, make SPEs superior over conventional liquid electrolytes [5].
The potential of an ion-association (ion-pairing) effect has been suggested as one of the
primary causes of poor ionic conductivity and concentration polarization. This is owing to
the host polymers’ low dielectric permittivity [6]. Without plasticizers, the conductivity of
polymer systems is less than 10−4 S/cm. Numerous approaches have been presented to ad-
dress the state-of-the-art issues associated with ion-conducting polymers [7]. Plasticization
is among the recent approaches commonly used to overcome the low conductivity issue in
the SPEs system using different plasticizers like glycerol and ethylene carbonate. Along
with its potential application in electrochemical devices, developing polymeric systems
with high ionic conductivity is one of the key aims in polymer electrolyte research [8].

Cellulose is the most common natural organic molecule on the planet, making it a
renewable resource and a non-toxic substance in its natural condition [9,10]. Methylcellu-
lose (MC), modified cellulose, is a natural polymer investigated as a viable alternative to
synthetic polymers in electrochemical device applications. This is because it is renewable,
ecologically benign, plentiful, and affordable [11]. The amorphous polymer MC has a high
glass transition temperature (Tg) of 184–200 degrees celsius. The oxygen atoms of MC
have lone pair electrons that can act as complexation sites with the salt’s cation [12]. MC
has been utilized as an ionic conduction host because of its outstanding thermal, chemical,
and mechanical stabilities, excellent film-forming characteristics, and high solubility [13].
MC has excellent film-forming properties, a high mechanical strength, and the ability to
produce a clear film. Coatings, pharmaceuticals, and food industry have all used MC [12].

An electrical double-layer capacitor (EDLC) typically consists of two identical carbon-
based electrodes. The non-Faradaic process of charge build-up at the double layer on
the surface of carbon-based electrodes is a significant limitation in EDLC [14]. This phe-
nomenon needs the large surface area of the electrodes, which is challenging. However, an
EDLC possesses several advantages, such as a relatively long lifecycle, high power density,
and being lightweight [15]. Moreover, it has been confirmed that the activated carbon and
polymer electrolytes used in the capacitor system are compatible [16–18]. A moderately
large surface area, high electrical conductivity, low-priced cost, and excellent chemical
stability are the desired characteristics of activated carbon to be utilized in an EDLC [19].
High-performance, environmentally safe rechargeable batteries are in high demand across
the world. Commercially accessible electrochemical devices with high specific capacities
have yet to be developed [20]. Polymer electrolytes containing sodium salts have been
the subject of little study. When compared to lithium salts, sodium salts have numerous
benefits in the production of polymer electrolytes. The softness of sodium-based polymers
makes contact with other battery components simpler and more sustainable [21].

The magnesium and sodium-based rechargeable battery systems have recently gained
popularity owing to their performance characteristics, which are predicted to be comparable
to lithium-based rechargeable batteries. Magnesium is a desirable anode material since it
is cost-efficient and safer than lithium due to its natural availability [20,22]. As stated by
a recent analysis by Vignarooban et al. [23], sodium-ion batteries are gaining popularity
due to their availability and lower cost than lithium-ion batteries (Li). On the other
hand, potassium-based salts, such as potassium iodide (KI), have excellent cation mobility
through the electrolyte systems, enhancing ionic conductivity. This study reports the
successful incorporation of KI salt into the MC host polymer. The impact of glycerol on
the electrochemical properties of the system will be explored. Then, the EDLC device
performance based on the fabricated polymer electrolyte will be thoroughly investigated.
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2. Experimental Details
2.1. Materials and Sample Preparation

At ambient temperature, solution-cast solid polymer electrolytes based on MC:KI:glycerol
were created. To make a homogenous solution, the MC powder was first dissolved in
distilled water as a solvent and then rapidly mixed for 24 h using a magnetic stirrer. Along
with constant stirring, the exact quantities of KI (40 wt.%) salt were added to the MC
polymer solutions to produce polymer electrolytes. Then, MC-40% KI was glycerolized
via various amounts of glycerol ranging from 10 to 50 wt.% in stages of 10%. For MC:KI
integrated with 10, 20, 30, 40, and 50 wt.% of glycerol, the samples were classified as
MCPN1, MCPN2, MCPN3, MCPN4, and MCPN5. The solution’s components were mixed
and then put onto plastic Petri dishes left undisturbed at room temperature to generate a
homogeneous solution. Before the EDLC characterization, the electrolytes were kept in a
blue silica gel desiccator for subsequent drying.

2.2. Fourier Transform Infrared (FTIR) Spectroscopy

A Thermo Scientific/Nicolet iS10 FTIR spectrophotometer was used to examine pure
MC and MC-doped materials in the 4000–400 cm−1 wavenumber range. Each spectrum
had a resolution of 2 cm−1.

2.3. Transference Number Measurement (TNM) and Linear Sweep Voltammetry (LSV)

Transference number measurement (TNM) was performed by using a V&A Instrument
DP3003 digital DC power supply, in which the ionic (ti) and electronic (te) transference
numbers were determined. A Teflon container was used to encapsulate the prepared con-
ducting electrolyte between two identical stainless steel electrodes. At room temperature,
the cell perturbation was carried out with the voltage maintained at 0.20 V. On the other
hand, by recording linear sweep voltammetry (LSV), a Digi-IVY DY2300 potentiostat was
used to investigate the electrolyte electrochemical stability at a scan rate of 100 mV s−1. The
cell system diagram containing stainless steel electrodes for TNM and LSV measurements
is schematically shown in Figure 1.
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Figure 1. The schematic drawing of the two stainless steel electrodes design for the investigation of
transference number measurement (TNM) and linear sweep voltammetry (LSV).

2.4. Electrical Double-Layer Capacitor (EDLC) Preparation

In a planetary ball miller, 0.25 g carbon black and 3.25 g activated carbon were mixed
before being added to a solution mixture of 15 mL N-methyl pyrrolidone (NMP) and
0.50 g polyvinylidene fluoride (PVdF). Following that, the final mixture became a thick,
black film.

A series of films were formed by cleaning aluminum foil with acetone and flattened
over a glass surface. The final solution mixture was placed over the cleaned aluminum
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foil and then covered using the doctor blade methodology. The films were cut into sliced
circulars with a geometric area of 2.01 cm2 to produce electrodes. The films in the form
of electrodes were dried in the oven at 60 ◦C. For further drying and to keep them in a
dry state, electrode films were then put in a desiccator. To perform the measurements,
the most conductive electrolytes (the films in the form of electrodes) were sandwiched
between two activated carbon electrodes and put inside a CR2032 coin cell. To learn about
the EDLC characteristic, cyclic voltammetry (CV) was obtained at 10 mV s−1. The EDLC
charge–discharge patterns were examined using a Neware battery cycler with a constant
current density of 0.2 mA cm−2. Figure 2 depicts a typical EDLC cell construction for
charge-discharge applications.
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Figure 2. Schematic diagram of the electrical double-layer capacitor (EDLC) cell used in the charge-
discharge measurement.

3. Result and Discussion
3.1. Fourier Transform Infrared (FTIR) Study

The FTIR spectra of MC:KI films containing dissimilar concentrations of glycerol
are shown in Figure 3. It is well-known that hydrogen bonding forces the frequencies
of stretching vibration of the bonds; therefore, IR spectroscopy can be informative when
studying MC-based electrolyte films [24]. In clean MC, the hydroxyl band lies in the
wavenumber range of 3447–3458 cm−1; however, the range localizes between 1066 cm−1

and 1110 cm−1 [25]. The stretching vibrations of COO− (symmetric), COO− (asymmetric),
C–H (aliphatic), and O–H are attributed to the bands at 1422, 1608, 2931, and 3420 cm−1 [26].
O–H stretching at 3458 cm−1 and C–H stretching at 2902 cm−1 are both absorption bands
in pure MC. The C–O stretching from the asymmetric oxygen bridge at 1646 cm−1 is
between 1065 and 1123 cm−1. Interestingly, the C–H bending of MC exhibits distinct small
absorption bands in the 1251–1455 cm−1 range. Moreover, the C–H vibrations form small
bands in the 487–654 cm−1 range [27].

In the range of 3650 to 3500 cm−1, the unbounded or free hydroxyl group absorbs
significantly. The occurrence of a hydrogen-bond hydroxyl group can affect absorption
to move to lower frequencies (below 3200 cm−1), causing the intensity to rise, the band
to expand, and an asymmetrical peak to form. The hydroxyl group in a polymer matrix
has an absorption, which is considered an indicator of hydrogen bonding interactions and
the strength of hydrogen bonds. In interpreting the spectra of MC films, the hydroxyl
stretching at 3466.5 cm−1 is critical [24]. In the spectra of MC films, the critical area lies
between 3800 and 3000 cm−1.

From the difficulties addressed here, the range 950–1250 cm−1 was the most instructive.
In the IR spectra of cellulose and its ethers, this region features a complicated, strong
absorption band of methylcellulose, mainly due to stretching vibrations of C–O bonds [28].



Membranes 2022, 12, 139 5 of 21

Membranes 2022, 12, x FOR PEER REVIEW 5 of 22 
 

 

strong absorption band of methylcellulose, mainly due to stretching vibrations of C–O 
bonds [28]. 

 
Figure 3. The Fourier transform infrared (FTIR) spectra of the prepared polymer electrolytes (a) 
MCPN1, (b) MCPN2, (c) MCPN3, (d) MCPN4, and (e) MCPN5. 

3.2. Impedance Analysis 
The electrical characteristics of electrodes and polymer electrolytes can be studied 

using electrochemical impedance [29]. Figure 4 shows the electrical impedance graphs (Zi 
versus Zr) for all samples (a–e). From Figure 4a–e, there are two distinct regions: a 
high-frequency semicircle and a low-frequency spike area. The spike area results from 
the free charge gathering at the interfacial region, leading to the developing electric 
double layer (EDL) capacitances [30].  

In actuality, the complex impedance graphs in the low-frequency area should 
exhibit a straight line equivalent to the imaginary axis, with an angle of 90°. However, the 
blocking double-layer capacitance causes this inclination at the blocking electrodes 
[31,32]. 

As illustrated in Figure 4, the bulk resistance (Rb) may be calculated using the 
high-frequency region. It can be seen that two main features are recorded: 
high-frequency semicircular area and low-frequency spike, as exhibited in Figure 4a–e. 
The decreasing diameter of the high-frequency semicircle corresponds to increasing salt 
content and nearly vanishes at 40 wt.% is noticed. It is also noticed that the 
high-frequency semicircular area is absent in the impedance spectrum, indicating an 
increase in overall conductivity. This is related to the ion migration at a relatively high 
salt quantity [33]. It is important to note that the arc is completely absent, making DC 

5001000150020002500300035004000
Wavenumber (cm-1)

T
ra

ns
m

ita
nc

e 
(a

.u
)%

Hydroxyl band Ether band

COO-(asymmetric 
band)

C-H bending

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 3. The Fourier transform infrared (FTIR) spectra of the prepared polymer electrolytes
(a) MCPN1, (b) MCPN2, (c) MCPN3, (d) MCPN4, and (e) MCPN5.

3.2. Impedance Analysis

The electrical characteristics of electrodes and polymer electrolytes can be studied
using electrochemical impedance [29]. Figure 4 shows the electrical impedance graphs
(Zi versus Zr) for all samples (a–e). From Figure 4a–e, there are two distinct regions: a
high-frequency semicircle and a low-frequency spike area. The spike area results from the
free charge gathering at the interfacial region, leading to the developing electric double
layer (EDL) capacitances [30].

In actuality, the complex impedance graphs in the low-frequency area should exhibit a
straight line equivalent to the imaginary axis, with an angle of 90◦. However, the blocking
double-layer capacitance causes this inclination at the blocking electrodes [31,32].

As illustrated in Figure 4, the bulk resistance (Rb) may be calculated using the high-
frequency region. It can be seen that two main features are recorded: high-frequency
semicircular area and low-frequency spike, as exhibited in Figure 4a–e. The decreasing
diameter of the high-frequency semicircle corresponds to increasing salt content and nearly
vanishes at 40 wt.% is noticed. It is also noticed that the high-frequency semicircular area is
absent in the impedance spectrum, indicating an increase in overall conductivity. This is
related to the ion migration at a relatively high salt quantity [33]. It is important to note that
the arc is completely absent, making DC conductivity determination virtually impossible
(see Figure 4d). DC conductivity was estimated by extrapolating the polarization “spike”
in the complex plane to its intersection with the real impedance, as shown in Figure 4d [34].
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For a variety of experiments, the electrical equivalent circuit (EEC) model was utilised.
The EEC is effortless to employ, rapid and gives a comprehensive picture of the whole
system. Thus, for impedance spectroscopy analysis, the model was performed [35]. At
both high salt quantity and temperatures, the spiketail elongates in the spectra of polymer
electrolytes [36]. EEC modeling senses all the circuit components, such as the resistance
or capacitance of the samples. The fitting impedance spectra with the EEC model for the
chosen samples are shown in Figure 4a–e. As shown, the ideal way to depict the impedance
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of the MC is to use a parallel combination of resistance and CPE (see inset). It is concluded
that the films are excellent insulators by showing a relatively high resistivity.

It can be observed that any sample containing 30% glycerol results in a spike and an
incomplete semicircle at low and high frequencies, respectively. The connection between Rb
and CPE can be seen in the high-frequency area, and the CPE or the generated double-layer
capacitance localizes at the low-frequency zone. In such circumstances, the term CPE in the
circuit is sometimes used in the ideal capacitor. This is because the SPE behaves differently
than an ideal capacitor operating in a pure semicircular pattern; in other words, the SPEs
are a pseudo capacitor [37,38].

In addition to the CPE capacitor behavior, which explains the depressed
semicircle [39–41], the low-frequency tail is added as additional CPE. At 40 wt.% of plasti-
cizer, only a spike can be seen, confirming the typical diffusion process. In this system, the
EEC is represented by a sequence existence of Rb and CPE [41–43], as demonstrated in an
inset in Figure 4d. In the EEC model for MC-KI-glycerol, the impedance of ZCPE appears in
the form of a parallel combination [39–41]:

ZCPE =
cos(πn/2)

Ymωn − j
sin(πn/2)

Ymωn (1)

where Ym is the CPE capacitance, ω is the angular frequency, and n denotes the divergence
of the vertical axis of the plot inside the complex impedance plots.

Furthermore, for the equivalent circuit (insets of Figure 4a), the real (Zr) and imag-
inary (Zi) values of complex impedance (Z*) can be stated according to the following
mathematical equation [41]:

Zr = Rs +
R1 + R2

1Y1ωn1 cos(πn1/2)
1 + 2R1Y1ωn1 cos(πn1/2) + R2

1Y2
1 ω2n1

(2)

Zi =
R2

1Y1ωn1 sin(πn1/2)
1 + 2R1Y1ωn1 cos(πn1/2) + R2

1Y2
1 ω2n1

(3)

An incomplete semicircle with a spike (see Figure 4c) can be seen in a Cole-Cole plot
with a particular high plasticizer concentration. To match the experimental data points,
two constant phase components, one in parallel and the other in series, are essential due
to the tail. For the analogous circuit (insets of Figure 4b), the complex impedance (Z*)
components, the real (Zr) and imaginary (Zi) values can also be written as [39,40]:

Zr = Rs +
R1 + R2

1Y1ωn1 cos(πn1/2)
1 + 2R1Y1ωn1 cos(πn1/2) + R2

1Y2
1 ω2n1

+
cos(πn2/2)

Y2ωn2
(4)

Zi =
R2

1Y1ωn1 sin(πn1/2)
1 + 2R1Y1ωn1 cos(πn1/2) + R2

1Y2
1 ω2n1

+
sin(πn2/2)

Y2ωn2
(5)

The semicircle vanishes in the Cole–Cole plot at 40 wt.% of glycerol, as shown in
Figure 4d, indicating that the polymer’s resistive component is dominant [40]. The Zr and
Zi values associated with the EEC, in this case, can be expressed mathematically as follows:

Zr = R +
cos(πn/2)

Ymωn (6)

Zi =
sin(πn/2)

Ymωn (7)

Various ion transport parameters along with different circuit element parameters are
calculated and presented in Tables 1 and 2.
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Table 1. Ion transport parameters of different plasticized systems.

Sample σdc (S/cm) D µ n

MC:KI 1.19 × 10−8 - - -
MCPN1 1.54 × 10−8 - - -
MCPN2 1.30 × 10−6 2.27 × 10−11 8.85 × 10−10 9.14 × 1021

MCPN3 9.35 × 10−5 1.14 × 10−11 4.44 × 10−10 1.31 × 1024

MCPN4 1.40 × 10−4 2.31 × 10−6 8.99 × 10−5 9.73 × 1018

MCPN5 5.14 × 10−4 1.79 × 10−6 6.97 × 10−5 4.61 × 1019

Table 2. Calculated different circuit parameters for the prepared polymer electrolytes.

Sample p1 p2 CPE1 CPE2

MC:KI 0.76 - 2.86 × 10−9 -
MCPN1 0.72 - 3.70 × 10−9 -
MCPN2 0.87 0.52 8.33 × 10−10 1.57 × 10−6

MCPN3 0.86 0.69 3.33 × 10−9 7.69 × 10−6

MCPN4 - 0.44 - 8.33 × 10−6

MCPN5 - 0.39 - 1.45 × 10−5

3.3. Transference Number Measurement (TNM) Study

In order to employ the polymer electrolyte for application, TNM and LSV must be
investigated. A polymer electrolyte’s major charge carrier species must be identified, which
can be done through transference number analysis (TNM). The ratio of steady-state current
(Iss) to initial current (Ii) can be used to determine the ion (ti) and electron (te) transference
numbers, as illustrated below:

ti =
Ii − Iss

Ii
(8)

Figure 5 illustrates the polarization curve of current vs. time for the optimal conducting
electrolyte. Before reaching a constant value of 71 µA, the current is rapidly reduced.

Because only electrons can flow from side to side the stainless steel electrodes, this
speedy decline indicates that the primary charge carrier is ionic rather than electronic. The
electrodes that are made of stainless steel impede ion transfer; thus, there is noteworthy
decay in current value until it reaches almost constant at 4 µA [44].

The behavior of an ionic conductor is depicted in this phenomenon. The electrolyte’s
ionic conductor behavior is indicated by the constant current value [45]. As a result,
the electrolyte’s ti and te transference numbers are 0.964 and 0.046, respectively. This
demonstrates that the electrolyte’s primary charge carrier is an ion. In contrast, the ionic
transference number found in this study is quite comparable to that reported in previous
research. Polyvinyl alcohol (PVA)- Magnesium acetate tetrahydrate (Mg(CH3COO)2)
and PVA- magnesium nitrate (Mg(NO3)2) had ionic transference values of 0.96 and 0.98,
respectively, according to Polu and co-workers [46,47].

For Poly(methyl methacrylate) (PMMA): lithium triflate (LiCF3SO3), Othman, and
co-workers [48] reported ti values ranging from 0.93 to 0.98. (LiCF3SO3). As a result,
the large transference number may be linked to the microscopic parameter’s influence of
polymer–ion and ion–ion interactions.
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Figure 5. The polarization current against time for the MC-KI-glycerol film with the highest conduc-
tivity.

3.4. LSV Analysis

One of the requirements of polymer electrolytes to be utilized in energy storage devices
is determining electrochemical potential stability. From the response of LSV, one can
determine the decomposition potential of the conducting electrolyte, as shown in Figure 6.
It can be seen that below 1.5 V, no recording of current, indicating no electrochemical
decomposition of the electrolyte before this value of potential.

The potential choice tells us the stop working point of the polymer electrolyte at which
the polymer electrolyte will not work at higher than this threshold. In this study, at 2.2 V,
the current increase tremendously indicates the impossibility of using electrolytes [49].
Monisha and co-workers [50] state that current passes through the cells at the threshold
voltage due to desired electrochemical reactions. In contrast, beyond this, a massive current
passes as a consequence of electrolyte breakdown [51]. As reported in the literature, the
chitosan-methylcellulose-NH4SCN system shows electrochemical stability up to 1.8 V,
which is relatively high. In another study, a lithium salt-based biopolymer electrolyte
with a decomposition voltage of 2.10 V was recorded by Shukur and co-workers [52].
In addition, the carboxymethylcellulose- ammonium thiocyanate (NH4SCN) system has
shown electrochemical stability of 1.6 V [53]. In protonic devices, the electrochemical
window is widely known to be around 1.0 V [54]. The present results are comparable
with that reported for ammonium salt-based polymer electrolytes where a plasticized MC
system including NH4Br exhibits electrochemical stability up to 1.53 V [55]. Woo and
co-workers [56] studied poly (ε-caprolactone) (PCL)-based polymer electrolytes, recording
1.4 V as maximum potential stability.

In proton-based energy devices, the conducting electrolyte of the MC-KI-glycerol
system can often be used as an electrode separator. According to the findings of this study,
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a relatively high conducting electrolyte has the potential stability needed for energy storage
device applications.
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Figure 6. The LSV plot of the MC-KI-glycerol film with the highest conductivity.

3.5. Cyclic Voltammetry (CV) and EDLC Characteristics

Figure 7 shows the cyclic voltammetry (CV) results for the constructed EDLC at various
scan speeds. Potentiodynamic electrochemical measurement is used to determine CV. In
this analytic approach, the electrode potential is determined linearly in relation to time.
The electrode potential can also be shown as a function of time. The cyclic voltammogram
trace shows the current versus the applied voltage concerning the working electrode [57].
The CV comeback is a leaf-like form, which is comparatively rectangular. This electrolyte
system feature indicates the occurrence of a supercapacitor in EDLC assembly, which is
appropriate for utilization.

The lack of a redox peak, which indicates a non-faradaic process in the manufactured
supercapacitor and therefore confirms its EDLC behavior [58], confirms that electrons
have little involvement. This is owing to activated carbon’s porous structure and internal
resistance [59]. Internal resistance and electrode porosity caused the voltage to be current-
dependent, making the CV plot less ideal rectangular [60].

Additionally, the CV plot shows no redox peak, indicating that the activated carbon
electrodes’ surface has a charge double-layer [61]. The following equation can be used to
obtain the EDLC’s specific capacitance (Cspe) from the CV plot:

Cspe =

∫ V2
V1

I(V)dV

2m(V2 − V1)
(

dV
dt

) (9)

The area of the CV plot
∫ V2

V1
I(V)dV produced from the OriginPro 8.5 program is shown

below. (V2 − V1) is the potential range, and dV
dt is the scan rate [62]. m is the activated

material mass (activated carbon). The constructed EDLC has a Cspe of 39.32 F g−1. The Cspe



Membranes 2022, 12, 139 11 of 21

from the charge-discharge analysis will be compared to this number. The capacitance at
different scan rates was determined and is tabulated in Table 3.
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Figure 7. The cyclic voltammetry (CV) for the fabricated EDLC at various scan rates.

Table 3. Specific capacitance (Cs) of the EDLCs using CV curves.

Scan Rate V2 − V1 Capacitance

0.1 0.9 16.42
0.05 0.9 23.23
0.02 0.9 31.32
0.01 0.9 39.32

3.6. Charge–Discharge Characteristics

The charge–discharge characteristics of the fabricated EDLC are examined using a
galvanostatic technique. Figure 8 displays the charge–discharge curve of the manufactured
EDLC in the 0 to 1 V potential range at 0.5 mA cm−2.

The discharge slope is approximately linear, showing that the EDLC is capacitive [63].
Once the slope of the discharge curve (s) has been established, the specific capacitance (Cs)
can be calculated using the following equation:

CS =
i

sm
(10)

The constant current is i, and the active material mass is m, which is the mass of active
carbon. The change of specific capacitance, Cs, for the built EDLC up to 400 cycles is shown
in Figure 9. The Cspe rises to 115 F g−1 in the fifth cycle and remains constant at 96 F g−1

until the 400th cycle.
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Figure 8. The charge–discharge plot of the fabricated EDLC at 0.5 mA cm−2 in the potential range of
0 to 1 V.
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Figure 9. Variation of specific capacitance, Cs for the constructed EDLC up to 400 cycles.

In the literature, there are two critical records of the specific capacitance values,
which are 2.6–3.0 and 1.7–2.1 F g−1 corresponding to EDLC cells using Mg- and Li-based
Polyethylene glycol (PEO) polymer electrolytes mixed with ionic liquids [64]. Herein,
the specific capacitance obtained for the system studied is more significant. Also, the
maximum Cspe achieved for the current system is higher than that documented by Mukta
Tripathi and SK. Tripathi [65] for an ionic liquid-based gel polymer electrolyte (61.7 F g−1).
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The current work’s specific capacitance is comparable to that reported by Boonen and
co-workers [66], which is around 87.3 F/g, and by Łatoszyńska et al. [67], which is about
90 F/g, for gel-based polymer electrolytes.

As a result, polymer blending may be a sole approach to make EDLC with a high
specific capacitance at room temperature. The findings of this study might lead to new
insights on EDLC manufacturing using natural biopolymers with proton ion conductors.
In previous studies, increasing the number of cycles resulted in a significant decrease in
Cspe. The development of ion aggregation is thought to be responsible for decreasing these
electrochemical characteristics of EDLC.

After the fast charge and discharge cycling, the mobile ions favor being aggregated,
resulting in obstructions to ionic transport within the polymer electrolyte. This reduces the
amount of ion adsorption at the electrode–electrolyte interface by decreasing ion adsorption
at the carbon pores. The EDLC’s specific capacitance, power density, and energy density
are all known to decrease as the cycle number rises [68].

The Cspe value found in this study is higher than that published in the literature.
Table 4 compares the Cspe of the constructed EDLC to that of earlier studies utilizing various
polymer electrolytes. In the table H3PO4 = orthophosphoric acid, Al2SiO5 = aluminum
silicate, NH4NO3 = ammonium nitrate, NH4C2H3O2 = ammonium acetate, LiTf = lithium
triflate, EMITf = 1-ethyl-3-methylimidazolium trifluoromethanesulfonate.

Table 4. Proton-based EDLC studies with their relative specific capacitance value.

SPE System Cs (F/g) Cycles Reference

Chitosan-H3PO4-Al2SiO5 0.22 100 [69]
Chitosan-H3PO4-NH4NO3-Al2SiO5 0.25 100 [69]

PVA-NH4C2H3O2 0.14 Not stated [70]
MC-NH4NO3 1.67 100 [71]

PEO-LiTf-EMITf 1.70 Not stated [64]
MC-KI-Glycerol 96 400 This work

The equivalent series represents the internal resistance of the EDLC and can be found
from the resistance Resr. From the following relationship, it is possible to determine the
EDLC’s Resr:

Resr =
Vd
i

(11)

A remarkable voltage drop (Vd) before each discharging operation can be seen in
Figure 8. The voltage drop lies between 0.04 to 0.12 V, caused by internal resistance
within the EDLC. Three different resistances within EDLC can be counted: the current
collector, the bulk of the electrolyte, and the interfacial area between the electrodes and
electrolyte [72–74].

The Resr of the EDLC at 400 cycles is exhibited in Figure 10. The Resr varies from 70 to
310 Ω. It is worth noting that the weakening of the solid polymer electrolytes in the EDLC
investigated by Kumar and Bhat [74] occurs owing to the boost in voltage drop during the
charge–discharge cycle, which leads to an increase in ESR. When ESR is taken into account,
the ionic liquid integrated with poly (ethylene oxide) (PEO)-based polymer electrolyte
has a value of 1300 Ω [64], while the existing electrolyte has a value that is relatively low.
Asmara et al. [75] recorded a low Resr value for compatible electrode–electrolyte contact,
implying that ions move quickly from the electrolyte to the electrode surface, creating an
electrical double-layer.

Another significant metric for the EDLC’s cycle stability is coulombic efficiency (η,
and it can be computed using the following formula:

η =
td
tc

× 100 (12)
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where td and tc stand for discharge and charge times, respectively. Figure 11 depicts the η
of the EDLC after 400 cycles. At the first cycle, the coulombic efficiency η is 67%, increasing
to 93% and 96% at the 50th and 100th cycles, respectively. At the 200th cycle, it is 97%, then
drops to 95% and stays there until the 400th cycle. The EDLC is thought to have credible
electrode-electrolyte contact since the η is more than 90% [76,77]. An earlier study has
recorded 96.1% for an EDLC device over 300 cycles composed of a PVA host doped with
40 wt.% potassium iodide (KI) and 40 wt.% glycerol [38]. In another work, the fabricated
ELDC device with polymer-based electrolyte consisted of chitosan-magnesium acetate
Mg(CH3COO)2 and reached an average efficiency of 96.1% up to 1000 cycles [51].

The manufactured EDLC’s energy density (Ed) may be determined using the equation:

Ed =
CsV

2
(13)

where V equals 1 V in this case. Figure 12 illustrates the constructed EDLC’s energy density
(Ed) across 400 cycles. Ed is 7.88 Wh kg−1 in the first cycle, as seen in the diagram. From the
200th cycle, the Ed rises to 13.81 Wh kg−1 and subsequently declines to 11 Wh kg−1.

It can be observed that the energy barrier for ion transport is almost constant from
the 10th to the 100th cycles [78]. Mukta Tripathi and SK. Tripathi reported an energy
density of 11 Wh Kg−1 for the current EDLC assembly, which is significantly greater
than that reported for ionic liquid-based gel electrolytes [65]. Furthermore, compared
to the earlier study, the present energy density was significantly higher than that for
chitosan:dextran (Dex) studies (1.4 Wh kg−1 and 0.86 Wh kg−1) using NH4F and LiClO4
salts, respectively [79,80]. Unfortunately, it is less than the value reported (8.63 Wh kg−1)
for biopolymer mix electrolytes containing NH4SCN [81]. Furthermore, an average of
7 Wh/kg energy density for plasticized CS-LiClO4 system is achieved over 300 cycles [18].

Figure 13 shows the power density (Pd) for the constructed EDLC over 400 cycles, as
computed using the equation:

Pd =
V2

4mResr
(14)
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Figure 13. Power density (Pd) for the assembled EDLC throughout 400 cycles.

The Pd of 1360 W kg−1, and 500 W kg−1 were recorded at the 1st and 50th cycles,
respectively. From the 50th to the end of the cycles (400th cycle), the value of Pd is 302 to
370 W kg−1, respectively. An average of 340 W kg−1 has been recorded over the whole
cycling process. A comparable trend of Resr and power density patterns of the EDLC have
been obtained, as shown in Figure 13. Coromina and co-workers [82] demonstrated that the
energy stored in EDLCs could be supplied via aqueous H2SO4 or ionic liquid electrolytes,
achieving a power density of more than 1 kW kg−1, bridging the gap between EDLCs and
batteries. Moreover, Hadi et al. documented a 300 W/kg power density over 400 cycles
for chitosan host doped with ammonium iodide and Zn(II)-complex and plasticized with
glycerol [19]. According to the current study results, it is possible to construct EDLC cells
with a high power density using biopolymer-based mix electrolytes. It has been established
that energy and power densities are directly related to active material mass loading and
other parameters.

Energy and power density are inversely proportional to mass loading. Therefore, low
mass loading and low current always result in improved electrochemical performance,
according to reference [83].

Table 5 provides the EDLC device performance for various MC polymer-based elec-
trolyte systems. The present work and those published previously highlights the fact that
biopolymers are significant for polymer electrolyte preparation and device fabrication.
The necessity for bendy energy storage devices including EDLCs and batteries for new
technologies is encouraging researchers to invent and discover new materials. Of course,
problems in this field are that devices based on biopolymers are not stable for higher cycle
numbers. From the above analysis of energy and power densities of current EDLC devices
and comparison to previously fabricated devices (see Table 5), it can be concluded that some
critical factors can contribute in achieving better device performance. First, selection of the
host polymer matrix is among the critical components and plays the key role in getting
good device performance. In EDLC application the host polymer should provide good
ionic conduction along with suitable chemical, thermal and mechanical stability. These
properties give the fabricated EDLC device good outputs and long cyclability. Second,
choosing a suitable dopant salt is another important constituent that need to be taken into
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consideration during employment of the polymer electrolyte in electrochemical device
applications. Salts with low lattice energy can easily undergo the dissociation process,
while large lattice energy salts cannot be dissociated simply by the host medium which also
creates a free carrier issue. Moreover, using plasticizer can improve ionic conduction, how-
ever, the inclusion of large amount can cause mechanical weakness and increase reaction
toward the electrodes. From the above discussion it can be concluded that finding suitable
polymer-based electrolytes that lead to both high energy and power density along the range
cycle is quite challenging and needs thorough scientific exploration. Our research group
works to generate polymer electrolyte films with high conductivity and high-quality device
performance. To the best of our knowledge, all obtained results based on biopolymers
should be presented to the scientific community in order to shed light on the progress
in this field. The achieved results promise to produce devices with high performances
in the future; but of course, this needs more attention of scientists. The devices based
on biopolymers are crucial to be focused because they are totally non-toxic and avoid
poisonous materials. As mentioned above, numerous factors including functional groups
on the polymer chain backbone, lattice energy of salt and plasticizers affect the performance
of the devices. Thus, different polymers, salts or plasticizers should be examined and
their results must be presented for the scientific community in the form of research articles.
Nonetheless, the achieved EDLC device performance based on biopolymers so far has been
promising, and higher performance in the near future is expected.

Table 5. Polymer-based electrolyte EDLC device performance.

SPE System Energy Density
(Wh kg−1)

Power Density
(W kg−1)

Cycle
Number Ref.

MC–PEG–NH4NO3 3.9 140 4 [71]
PS-MC–NH4NO3-glycerol 2.3 385 1000 [62]

CS-MC-NH4I-glycerol 0.77 578 100 [84]
MC-Dex-NH4I 6.3 170 100 [85]

CS-MC-NH4SCN 8.63 555 100 [81]
CS:MC:NH4I - - 100 [61]

MC-KI-Glycerol 11 340 400 This work
NH4I = ammonium iodide, PEG = polyethylene glycol, PS= potato starch.

4. Conclusions

A biopolymer electrolyte based on MC:KI with various quantities of glycerol plasticizer
was produced for EDLC device applications. FTIR spectra were used to validate the
interactions and complexation between the electrolyte components. The EIS data showed
that when the glycerol content grew from 10% to 50%, the resistance to charge transfer at
the bulk of the electrolyte reduced due to an increase in charge carrier density. EEC models
were utilized to determine the ion transport parameters such as carrier density, diffusion
and mobility. The electrolyte containing 40 wt.% glycerol exhibited the highest conductivity,
measuring 5.14 × 10−4 S/cm. In TNM experiments, the (tion) was determined to be 0.964,
suggesting that ions were the primary charge carrier. The most conducting sample exhibited
an electrochemical stability window of up to 2.2 V, validating the electrolyte’s suitability
for the EDLC, according to the LSV research. The CV response had no discernible redox
peak, indicating capacitance behavior. Cs, η, Ed, and Pd were discovered to have starting
values of 68 F/g, 67%, 7.88 Wh/kg, and 1360 Wh/kg, respectively.
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