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Abstract

The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions.
Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a
biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional
interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation
within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By
contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from
background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input
configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in
striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an
appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably
implemented in the basal ganglia.
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Introduction

The striatum is the main input stage of the basal ganglia and

plays an important role in various cognitive and motor functions

[1–5]. With its involvement in multiple behavioral tasks, the

computational role of the striatum is of crucial interest. The

presence of recurrent inhibitory projections among the main

constituent cells, the medium spiny neurons (MSNs) led to the

suggestion that the Winner-Take-All (WTA) dynamics presents the

main working principle of the striatum [6,7]. However, experi-

mental evidence of low connection probability among MSNs and

weak recurrent inhibitory synapses [8–11] suggest that the neural

hardware in the striatum cannot support such WTA dynamics.

Thus, Ponzi and Wickens (2010) recently argued for a ‘winner-

less-competition’ based on hypothesized cell assemblies in the

ongoing striatal network activity.

In most computational theories of striatum function, much

emphasis is put on the connectivity of the striatal network and the

individual neuron properties. Interestingly, though, the connectivity

pattern of the cortico-striatal input projections is mostly ignored.

Anatomical evidence suggests that these input projections are

structured in a special manner. Each striatal neuron receives massive

synaptic input from the cortex. Moreover, individual cortical

locations give rise to multiple separate foci of innervation in the

striatum, with axons from functionally related cortical regions sharing

common focal striatal innervation zones [12,13]. Therefore, striatal

neurons are expected to share their cortical presynaptic pools to a

considerable degree. Surprisingly, though, the sharing of inputs

between neighboring striatal neurons is estimated to be relatively

small [12,13]. However, because task related cortical activity is

modulated in both correlation and firing rate [14–18], individual

striatal neurons are indeed expected to receive correlated inputs.

Thus, to understand the computational role of the striatum in

different behavioral tasks, it is of key importance to understand

how the spatio-temporal structure of the input correlations can

influence the striatal response and, hence, striatal function.

Therefore, here, we investigate the functional consequences of

input correlations on the representation of cortical activity in the

striatum. We show that weak correlation in the inputs to individual

neurons enhances the saliency of the signal representation.

Interestingly, the striatal response to cortical input is most salient

when striatal neurons do not share their inputs. Thus, sharing of

inputs among striatal neurons degrades the signal representation.

In summary, we suggest a functional role for the special

anatomy of cortico-striatal projections by ensuring that individual

striatal neurons are less likely to share their cortical inputs, while at

the same time they each receive weakly correlated inputs.

Preliminary results were previously presented in abstract form

[19].

Results

The striatum is a recurrent inhibitory network driven by

excitatory projections from the cortex (Fig. 1A). Such networks

have been extensively studied for their synchronization and

oscillatory properties [20–23]. The striatum network, however,

differs from the standard recurrent inhibitory network in that the

FF and FB inhibition are clearly segregated, because the MSNs do

not project to the FSIs. FF inhibition can alter the effective

integration time in postsynaptic neurons [24] and, thus, may

influence synchrony and propagation of activity in neuronal

networks [25]. Likewise, FB inhibition alone in a recurrent

network can induce fast oscillations and network synchronization

[21,26]. Therefore, to understand the dynamics of a striatum-type
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network, we first investigated the role of both FF and FB inhibition

in shaping the global network dynamics of the striatum.

Dynamical states of ongoing activity in the striatum
In the striatum, FSIs make divergent projections with strong

synapses onto the MSNs. Because the MSNs outnumber the FSIs

by far, this projection scheme results in a highly correlated FF

inhibition as a consequence of sharing presynaptic FSIs.

Therefore, in a scenario where FF inhibition is dominant, high

inhibitory input correlations may synchronize the MSN popula-

tion activity (Fig. 1B). Likewise, dominant FB inhibition, because

of its recurrent nature, may also induce synchrony in the MSN

population [21]. We found, however, that within the biologically

realistic parameter range, FB inhibition in the striatum was not

strong enough to induce oscillations (data not shown).

However, FB inhibition could impair the synchrony induced by

the FF inhibition (Fig. 1C). To further investigate this joint effect of

FB and FF inhibition on network synchrony, we systematically

varied the strength of the two modes of inhibition independently

(Figs. 1D, E). We found that for FF and FB inhibition both weak,

striatum activity remained asynchronous. Strong FF inhibition

induced synchrony in the network, which could be reduced by an

increase in FB inhibition (Fig. 1E). For biologically realistic ranges

of FF and FB inhibition strengths [10], which ensured low firing

rates in the striatum network, we observed only weak synchrony in

the ongoing network activity.

In the healthy striatum, the firing rates of MSNs can vary

between 0.2 Hz and 20 Hz [27,28], depending on the behavioral

state of the animal, while in the quiet awake state, most studies

reported MSN firing rates to be less than 2 Hz. At the same time,

there is no clear experimental evidence for synchrony and

oscillations in the striatum during ongoing activity. Nevertheless,

some experimental studies in behaving monkeys reported phase

locking of a fraction of recorded putative MSNs to 10–25 Hz

oscillations in local field potentials (LFP) [29]. Note that such

phase locking of single-neuron spikes to LFP oscillations does not

necessarily imply (or require) synchronization of population

spiking activity. Thus, the observed low firing rates (Fig. 1D)

and weak synchrony (Fig. 1E) in the presence of both FB and FF

inhibition in our network model are consistent with the in vivo

ongoing activity recorded in the striatum of healthy animals [30].

In our network simulations, multiple combinations of FB and

FF inhibition could generate a biologically realistic baseline

activity in the striatum network (Figs. 1D, E). Thus, to further

investigate the representation of cortical inputs in striatum network

activity, we adjusted the network parameters to obtain a near-

asynchronous activity state (synchrony index &1.28) at low firing

rate (&0.7 Hz). These settings were applied in all subsequent

sections, unless otherwise indicated.

Effect of input correlations on the striatum response
There is ample experimental evidence for an increase in firing

rates [31–34] and the emergence of correlations [14–18] in

stimulus or task related cortical activity. Thus, at least during a

behavioral task, the striatum is likely to receive cortical activity

with modulations of firing rates and correlations. Therefore, to

understand the representation of task-related cortical activity in

the striatum, we modeled the cortical stimulus related activity as a

MIP (multiple interacting process) type ensemble of correlated

Poisson spike trains [35]. We chose this model of ensemble spiking

activity because (1) it can be formulated in analytical terms and has

been studied in great detail [35,36] and (2) it allows for systematic

and independent variations of firing rates and pairwise correla-

tions.

To systematically investigate the effects of input correlations on

the striatal response, we considered two input configurations. In

the input configuration-I, each stimulated neuron in the striatum

received MIP type activity with an input correlation c, while the

inputs to different striatum neurons remained uncorrelated

(Fig. 2A). This input configuration refers to a scenario in which

striatum neurons do not share their presynaptic pools (cf.

Methods). In the input configuration-II, we introduced additional

correlation between the inputs of different stimulated neurons (r),

while each of them still received MIP type input with correlation c
(Fig. 3A). When r~0, this input configuration is identical to the

configuration-I. rw0 refers to a scenario in which either the

striatum neurons shared their presynaptic pools or the presynaptic

pools of different striatal neurons were themselves correlated (cf.

Methods).

To quantify the signal representation of the striatum in both

input configurations, we measured the signal-to-noise ratio (SNR,

cf. Methods) in each case. Here, we are interested in the statistical

properties of the stimulus (input firing rate, correlations c and r)

that maximize the SNR in the striatum.

Input configuration - I: Correlated input to individual

neurons. Figs. 2B, C show the responses of MSNs when 30% of

striatal neurons were stimulated [37] for 100 ms (starting at

600 ms) by an excitatory input with an ensemble firing rate of

400 Hz, but different correlations c. Higher input correlation

(c = 0.025, Fig. 2C) resulted in a higher firing rate in the stimulated

neurons and a lower rate in the unstimulated neurons, compared

to the case of lower input correlation (c = 0.001, Fig. 2B).

The effect of input correlation c on MSN population activity at

different input firing rates is summarized in Figs. 2D–H.

Consistent with previous findings [35], the output firing rate of

the stimulated neurons varied in a non-monotonic fashion with

increasing input correlation c. Thus, for a given input firing rate,

there existed an optimal value of input correlation (copt), that

maximized the output rate of the stimulated neurons and, at the

same time, minimized the activity of the unstimulated neurons

(Fig. 2E). For input correlations below copt, the average number of

Author Summary

The striatum is the main input station of the basal ganglia
and plays a crucial role in multiple motor and cognitive
functions. Striatum is a recurrently connected network of
GABAergic medium spiny neurons (MSNs), which receive
strong feedforward inhibition from the fast spiking
interneurons and massive excitatory afferents from various
regions of the neocortex via the cortico-striatal projection
neurons. Here, we study the effects of input rate and
temporal correlations on signal representation in a
computational model of striatum. We show that when
individual striatal neurons receive weakly correlated input
from the neocortex, signal representation is enhanced.
Surprisingly, though, if the inputs to two striatal neurons
are correlated, signal representation is impaired. In a
restricted sense, correlation in the inputs to two neurons
implies that these neurons share their input, which
according to our model would not be optimal for signal
representation. Interestingly, cortico-striatal projections
are structured in such a way that neighboring MSNs are
not likely to share their presynaptic cortical neurons. Thus,
we suggest that an appropriate structure of correlations in
the striatal inputs sets the stage for implementation of
various tasks performed by the basal ganglia, supported
by the special anatomical structure of the cortico-striatal
projections.

Striatal Response to Input Correlations
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spikes in coincidence clusters in the input was smaller than the

average number required to make a postsynaptic neuron spike,

thereby limiting the output rate of the stimulated neurons and,

hence, the suppression of the unstimulated neurons. By contrast,

for input correlations beyond copt, the average number of spikes in

coincidence clusters in the input was larger than the average

Figure 2. Signal representation in the striatum network when stimulus input to individual stimulated neurons was correlated. (A)
Scheme of stimulus configuration-I (r = 0; c§0) presented to a fraction of striatum neurons, on top of the background excitatory input from the
cortex and background inhibitory input from other striatal neurons. (B,C) Examples of MSNs spiking responses when 30% of striatal neurons were
stimulated for 100 ms (starting at 600 ms) with excitatory input with an ensemble firing rate r = 400 Hz and low (c = 0.001; B) or high (c = 0.02; C)
input correlations, respectively. (D,E) Firing rate of the stimulated MSNs (D) and the unstimulated MSNs (E), averaged over the stimulation epoch, as a
function of input correlation c, for two different input firing rates. Observe that the response rate in both subpopulation varied in a non-monotonic
fashion with increasing input correlation c. The dashed line indicates the level of baseline activity. (F,G) Synchrony index of the stimulated MSNs (F)
and the unstimulated MSNs (G) as a function of input correlation c. The synchrony index of the stimulated MSNs is close to 1 so there is no significant
synchrony. (H) Signal-to-noise ratio (SNR) of the striatum network, quantified by the ratio of the average firing rates of the stimulated and
unstimulated MSNs, as a function of input correlation c. Observe that SNR varied in a non-monotonic fashion with increasing input correlation c. By
contrast, SNR increased monotonically with input firing rate (r). (I) Peak SNR of the striatum network as a function of input correlation c for different
strengths of feedback JFB

inh and feedforward inhibition JFF
inh . The blue trace shows peak SNR for different values of JFB

inh and a fixed JFF
inh = 1 nS. The red

trace shows peak SNR for different values of JFF
inh and a fixed JFB

inh = 0.3 nS. Observe that increasing either type of inhibition increased the peak SNR,
because stronger inhibition is more effective in suppressing the background activity.
doi:10.1371/journal.pcbi.1002254.g002

Figure 1. Different activity states in a striatum network model. (A) Schematic microcircuit of the striatum. (B) Raster plot of MSNs spiking
activity in a striatum network model dominated by FF inhibition. The FF inhibition induced synchrony, but not oscillations in the MSN population
activity. (C) Low firing rate and asynchronous, irregular spiking activity in a striatum network in presence of both FF and FB inhibitions. (D) Mean firing
rate of the MSNs for different feedforward (FF) and feedback (FB) inhibition strengths. (E) Synchrony index (cf. Methods) of the population activity for
different FF and FB inhibition strengths.
doi:10.1371/journal.pcbi.1002254.g001
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number required to make a postsynaptic neuron spike. In that

case, input spikes were effectively being wasted, causing such

higher input correlation to result in a smaller response in the

stimulated neurons and, hence, a smaller suppression of the

activity of unstimulated neurons. In between, at the optimal input

correlation (c~copt), the SNR was maximized as shown in Fig. 2H.

An increase in input firing rate always increased the SNR,

however, the non-monotonicity of SNR as a function of c

remained, with the peak continuing to be at copt.

Note that, without an external stimulus the network is in an

asynchronous state, due to the coexistence of FB and FF

inhibitions (Fig. 1E). The presentation of an excitatory

stimulus did not cause any synchrony in the network, neither

in the stimulated (Fig. 2F), nor in the unstimulated neurons

(Fig. 2G).

In summary, the above results indicate that input correlations of

strength around copt are most effective in enhancing the SNR in

the striatum.

Figure 3. Signal representation in the striatum network when stimulated neurons received correlated inputs. (A) Scheme of stimulus
configuration-II (r§0; c§ 0) presented to a fraction of striatum neurons, on top of the background excitatory input from the cortex and background
inhibitory input from other striatal neurons. (B,C) Examples of MSNs spiking responses for two different stimuli to 30% of striatal neurons, with
identical input firing rate (r = 400 Hz) and internal correlation (c = 0.02), but different shared correlations across stimulated neurons: low (r = 0.2; B) or
high (r = 1.0; C), respectively. (D,E) Firing rate of the stimulated MSNs (D) and the unstimulated MSNs (E), averaged over the stimulation epoch, as a
function of input correlation c, for three different values of shared correlation r. (F) Synchrony index of the stimulated MSNs (F) and the unstimulated
MSNs (G) as a function of input correlation c, for three different values of shared input correlation r. Observe that the synchrony index of the
stimulated MSNs increased both with increasing c and increasing r, due to the fact that larger r led to more shared inputs among stimulated
neurons, while larger c resulted in more reliable spiking. In the unstimulated MSNs, (low values of r did not influence synchrony, whereas high r
increased synchrony, due to the synchronized inhibition, induced by the synchronized spiking of the stimulated population. (H) Signal-to-noise ratio
(SNR) of the striatum network as a function of both input correlation c and shared correlation r at f = 0.3. Observe that maximal SNR was obtained for
weakly correlated (c&0:02) input to individual striatal neurons and uncorrelated (r = 0) inputs to different striatal neurons. (I) Signal-to-noise ratio
(SNR) of the striatum network as a function of both input correlation c and stimulated fraction f at r = 0.2. Observe that maximal SNR was obtained
for weakly correlated (c&0:02) input to a larger fraction of stimulated MSNs (larger f ).
doi:10.1371/journal.pcbi.1002254.g003
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Finally, we note that increasing the strength of either FB or FF

inhibition increased the peak SNR in our model (Fig. 2I). Similar

results were obtained for the SNR outside the range of optimal

input correlation, i.e. when c=copt (data not shown). Evidently, an

increase in inhibition in the network (either FF or FB inhibition)

reduced the response of both stimulated and unstimulated

neurons, compared to the low inhibition state. Nevertheless, the

activity of the unstimulated neurons was more strongly suppressed,

resulting in an increased SNR.

Input configuration - II: Shared correlation among inputs

to different neurons. Next, we allowed for correlation among

the inputs to the stimulated neurons (cf. Methods; Fig. 3A) and

investigated the effects of such shared input correlation (rw0) on

the SNR in the striatum.

Figs 3B and C show two examples of striatum activity when 30%

of neurons were stimulated with an external excitatory input with an

ensemble firing rate of 400 Hz and internal correlation c = 0.02, but

with different shared input correlations r. Low shared correlation

(r = 0.2, Fig. 3B) resulted in an increase in the firing rate of the

stimulated neurons, and a corresponding decrease in activity of the

unstimulated neurons. By contrast, a high shared correlation

(r = 1.0, Fig. 3C) induced strong intermittent (Poisson distributed)

synchronous spike clusters in the stimulated neurons. Each such

synchronous event in the stimulated neurons strongly inhibited the

activity of the unstimulated neurons for a short time; in between

such events, the unstimulated neurons’ activity returned to baseline

level. Thus, the unstimulated neurons were inhibited repeatedly, but

only for short intervals after the onset of stimulation, eventually

resulting in a relatively small decrease in their average activity. As a

result, SNR was smaller for r = 1 than for r = 0.2, and, in fact, as we

will see later (Fig. 3H), even smaller than for r = 0.

To quantify the effect of both types of input correlations on the

SNR of the striatal network, we systematically and independently

varied both the correlation within (c) and between (r) the input

pools to stimulated MSNs (Figs. 3D–H).

Because the activity statistics of the input to individual

stimulated neurons was independent of the shared input

correlation r, the non-monotonic relationship between the output

firing rate of the stimulated MSNs and input correlation c
remained unaffected (Fig. 3D, compare Fig. 2D). By contrast, r
strongly affected the suppression of the activity of the unstimulated

neurons, with an increase in r leading to a reduction in

suppression (Fig. 3E). Furthermore, an increase in r reduced the

value of c for which maximal suppression of the activity of the

unstimulated neurons could be obtained (Fig. 3E).

Why did the shared input correlation r influence the

unstimulated neurons and not the stimulated neurons? To

understand this, we measured the synchrony of the activity in

the stimulated and unstimulated neurons. We found that r
influenced the synchrony in the network in a complex manner.

First, for rw0, the synchrony in the stimulated neural population

monotonically increased with c (Fig. 3F), in strong contrast with

the observations made in the absence of shared input correlations

(input configuration - I; cf. Fig. 2F). An increase in r further

enhanced this synchrony, with the maximum reached for r~1,

when all stimulated neurons received identical stimulus inputs.

Second, for low values of shared correlation r, the input

correlation c did not influence the synchrony in unstimulated

neurons. However, increasing r introduced synchrony in the

unstimulated MSNs, weak still for smaller r, but stronger for larger

r and an increasing tendency for a non-monotonic dependence on

c, peaking around c = 0.01 (Fig. 3G).

These various effects of r and c could also be seen in the

subthreshold activities of the neurons (Fig. 4A, B). Thus, we measured

the cross-correlation between free membrane potentials (cf. Methods)

of the stimulated striatal neurons. Consistent with our expectations,

the zero time lag cross-correlations (Fig. 4C) between the

subthreshold activities of the stimulated neurons increased with r
(Fig. 4D), independently of the value of cw0. Only in the limiting

case of no input correlation (c = 0), the subthreshold activities showed

no correlation whatsoever, independently of r, of course. The effect

of increasing c was more clearly visible in the size of the membrane

potential fluctuations, characterized by the standard deviation, which

monotonically increased with c (Fig. 4E). Larger r resulted in slightly

smaller membrane potential fluctuations in the stimulated neurons.

Subthreshold activity correlations between unstimulated neurons or

between stimulated and unstimulated neurons were highly variable

(data not shown) and depended strongly on the connectivity. More

detailed analyses, explicitly taking into account the connectivity

among the neurons, are needed to understand this high variability.

The unique way (Figs. 4D,E) in which the two descriptors (pairwise

correlation and size of membrane potential fluctuations) of the

stimulated neurons reflect the correlation structure (c,r) of the

stimulus input to the network suggests an interesting novel application

for analyzing data recorded in experiments in behavioral tasks.

Analyzing the behavior of these two descriptors for neurons which

increased their activity during a task (therefore putatively being

stimulated neurons) could potentially provide the means to

determine, by ‘reverse engineering’, the correlation state (c,r) of the

cortical input to the striatum during the task.

Next we quantified the SNR in the presence of shared input

correlation r. Fig. 3H shows the SNR as a function of r and c.

Evidently, r did not influence the non-monotonic nature of the

SNR as a function of c. However, the maximal SNR decreased

monotonically as a function of r (Fig. 3H), due to the reduced

supression of the unstimulated neurons.

The proportion of neurons responding to a stimulus can change

in different learning stages [2,28,37]. Therefore, we characterized

the effects of varying the fraction of stimulated MSNs (f ) on the

signal representation. Fig. 3I shows the SNR as a function of f and

c. Since a larger fraction of stimulated MSNs f implied an

increased inhibition leading to a stronger suppression of the

unstimulated MSNs activity, the SNR increased monotonically

with an increase in f .

In summary, therefore, the outcome of our analysis (Fig. 3H)

suggests that to maximize the signal representation in the striatum,

the input to individual striatal neurons should preferably be weakly

correlated (i.e. c&0:02 in our model), whereas different striatal

neurons should preferably receive uncorrelated inputs (i.e. r = 0 in

our model). This finding is interesting, because anatomical

evidence suggests that neighboring MSNs are not likely to share

their inputs [13] and afferents arriving at an innervation zone

originate from functionally related brain regions [12], suggesting

that r is likely to be very small, if not zero and c is likely to be finite

and not zero.

Correlated feedforward inhibition
Both chemical synapses and gap junctions are present among

striatal FSIs. Experimental data as well as network simulations

suggest that gap junctions can cause global synchrony [38]. While

there is no strong evidence for synchronization of striatal FSIs due

to gap junctions, neither from experiments [27], nor from

modeling studies [39], it is nevertheless of interest to understand

the effect of FFI correlations (irrespective of whether they are

mediated by gap junctions or chemical synapses or whether they

are input driven) on the firing pattern of MSNs and the signal

representation in the striatum. We observed that when the FSI

spiking activities were uncorrelated, the MSNs received a largely

Striatal Response to Input Correlations
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stationary feedforward inhibition, which was reflected in equally

stationary firing rates of the MSNs (Fig. 5A). By contrast, when

FSI activity was correlated, large intermittent fluctuations in the

FF inhibition caused the MSNs to be repeatedly inhibited for short

epochs at irregular intervals (e.g. Fig. 5B for cFFI = 1).

When a fraction of MSNs received extra cortical input,

correlated FF inhibition resulted in an increased firing rate in

the stimulated MSNs for small within-pool correlation (c). For

larger within-pool correlation, cFFI did not influence the activity of

the stimulated MSNs (Fig. 5C). On the other hand, in the presence

of correlated FF inhibition, the unstimulated MSNs were less

inhibited over the whole range of c (Fig. 5D), leading to a small but

significant reduction in the SNR (Fig. 5E). These results illustrate

that, similar to the uncorrelated excitatory inputs, uncorrelated FF

inhibition is optimal for signal representation in the striatum,

though not as critical as the excitatory inputs. In the above we

studied the effect of precisely coincident input spikes. However, in

a biologically realistic scenario, spikes across different inputs may

be jittered within a few ms. Our results are robust to such jittering

of input spikes, except that the peak in Figs. 2D and 3D would

become broader and shift to higher value of c (data not shown).

Experimental validation of the model
In spite of its simplicity, our network model can be validated

using simultaneously recorded multiple single-unit spiking activity,

routinely recorded in awake behaving animals. Whether (and to

what extent) striatum neurons are driven by common inputs can

be tested by either measuring spike correlations (or population

synchrony, Fig. 3F), membrane potential correlations (Fig. 4D), or

membrane potential fluctuation size among neurons that increase

their firing rates in a behavioral task. Furthermore, the change in

the correlation pattern (rather than in the firing rates) of the

unstimulated neurons may provide additional information on the

effective value of shared input correlations (r; compare Figs. 2G

and 3G). An experimental estimate of input correlations could

validate our model and establish the importance of the spatio-

temporal structure of cortical inputs in striatum network function.

Simultaneous recording of single unit activities from 10–20 MSNs

that modulate (increase/decrease) their activity in response to a

behavioral task would be sufficient to obtain a reasonable estimate

of the correlation structure in the striatum necessary to validate

our model.

Discussion

The striatum as the main input stage to the basal ganglia is

involved in a variety of motor and cognitive functions. Anatomical

studies and electrophysiological recordings in different behavioral

conditions have provided useful hints regarding the information

processing taking place in the striatum and the potential relevance

of the structure of the cortico-striatal afferents. Previously, spiking

network models of the striatum with randomly connected point

neurons have been studied to understand the role of recurrent

Figure 4. Correlations of the free membrane potentials of stimulated MSNs in the striatum network. (A) Example of the free membrane
potential traces of two stimulated MSNs without any input correlation (c = 0, r = 0). As there was no correlation, neither within nor between the
inputs to the two MSNs, the free membrane potentials did not show any significant correlation. (B) Example of the free membrane potential traces of
two stimulated MSNs with moderate individual input correlation (c = 0.02) and full shared correlation (r = 1). Since here, the two MSNs were driven by
correlated synaptic inputs, the free membrane potential traces showed significant correlation, together with substantial membrane potential
fluctuations. (C) Cross correlation of the free membrane potentials of stimulated MSN pairs as a function of time lag t for the two stimulus protocols.
Strong correlation was observed at zero time lag for moderate individual input correlation (c = 0.02) and maximum shared input correlation (r = 1).
(D) Average correlation coefficient at zero time lag of the free membrane potentials of stimulated MSN pairs as a function of shared input correlation
r, for different values of individual input correlation c. The correlation coefficient increased monotonically with r and did not show any dependence
on c. Note that the correlation coefficient had a small positive value for c = 0, because of the small synchrony effect arising from the FB and FF
inhibitions. (E) Standard deviation of free membrane potential fluctuations for stimulated (solid lines) and unstimulated (dashed lines) MSNs as a
function of individual input correlation c at different values of r. The free membrane potential fluctuation of the stimulated MSNs increased
monotonically with c, whereas that of the unstimulated MSNs did not show any significant change.
doi:10.1371/journal.pcbi.1002254.g004
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inhibition on network dynamics [40,41] and assembly formation

due to winner-less-competition [41]. Other network models were

used to study the effect of dopamine on the formation of cell

assemblies [42]. The properties of feedforward inhibition shaped

by gap junctions were studied using networks with both reduced

and detailed multi-compartment models [39,43]. More recently,

Humphries et al. [42] have integrated various levels of details such

as distance-dependent connectivity among MSNs, and more

realistic neuron and dopamine interaction models into a single

striatum network. These various models have provided important

insights into the computational role of various components of the

striatum circuitry.

Beyond the local network structure, the organization of the

afferents and efferents may also provide additional important

insights into the functioning of a system. Therefore, here, we

investigated the role of input correlations on striatum function

which, to the best of our knowledge, has not been examined in a

computational model before. Specifically, we addressed the

question: how different types of input correlations affect the

representation of cortical activity in the striatum. We showed that

in a minimal network model of the striatum, there exists a preferred

range of input correlation copt+D c which enhances the represen-

tation of the cortical input, consistent with previous suggestions that

striatum may be functioning as a correlation detector [44].

However, when striatal neurons shared their inputs (rw0), the

SNR was reduced. This suggests that, given the network

architecture of the striatum, there is a preferred cortico-striatal

input configuration for optimal signal representation in the striatum:

here, striatal neurons receive independent inputs and presynaptic

pools of individual neurons have weak internal correlations. In

addition, we also found that the signal representation of such input is

optimal when the feedforward inhibition is uncorrelated.

Taken together, the absence of correlations among both

excitatory and inhibitory inputs provides better signal represen-

Figure 5. Network dynamics and signal representation in the striatum network when the spiking of FSIs is correlated. (A) Spiking
activity in the striatum for cFFI = 0. Blue and black rasters show the spiking activity of MSNs and FSIs, respectively. PSTHs of the corresponding rasters
are shown at the bottom. (B) Spiking activity in the striatum for cFFI = 1. Red and black rasters show the spiking activity of MSNs and FSIs,
respectively. PSTHs of the corresponding rasters are shown at the bottom. (C) Firing rate of the stimulated MSNs, averaged over the stimulation
epoch, as a function of input correlation c, for four different values of cFFI . (D) Firing rate of the unstimulated MSNs, averaged over the stimulation
epoch, as a function of input correlation c, for four different values of cFFI. (E) Signal-to-noise ratio (SNR) of the striatum network as a function of
input correlation c, for four different values of FSIs’ output correlation cFFI. Observe that inhibitory input correlation decreased the SNR, which
maintained its non-monotonicity and shifted its peak to a slightly lower value of copt.
doi:10.1371/journal.pcbi.1002254.g005
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tation in the striatal network. This effect of input correlations is a

consequence of network-level interactions among the MSNs.

Correlation structure of cortico-striatal inputs
In our model, the best SNR for the striatal representation of

cortical input was obtained for shared correlation r~0, that is, for

zero correlation among the input pools of the stimulated neurons.

This requires, in terms of anatomy, no sharing of inputs among

striatal neurons and, in terms of spiking activity statistics, no

correlation between input pools of different striatal neurons. On

the other hand, the best signal representation scenario for the

striatum also required an optimum internal correlation copt within

individual input pools. It would appear to be a quite strict

requirement to have r to be close to zero. However, anatomical

evidence on the structure of the cortico-striatal projections suggests

that r may indeed be very small within a local region.

Kincaid et al. (1998) suggested that neighboring MSNs receive

nearly unique inputs from the cortex. From their results, striatal

neurons with totally overlapping dendritic volumes have few

presynaptic cortical axons in common, while cortical cells with

overlapping axons have few striatal target neurons in common.

Subsequent findings [13] relaxed this claim when considering

extended axonal arborizations, in which separate branches might

innervate distinct dendritic trees. However, while a typical cortico-

striatal axon innervates a large volume, it makes only sparse

contacts with the MSNs, so the average connectivity is still small,

estimated to be less than 1%. Therefore, neighboring MSNs are

not likely to share their inputs. Moreover, recent experimental

work suggests that average correlations among cortical neurons

may indeed be small [45]. Thus, the redundancy of nearby striatal

neurons in response to cortical input signals is minimal.

In addition, it is conceivable that synapses formed by axons

arising from functionally correlated brain regions could be

selectively strengthened over time [46–48]. This may contribute

to obtaining a weak, but optimum internal correlation copt within

the input pools to individual neurons.

Stabilizing roles of FF and FB inhibitions
In our study we considered the possible scenario of correlated

feedforward inhibition mediated by FSIs . We found that

uncorrelated FSI activity is preferable to obtain a better signal

representation in striatum. In this context, it is interesting that, to

our knowledge, no correlated firing of FSIs has been observed in

vivo [27].

We showed here that for a wide range of parameters within the

biological range, the presence of both FF and FB inhibition

actually does not cause synchrony or oscillation, unless the

striatum is driven by such inputs. Moreover, it is known, and we

have confirmed, that strong FB inhibition can lead to network

oscillation, whereas strong FF inhibition can cause synchrony.

Thus, we propose that the ongoing activity in the striatum of

healthy animals is operating in an asynchronous low-rate activity

regime, supported by a balance of the FF and FB inhibitions. The

reason why shared input correlations reduce the SNR is that the

stimulated neurons become correlated (Fig. 3D–H). Having an

asynchronous background activity state in the striatum could

reduce the correlation among the stimulated neurons and,

thereby, improve the SNR.

It is possible that the balance of FF and FB inhibition is briefly

disrupted during a behavioral task, and transient synchrony and/

or oscillations may emerge [49]. Similarly, pathologies such as

neuro-degeneration and dopamine depletion may also disturb the

balance, thereby causing an increase in firing rates and associated

synchrony. For instance, a deficit in FSIs has been observed in

human patients with Tourette syndrome [50], which could lead to

a reduction of FF inhibition. The motor tics observed in such

patients may be related to the lack of inhibition in the striatal

network [51].

Implications for striatal function
Our findings indicate that higher input firing rates from the

cortex alone do not guarantee a good signal-to-noise representa-

tion in the striatum. Instead, an appropriate combination of both

higher rate and an optimum temporal correlation structure in the

input determines the prominent representation in the striatum.

Thus, information carried by weak inputs (low rates and/or

correlations), presumably representing unfavorable choices, is

screened out at the cortico-striatal interface. By contrast, signals

corresponding to favorable choices (reflected in higher rates and/

or correlations) may pass through this interface and be represented

in the striatum. An illustrative example with two competing

functional groups of MSNs is shown in Fig. 6A. Here, the green

group receives a stimulus input with firing rate R and within-pool

correlation copt. The red group, on the other hand receives twice

the amount of stimulus input (2R). When the two groups compete,

there is a regime when the within pool correlation for the red

group is sub-optimal, the green group ‘wins’ even though it

receives only half the amount of input (Fig. 6C). For this

illustration, we considered the scenario of r~0 but non-zero r
will lead to the same qualitative result.

The FB inhibition in the striatum has been reported to be weak,

relatively sparse and with a fairly high failure rate, disqualifying it

to support a winner-take-all dynamics. Alternatively, our findings

suggest that the striatal recurrent inhibitory network can sharpen

the contrast between the signal and the background noise (or

weaker signals) by increasing the SNR. Moreover, the strong FF

inhibition can further increase the contrast by constraining the

overall activity in the network. Action selection processes

presumably do not end in the striatum, but proceed in the

downstream nuclei of the basal ganglia. Thus, the potential

‘‘winner’’ in action selection is unlikely to be determined already in

the striatum stage. Yet, under the scheme proposed here, more

favorable options, such as those receiving stronger and optimally

correlated inputs, obtain a better representation in the striatum. It

has been observed that different stimulus-reward contingencies are

encoded in different fractions of striatal neurons responding [52].

From our simulation results with static synapses, a reduction in the

number of activated MSNs could imply a drop in the performance

of the signal representation. On the other hand, it has been

reported that the number of striatal neurons responding to a task

decreases during learning [2,28]. As it may be expected that

information becomes more reliably encoded in the course of the

learning process, this might explain why fewer neurons need to be

recruited to encode the same information, for instance because a

more efficient signal representation scheme gradually takes over.

However, more experimental data is needed to fruitfully address

such issues within the the scope of our modeling work.

Striatal MSNs can be broadly subdivided into two classes,

predominantly expressing either D1 or D2-type receptors which

project to the direct and indirect pathways of the basal ganglia,

respectively [53]. These two types of MSNs have different

membrane properties and dendritic arbors [54]. As we have

noted earlier, passive properties can determine the exact value of

the optimal input correlation copt. Likewise, the extent of dendritic

arbors may alter the amount of input sharing (r) in the two types

of MSNs. In view of the above, it is conceivable that these different

properties of the D1 and D2 MSNs may specialize the direct and

indirect pathways in terms of their optimal input correlations.

Striatal Response to Input Correlations
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The robustness of our results depends crucially on the fact that

the efficacy of correlated excitatory inputs (c) in generating a spike

in the postsynaptic neuron changes in a first rising and then

decaying fashion (Fig. 2D). This non-monotonic behavior is not

affected in any qualitative manner by the time constant or the

synaptic strength. For more detailed explanations we refer to our

earlier work [35,55]. Likewise, we find that the SNR of cortical

inputs to the striatum decreases monotonically with the shared

input correlation r (Fig. 3H), because correlated inhibition leads to

wasting of inhibitory inputs. This result depends on the temporal

correlation of the inhibition, but not the exact values of synaptic

time constants. For the reasons explained above, we only expect

quantitative but not qualitative changes upon varying these and

other parameters within the biological range.

In summary, we showed that for the network architecture of the

striatum and the interplay of feedback and feedforward inhibi-

tions, there is a preferred cortico-striatal input configuration for

optimal signal representation in the striatum, which is a network

phenomenon. The importance of input correlations is not

restricted to signal representation in an inhibitory network (such

as the striatum) alone. More generic neural networks with both

excitatory and inhibitory neurons (such as the neocortex) may also

exploit the structure of input correlations to modulate their

response, both in output rates and correlations.

Methods

Models
Neurons. We considered two types of striatal neurons in our

network model: medium spiny neurons (MSN) and fast spiking

interneurons (FSI), both of which receive massive inputs from the

cortex. The neurons in the network were modeled as leaky-

integrate-and-fire (LIF) neurons, with subthreshold dynamics of

the membrane potential VMSN(t) of a MSN i described by

CMSN d

dt
VMSN

i (t)zGMSN
rest ½VMSN

i (t){VMSN
rest �~IMSN

i (t) ð1Þ

where IMSN
i is the total synaptic input current to the neuron and

CMSN, GMSN
rest and VMSN

rest reflect the passive cell properties:

capacitance, conductance at rest, and resting membrane potential,

respectively. When the membrane potential reached a fixed spiking

threshold VMSN
th above resting potential, a spike was emitted. Then,

the membrane potential was reset to its resting value and a pause for

synaptic integration was imposed to mimic the refractory period in

real neurons.

The subthreshold dynamics of the membrane potential VFSI(t)
of a FSI i was described similarly by

CFSI d

dt
VFSI

i (t)zGFSI
rest ½VFSI

i (t){VFSI
rest �~IFSI

i (t): ð2Þ

The initial membrane potentials of both MSNs and FSIs were

chosen from a uniform distribution (from 280 to 255 mV) to

avoid any unwanted synchrony, caused by the initial conditions in

the simulation runs.

Striatum network. A scheme of the striatal network model is

shown in Fig. 1A. We simulated a network of two types of

GABAergic neurons, 4,000 MSNs and 80 FSIs, according to the

ratio given in the literature [56,57]. Both types of neurons received

independent excitatory Poisson inputs, mimicking the background

cortico-striatal inputs. MSNs connect to other MSNs with a

connection probability of 10% [58]. Each MSN received

inhibitory inputs from 4–27 FSIs [59], therefore here we used

an average value of 15, resulting in a 19% connectivity from FSIs

to MSNs. In the striatum, FSIs are interconnected by gap

junctions. However, in vivo recordings showed little correlation

between nearby FSIs [27]. Moreover, a computational study

found that synchronization effects due to gap junctions were

moderate [39]. To this end, we investigated the impacts of both

correlated and uncorrelated FSIs activity on our network model

and its effects on signal representation. Two further cell types in

the striatum, tonically active neurons (TANs) and dopaminergic

neurons (DA), were not modeled explicitly in the network, but

their modulatory effects on network connections were taken into

account by changing the effective strengths of the FF and FB

inhibitions, based on healthy animals’ data [27,28].

Synapses. Excitatory synaptic input was modeled by

transient conductance changes using the alpha-function such that

gm
exc(t)~

Jm
exc

t
texc

e1{ t
texc fort§0

0 fortv0

(
, ð3Þ

Figure 6. Both firing rate and input correlations affect the competition between two MSN groups. (A) A schematic of two competing
functional groups of MSNs. The green group of MSNs received stimulus input (firing rate R , correlations copt). The red group of MSNs received
stimulus input at a rate of 2R, while the within-pool correlation was varied systematically. (B) Spiking activity in the MSNs when both red and green
group received stimulus inputs. In this example within-pool correaltion for the the red group is suboptimal (c = 0.005). The green group has a higher
output rate even though it receives a smaller amount of stimulated input. (C) The output rates of the two functional groups of MSNs when c for the
red group was varied systematically. The dashed line shows the value used in the panel B. When within-pool correlation for the red group is smaller
than *0.01, green group ‘wins’ even though it receives only half the input firing rate as compared to the red group, illustrating a function role that
input correlation can play in the striatum.
doi:10.1371/journal.pcbi.1002254.g006
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where m[fMSN,FSIg and the rise times for the excitatory

synaptic inputs texc to the two neuron types were set to be

identical. In addition, the MSNs were innervated by both

feedforward (FF) inhibition from the FSIs and feedback (FB)

inhibition from the MSNs. The corresponding conductance

changes were

gn
inh(t)~

Jn
inh

t
tinh

e
1{ t

tinh fort§0

0 fortv0

(
ð4Þ

where n[fFF,FBg. All inhibitory synaptic conductance transients

were set to have identical rise times tinh. The peak amplitude Jn
inh

of the conductance transient was taken as the ‘strength’ of the

synapse. By assuming fixed synaptic couplings, the total excitatory

conductance GMSN
exc,i (t) in a MSN i was given by

GMSN
exc,i (t)~

X
m[KMSN

i

X
n

gMSN
exc (t{tCTX

mn ): ð5Þ

The outer sum ran over all excitatory synapses m in the set KMSN
i

projecting onto neuron i, while the inner sum ran over the

sequence of spikes (n’s) impinging on a particular synapse m. The

set ftCTX
mn g represents the spike times of the excitatory neuron m.

Similarly, the total inhibitory conductance GMSN
inh,i (t) in an MSN

i due to the FF and FB inhibitions was given by

GMSN
inh,i (t)~

X
m[KFF

i

X
n

gMSN
inh (t{tFF

mn{DFF)z

X
m[KFB

i

X
n

gMSN
inh (t{tFB

mn{DFB):
ð6Þ

KFF
i and KFB

i were the sets of presynaptic FSIs and MSNs

projecting to MSN i, mediating the FF and FB inhibitions,

respectively. Fixed transmission delays DFF (1 ms) and DFB (2 ms)

were imposed for the two inhibitions in all simulations. The total

synaptic current into a MSN i was

IMSN
i (t)~{GMSN

exc,i (t) ½VMSN
i (t){VMSN

exc �{

GMSN
inh,i (t) ½VMSN

i (t){VMSN
inh �,

ð7Þ

with VMSN
exc and VMSN

inh denoting the reversal potentials of the

excitatory and inhibitory synaptic currents, respectively.

Similarly, the excitatory conductance GFSI
exc,i(t) in a FSI i was

given by

GFSI
exc,i(t)~

X
m[KFSI

i

X
n

gFSI
exc (t{tCTX

mn ), ð8Þ

and the total synaptic current into a FSI i was

IFSI
i (t)~{GFSI

exc,i(t) ½VFSI
i (t){VFSI

exc �: ð9Þ

The parameter values for both MSNs and FSIs in our network

model are summarized in Table 1. The EPSP- and IPSP-sizes

depended on both the synaptic conductances (see Tables 2 and 3)

and the instantaneous membrane potential value in the respective

cell [55].

We constrained the network parameters such that the firing rate

of MSNs was ƒ2 Hz in the resting state, and up to 25 Hz in the

active state [27,28]. FSI firing rates can vary from 5 to over 40 Hz,

depending on the behavioral state of the animal [27,49,60].

Therefore, we set FSIs firing rates to 15 Hz and 20–40 Hz in the

quiet wakefulness and active states, respectively. The synaptic

conductance values we used are in the same range as estimated in

another work [42].

In simultaneous intracellular recordings from interconnected

cells, unitary inhibitory postsynaptic potentials (IPSPs) on MSNs

were reported to be 1 mV and 0.3 mV at the soma for FF and FB

inhibition, respectively [9,59]. Based on these results, the

corresponding strengths of inhibitory synapses for FF and FB

inhibitions in our model, JFF
inh and JFB

inh , were set to 1 nS and

0.3 nS, respectively. In addition, in view of the fact that MSNs

mainly project onto the dendrites of MSNs, whereas FSIs mainly

project onto the soma, we used a larger delay for FB inhibition

(2 ms), compared to the delay of 1 ms for FF inhibition.

We adopted the above values in all our network simulations,

except in the Section on Dynamic states of striatum network activity,

where we tuned the strengths of the connections over a range

around the experimental values to explore and understand the

individual effects of FF and FB inhibition on the network behavior.

All network parameters used in our simulations are summarized in

Tables 2 and 3. Results shown in Fig. 1 are based on simulation

runs of 5 s for each parameter.

Correlated cortico-striatal inputs. Both neurophysiology

and anatomy of cortico-striatal projections suggest that the inputs

to the striatum may be correlated [14–18]. To model the cortical

input to the striatum as correlated ensemble activity, we used the

‘multiple interaction process’ (MIP) [35] as the model input. In this

process, correlated ensemble activity is generated by copying

Table 1. Parameter values of the model neurons used in this
study.

Quantity MSN FSI

Number of neurons 4000 80

Vrest (mV) 280 [69] 280
[69,70]

Vexc (mV) 0 0

Vinh (mV) 264 [9] 276
[10]

Vth (mV) 245 [59] 254
[10]

texc (ms) 0.3 0.3

tinh (ms) 2 2

C (pF) 200 [54] 500

Grest (nS) 12.5 [71] 25

doi:10.1371/journal.pcbi.1002254.t001

Table 2. Specification of the cortical input to individual
striatal neurons used in this study.

Target Background input rate (Hz) Peak conductance (nS)

MSN 2500 3.46

FSI 2500 5.5

doi:10.1371/journal.pcbi.1002254.t002
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spikes from a common ‘mother’ Poisson process into N ‘children’

processes with a copying probability c, resulting in a population of

N Poisson processes with pairwise correlation c.

In the learning stage of behaving animals, some MSNs

responded with an increase in activity and others with a decrease

[2,37,61,62]. To mimic these observations, we stimulated a

fraction of the striatal neurons (both MSNs and FSIs) with extra

input on top of the background input; the size of the stimulated

fraction was varied systematically from 10–40%, based on the

reported experimental observations. The input firing rate refers to

the ensemble activity. The choice of this stimulation range was to

produce effects comparable to those observed in the experiments.

The corresponding input spike trains to the stimulated cells were

correlated based on MIPs (more details are provided below) and

incorporated into the network via the Eqs. 5 and 8.

We systematically studied the effects of two kinds of input

correlations on the network response: correlation between synaptic

inputs onto individual neurons and input correlations among

neurons. To this end we considered two different input

configurations:

Input configuration - I: Individual neurons in the striatum

received correlated input, however, inputs to different striatal

neurons were uncorrelated. In the simplest scenario, this type of

input means that neurons within the presynaptic pools of

individual striatal neurons were correlated, but presynaptic pools

of different striatal neurons were not correlated. In the

simulations performed here, individual stimulated neurons each

received 1,000 correlated spike trains with pairwise correlation c
from a MIP pool, which was itself independent from all other

presynaptic pools (Fig. 2A). Each stimulated neuron received a

total of 200–400 Hz from the 1,000 spikes trains, in addition to

the background activity.

Input configuration - II: Individual neurons in the striatum received

correlated inputs; in addition, we allowed for correlations among

the inputs to different striatal neurons. In the simplest scenario,

this type of input means that the presynaptic pools of individual

striatal neurons were either correlated or actually shared. To

introduce correlations among the presynaptic pools of striatal

neurons, we correlated the ‘mother process’ by a factor r. Using

the MIP process to generate ‘children processes’, this resulted in a

pairwise correlation of rc between spike trains from different

presynaptic pools, while the correlation within a presynaptic pool

remained unaffected, i.e. a correlation c (Fig. 3A). Thus, r = 0

corresponded to input configuration - I, whereas r = 1 corre-

sponded to the case that all input spikes trains to be used for

stimulation were drawn from the same MIP, with pairwise

correlation c. In the input configuration - II each stimulated

neuron received a total of 400 Hz from the 1,000 spikes trains in

addition to the background activity.

For each parameter set used in the input configurations I and II,

we stimulated the striatal neurons for 100 ms, consistent with the

epochs of transient rate increase observed in striatal activity in

behavioral experiments [28,37,52]. To estimate the saliency of the

signal representation (cf. Data analysis) we averaged the striatal

responses over 50 (configuration I) and 150 (configuration II) trials,

respectively. More trials were needed to obtain the statistical

average in configuration II, because here, stimulated neurons

received a higher proportion of shared input for larger r and,

therefore, their responses were more variable.

Correlated feedforward inhibition. Fast spiking

interneurons are known to be inter-connected by both chemical

synapses and gap junctions. In general, gap junctions in neuronal

networks can induce synchrony [38]. While there is no strong

evidence for synchronization of striatal FSIs due to gap junctions,

neither from experiments [27], nor from modeling studies [39], it

is nevertheless of interest to study how correlated feedforward

inhibition would influence the signal representation in the striatal

projection neurons, as such correlation may arise as a function of

cognitive state.

To this end, we modeled the spike trains of unstimulated FSIs

with pairwise correlation cFFI using the MIP process, whereas the

stimulated FSIs were treated in the same way as before, i.e. they

received correlated inputs from the cortex. The parameter cFFI

was varied systematically to assess the effect of correlated FSI

activity.

All simulations were carried out using a Python interface to

NEST [63]. The dynamical equations were integrated at a fixed

temporal resolution of 0.1 ms.

Model limitations
Here, we used a minimal striatum network model representing a

small volume of the striatum to investigate the role of input

correlations in signal representation in the striatum network.

Below we discuss to what extent the simplifications we have made

might influence our main results.

We described the effects of FF and FB inhibition and the signal

representation in a reduced and simplified spiking network model of

striatum. In addition to MSNs and FSIs, at least two other types of

interneurons have been described in the striatum. The effects of the

tonically active neurons (TANs) was incorporated implicitly into our

model by modulating the strength of FF and FB inhibitions.

Persistent low threshold spiking (PLTS) neurons are also known to

inhibit the MSNs, but their output is relatively weak and sparse [64]

and inclusion of the inhibitory effects of these neurons would not

affect our conclusions qualitatively. Furthermore, the exact

dynamics of cortico-striatal synapses was not included. The

inclusion of slower synapses (e.g. NMDA type) or activity-dependent

depression and facilitation of synaptic efficacy [65] would not cause

a qualitative change to our results, as our main findings depend on

the fact that the output firing rate is a non-monotonic function of the

input correlations. This non-monotonicity arises due to the wasting

of spikes which occurs when the size of the cluster of correlated

events exceeds the amount required to reach spiking threshold.

Thus, this behavior is independent of the choice of the synapse

model: changing AMPA synapses to slower NMDA synapses may

change the value of the optimum correlation (copt), but it will not

affect the non-monotonic behavior of the neuron and, hence, will

not change our results qualitatively.

We emphasize that our choice of simple models for both single

neurons and network topology was motivated by the fact that in

such minimal setting we should be able to extract the most basic

properties of the network. For instance, the issue how highly

nonlinear membrane properties [66] might influence the repre-

sentation of cortical inputs in the striatum is a complicated issue,

which deserves a separate and more systematic analysis. It is worth

Table 3. Specification of the two types of inhibition (FB, FF)
within the striatum, used in this study.

Inhibition Source Target Probability
Peak
conductance (nS)

Delay
(ms)

FB MSN MSN 0.1 [58] 0–0.5 (0.3 [9]) 2.0

FF FSI MSN 0.19 [59] 0–2.5 (1.0 [59]) 1.0

The values between the brackets were used in the simulations of the signal
representation.
doi:10.1371/journal.pcbi.1002254.t003
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mentioning that our results remained qualitatively unchanged

when we replaced the simple integrate-and-fire neuron with a non-

linear neuron model, namely, the adaptive exponential integrate-

and-fire (AEIF) neuron [67] (data not shown).

In addition, we assumed that the 4,000 MSNs in our network

model constitute only a small volume of striatum and, therefore, it

is reasonable to assume a distance-independent random connec-

tivity in the network.

Data analysis
Network activity. The principal neurons, MSNs, are the

only output neurons of the striatum. Thus, their dynamics are vital

for the activity of the downstream nuclei of the basal ganglia.

Therefore, to characterize the dynamical states of the striatum

network, we focussed on analyzing the spiking activity of the

MSNs. We used the following descriptors to characterize the

network activity states:

Firing rate was estimated as the mean spike count per second of

the MSN population in the network.

Synchrony index in the network was measured by the Fano factor,

that is, the rate-scaled variance of the MSN population spike count x:

Synchrony index~Var½x� =Mean½x�: ð10Þ

where Var½x� and Mean½x� denote the variance and mean of the

spike counts of the MSN population. To obtain a good estimate of the

population spike counts, we recorded the spike trains of all neurons in

the network and time binned (binwidth = 5 ms) their cumulative

activity. A population of independent Poisson processes yields a

synchrony index equal to 1, any mutual synchronization (correlation)

results in an increase of Var½x� and, hence, in the synchrony index

becoming larger than 1.

Signal-to-Noise Ratio (SNR) was computed as the ratio of the mean

firing rates of stimulated MSNs and unstimulated MSNs. The

SNR was used to measure the quality of signal representation in

the striatal network activity, that is, the saliency of the response as

compared to background activity. Interestingly, this saliency of the

striatal response could form the basis for action-selection [68].

Because we were also interested in how the different input

scenarios reflected on the subthreshold activity of the stimulated

neurons (cf. Fig. 4), we performed additional simulations in which

we recorded the free membrane potential (i.e. the membrane potential

without spiking) [55] from selected neurons in the network. To this

end, we ‘cloned’ them (letting them receive the same input as their

respective twins) and switched off spiking in the clones.
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