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Abstract: DNA samples from five members of a multiplex non-consanguineous Cameroonian family,
segregating prelingual and progressive autosomal recessive non-syndromic sensorineural hearing
impairment, underwent whole exome sequencing. We identified novel bi-allelic compound heterozygous
pathogenic variants in CLIC5. The variants identified, i.e., the missense [NM_016929.5:c.224T>C; p.(L75P)]
and the splicing (NM_016929.5:c.63+1G>A), were validated using Sanger sequencing in all seven available
family members and co-segregated with hearing impairment (HI) in the three hearing impaired family
members. The three affected individuals were compound heterozygous for both variants, and all
unaffected individuals were heterozygous for one of the two variants. Both variants were absent from
the genome aggregation database (gnomAD), the Single Nucleotide Polymorphism Database (dbSNP),
and the UK10K and Greater Middle East (GME) databases, as well as from 122 apparently healthy
controls from Cameroon. We also did not identify these pathogenic variants in 118 unrelated sporadic
cases of non-syndromic hearing impairment (NSHI) from Cameroon. In silico analysis showed that the
missense variant CLIC5-p.(L75P) substitutes a highly conserved amino acid residue (leucine), and is
expected to alter the stability, the structure, and the function of the CLIC5 protein, while the splicing
variant CLIC5-(c.63+1G>A) is predicted to disrupt a consensus donor splice site and alter the splicing of
the pre-mRNA. This study is the second report, worldwide, to describe CLIC5 involvement in human
hearing impairment, and thus confirms CLIC5 as a novel non-syndromic hearing impairment gene that
should be included in targeted diagnostic gene panels.
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1. Introduction

Hearing impairment (HI) is the most common sensory disability and is prevalent in about 1
per 1000 live births in high-income countries, with a much higher incidence of up to 6 per 1000 live
births in sub-Saharan Africa [1]. When occurring in childhood, HI is associated with impaired
language acquisition, learning, and speech development, and affects ~34 million children worldwide
(World Health Organisation) [2]. Approximately 30 to 50% of HI cases in Africa have a genetic
origin [3,4]. Non-syndromic hearing impairment (NSHI) accounts for about 70% of HI cases of genetic
origin and is inherited on an autosomal recessive (AR) mode in approximately 80% of cases [5].

Variants in GJB2 and GJB6 genes, which are the major contributors to NSHI in Europeans,
Asians, and Arabs, are infrequent in most populations of African descent, with a prevalence close
to zero [6–8]. NSHI is highly genetically heterogeneous [3,4]. To date, about 170 loci and 121 genes
have been identified as being associated with NSHI (hereditary hearing loss homepage; Appendix A).
Targeted sequencing panels that include >100 HI genes have detected a consistently lower rate of
pathogenic and likely pathogenic (PLP) variants in sporadic HI cases of African ancestry, e.g., African
Americans (26%), and Nigerians and Black South Africans (4%), compared to >70% for Europeans
and Asians [9,10]. However, the detection rate was 70% for 10 mutiplex Cameroonian families [11].
Moreover, the prevalence of autosomal recessive non-syndromic hearing impairment (ARNSHI)
pathogenic and likely pathogenic (PLP) variants, using data from the genome aggregation database
(gnomAD) database [12] were estimated to account for ARNSHI in 5.2 per 100,000 individuals for
Africans/African Americans, compared to 96.9 per 100,000 individuals for Ashkenazi Jews based on
sequence data [13]. Therefore, there is an urgent need to investigate HI in populations of African
ancestry, particularly multiplex families, using next generation sequencing, to improve knowledge a
variants and genes which underlie NSHI in African populations.

In this study, we generated whole exome sequence (WES) data for samples obtained from a multiplex
non-consanguineous Cameroonian family, segregating progressive ARNSHI, and identified novel bi-allelic
PLP variants in CLIC5 in the locus DFNB103. This gene was previously reported to be associated with HI
in a single Turkish family [14]. This gene encodes a member of the chloride intracellular channel (CLIC)
family of chloride ion channels. The encoded protein associates with actin-based cytoskeletal structures
and may play a role in multiple processes including hair cell stereocilia formation, myoblast proliferation,
and glomerular podocyte and endothelial cell maintenance. Alternatively, spliced transcript variants
encoding multiple isoforms have been observed for this gene (provided by RefSeq). The corresponding
mutant mouse model (jbg mouse), which has an intragenic deletion in CLIC5 resulting in a truncated
protein, presents progressive hearing impairment and vestibular dysfunction [15].

2. Materials and Methods

2.1. Ethics Approval

This study was performed with respect to the Declaration of Helsinki. Ethical approval was
granted by the University of Cape Town’s Faculty of Health Sciences’ Human Research Ethics Committee
(HREC 484/2019), the Institutional Research Ethics Committee for Human Health of the Gynaeco-Obstetric
and Paediatric Hospital of Yaoundé, Cameroon (No. 723/CIERSH/DM/2018), and the Institutional Review
Board of Columbia University (IRB-AAAS2343). Written and signed informed consent was obtained from
all participants who were 21 years of age or older, and from parents in the case of minors, with verbal
assent from participants.

2.2. Participants’ Recruitment

The participants’ selection process has been previously reported [16]. The hearing-impaired
members of the Cameroonian family (Family 24, Figure 1A) were identified through a community
engagement program for the deaf. For all hearing-impaired participants, their detailed personal history
and medical records were reviewed by a general practitioner, a medical geneticist, and an ear, nose and
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throat (ENT) specialist. A general systemic and otological examination was performed, including
pure tone audiometry. We followed the recommendation number 02/1 of the Bureau International
d’Audiophonologie (BIAP), Belgium.Genes 2020, 11, x FOR PEER REVIEW 4 of 13 
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Figure 1. Pedigree of the non-consanguineous family, audiological phenotypes, and electropherogram
data of the pathogenic variants in CLIC5. (A) The pedigree is suggestive of an autosomal recessive mode
of inheritance. The missense CLIC5 variant (NM_016929.5:c.224T>C) and the splicing CLIC5 variant
(NM_016929.5:c.63+1G>A), variants co-segregated with hearing impairment (HI), are compound
heterozygous. The black arrow indicates the proband. (B) Air conduction of the pure tone audiometry
performed for hearing impaired family members. Participants II.1, II.2, and II.3 were presented with a
bilateral profound HI. (C) Sanger sequencing chromatograms, showing the reference and the alternate
alleles of both the missense and the splicing variants. The red arrows indicate the nucleotides affected
by the variants. Het, heterozygous for the variant allele; Wt, wild-type (homozygous for the reference
allele); yo, years old.

Genomic DNA samples were extracted from peripheral blood, using the chemagic extraction
protocol, in the division of Human Genetics, University of Cape Town, South Africa. Additionally,
a group of 118 unrelated Cameroonian individuals living with sporadic NSHI of putative genetic origin
(Table S1) were recruited, to investigate the frequencies of pathogenic variants that could be found.
All hearing impaired family members were previously investigated for variants in GJB2 (through
direct sequencing of the entire coding region of GJB2), and GJB6-D13S1830 deletion (using a multiplex
polymerase chain reaction), and were negative [6].
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A total of 122 ethno-linguistically matched Cameroonian controls without personal or
familial history of HI were randomly recruited among blood donors at The Central Hospital of
Yaoundé, Cameroon.

2.3. Whole Exome Sequencing and Data Analysis

DNA samples from five family members were exome sequenced at Omega Bioservices (Norcross,
GA, USA); these samples were obtained from two affected individuals (Figure 1A, II.1, and II.3),
their parents (I.1, and I.2), and one unaffected sibling (II.4). Library preparation was performed
with an Illumina Nextera Rapid Capture Exome Kit® (Illumina, San Diego, CA, USA) following the
manufacturer’s instructions, and the resulting libraries were hybridized with a 37 Mb probe pool to
enrich exome sequences. Sequencing was performed on an Illumina HiSeq 2500 sequencer using the
pair-end 150 bp run format. Sequencing data were processed using the Illumina DRAGEN Germline
Pipeline v3.2.8. Briefly, high-quality reads were aligned to the human reference genome GRCh37/hg19
using the DRAGEN software version 05.021.408.3.4.12, and, after sorting and duplicate marking,
variants were called, and individual genomic variant call format (gvcf) files were generated. Joint single
nucleotide variant (SNV) and Insertion/Deletion (Indel) variant calling was performed using the
genome analysis toolkit (GATK) software v4.0.6.0 [17]. The sex of each individual was verified using
plinkv1.9 [18]. Familial relationships for all members were verified via Identity-by-Descent sharing
(plinkv1.9) and the Kinship-based INference for Gwas (KING) algorithm [18,19].

2.4. Annotation and Filtering Strategy

Variants were annotated and filtered using ANNOVAR [20] and custom scripts. Variants were
first prioritized based on the inheritance model, considering both AR and autosomal dominant (AD)
modes of inheritance. Subsequently, rare variants with a minor allele frequency (MAF) < 0.005
(for AR) and <0.0005 (for AD) in all populations of the genome aggregation database (gnomAD)
were retained. Known pathogenic HI variants listed in ClinVar were also retained, regardless of their
frequencies. dbNSFP v3.0 was used to annotate, with 17 bioinformatic tools predicting the deleterious
effects of the identified variants [21]. Coding variants were evaluated using Sorting Intolerant from
Tolerant (SIFT), polymorphism phenotyping v2 (PolyPhen-2) × 2, MutationAssessor, the likelihood
ratio test (LRT), Mendelian clinically applicable pathogenicity (M-CAP) score, Rare Exome Variant
Ensemble Learner (REVEL), MutPred, protein variation effect analyzer (PROVEAN), MetaSVM,
and MetaLR, while MutationTaster, Eigen, Eigen-PC, functional analysis through Hidden Markov
models (FATHMM-MKL), combined annotation dependent depletion (CADD) score, and deleterious
annotation of genetic variants using neural networks (DANN) score were used to annotate both coding
and non-coding variants [21].

Adaptive boosting (ADA) and random forest (RF) scores derived from dbscSNV v1.1 were used
to predict the deleterious effect of variants within splicing consensus regions (−3 to +8 at the 5′ splice
site and −12 to +2 at the 3′ splice site) [21,22]. We used phyloP, Genomic Evolutionary Rate Profiling
(GERP), SiPhy, and phastCons scores to estimate the evolutionary conservation of the nucleotides
and amino acid (aa) residues at which the variants occurred [21,23,24]. The hereditary hearing loss
homepage (HHL), online Mendelian inheritance in man (OMIM), human phenotype ontology (HPO),
and ClinVar databases were used to determine if there were any existing associations between the
identified variants and genes and HI. Candidate variants were considered when: (1) they occurred
in known HI genes (and genes expressed in the inner ear); (2) they had a predicted effect on protein
function or pre-mRNA splicing (nonsense, missense, start-loss, frameshift, splicing, start-loss, etc.);
and (3) they co-segregated with the HI phenotype within the family.

2.5. Sanger Sequencing

Sanger sequencing was performed for all the available family members (I.1, I.2, II.1, II.2, II.3, II.4,
and II.5; Figure 1A), 118 unrelated sporadic NSHI cases from Cameroon (Table S1), and 122 apparently
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healthy controls that were previously recruited as blood donors at The Central Hospital of Yaoundé.
Primers to target our variants of interest in exon3 (forward 5′-GAAGGAACATACTGGGGCGA-3′;
reverse 5′-AGCGCATTTTTGTTAGGCAGA-3′) and at the exon1-intron1 boundary (forward
5′-CTCTGAGCGAAAGAGAGAAAGAG-3′; reverse 5′-ACTTGTTGCTCCCACGACC-3′) of the CLIC5
gene were validated using NCBI BLAST. The optimal annealing and extension temperatures for the
PCR were 60 ◦C and 70 ◦C for 30 s and 1 min, respectively. PCR-amplified DNA products were
Sanger sequenced using a BigDyeTM Terminator v3.1 Cycle Sequencing Kit and an ABI 3130XL Genetic
Analyzer® (Applied Biosystems, Foster City, CA, USA) in the Division of Human Genetics, University
of Cape Town, South Africa. Sequencing chromatograms were manually checked using FinchTV v1.4.0,
and aligned in UGENE v34.0 to the CLIC5 reference sequence (ENSG00000112782; retrieved from
Ensembl browser).

2.6. Evolutionary Conservation of Amino Acids and Secondary Structure Analysis

We performed a multiple sequence alignment (MSA) of human CLIC5 with non-human similar
proteins to provide more evidence on the evolutionary conservation of the amino acid residue at which
our candidate missense variant occurred. A PSI-BLAST search against the non-redundant protein
database of CLIC5 was performed. Non-redundant, non-synthetic CLIC5 proteins from all the different
species in the 500 BLAST hits were manually retrieved as FASTA files. The MSA was performed using
CLUSTAL Omega v1.2.4 [25] and the MSA file was visualized using Jalview v2.10.5 [26]. Furthermore,
PSIPRED v4.0 [27] and Swiss-Model [28] were used to assess the secondary structural features of
both protein forms. Additionally, the InterPro [29] database was queried via the InterProScan web
service [30] to identify domains and potential domain changes for both protein forms separately.

2.7. Protein Modelling

Three-dimensional modelling was performed on the longest isoform of the CLIC5 gene as
follows: a homology model of the longest isoform (410 amino acids) of wild-type and mutant CLIC5
[NM_001114086.1: c.701T>C:p.(L234P)] was constructed using the program MODELLER based on
the available crystal structure of human chloride intracellular channel protein 5 (PDB ID: 6Y2H) as a
template [31]. PYMOL viewer was used for structural visualization and image processing.

3. Results

3.1. Participants Phenotypes

A total of seven individuals from “Family 24” were recruited, including three affected individuals
(II.1: 36 years old, II.2: 32 years old, and II.3: 25 years old), their parents (I.1: 61 years old, and I.2: 55
years old), and two unaffected siblings (II.4: 18 years old, and II.5: 16 years old) (Figure 1A). The most
likely mode of inheritance for the NSHI is AR. From the medical history, no environmental factors were
identified as a possible cause of HI, and no HI participant had a history of ophthalmological (blurred
or distorted vision, photophobia, eye pain, etc.) or neurological (vertigo, dizziness, etc.) symptoms.
Additionally, no vestibular, neurologic, or any other systemic abnormalities were detected by physical
examination. A history of prelingual and progressive HI was described for all three affected pedigree
members; however, before this study, no formal audiological assessment was performed for any of the
family members. Audiological assessment of the three affected individuals revealed bilateral profound
sensorineural HI (Figure 1B).

3.2. WES Identification of Candidate Gene and Variants

The average target region coverage was about 225×, with 96.30% of the target region being
covered to a depth of 10 X or more. After applying our various filtering criteria described in the
methods section, two candidate variants were found to occur in a known HI gene (CLIC5; MIM:607293)
and to co-segregate with the HI phenotype. These two variants which occurred in a compound



Genes 2020, 11, 1249 6 of 12

heterozygous state are the missense variant NM_016929.5:c.224T>C, and the splice-site variant
NM_016929.5:c.63+1G>A. The NM_016929.5:c.224T>C variant leads to the substitution of a leucine
by a proline amino acid residue at position 75 [NM_016929.5:p.(L75P)] and was predicted to be
damaging by 16 of the 17 bioinformatics tools used (Table S2). The NM_016929.5:c.63+1G>A variant,
which occurs in a canonical donor splice site, was predicted damaging by most of the tools that
can be used to evaluate non-coding variants, including MutationTaster, FATHMM-MKL, Eigen-PC,
CADD, and DANN (Table S2). Both variants were predicted as occurring in conserved positions of the
genome and were both absent from the gnomAD, UK10K, Greater Middle East (GME) variome project
databases, as well as the Single Nucleotide Polymorphism Database (dbSNP) (Table S2). Based on a
human splice finder server (HSF v3.1) and NNSPLICE 0.9, the variant NM_016929.5:c.63+1G>A is
predicted to break the consensus 5′ donor site “AAGGTAGGT” (which is altered due to the variation
“AAGATAGGT“) and probably alter the splicing of the pre-mRNA. The NM_016929.5:c.63+1G>A
variant might therefore alter normal protein synthesis and function through various mechanisms.
Based on the American College of Medical Genetics’ (ACMG) guidelines for the interpretation of
sequence variants, both variants were classified as pathogenic (NM_016929.5:c.63+1G>A: PSV1, PP1-S,
PM2, and PP3 and NM_016929.5:c.224T>C: PM2, PP3, PM3, PP1, and PP1-S) [32,33]. In addition to
CLIC5, only the CEP250 gene shows compound heterozygous synonymous variants that co-segregate
with hearing impairment (Table S3), which was unlikely to be the cause of the disease.

3.3. Sanger Sequencing Confirmation of Variants

Sanger sequencing confirms these candidate variants and their co-segregation with the HI
phenotype (Figure 1A,C). The three affected individuals (II.1, II.2, and II.3) were compound heterozygous
for both variants, the father (I.1) and an unaffected daughter (II.4) were heterozygous for the missense
variant, and the mother (I.2) and the other unaffected daughter (II.5) were both heterozygous for the
splice-site variant (Figure 1A). Neither of these variants was detected in the 122 controls or 118 sporadic
NSHI cases (Table S1) from Cameroon.

3.4. Analysis of the CLIC5—NM_016929.5(CLIC5):p.(L75P) Variant on the Protein

3.4.1. Evolutionary Conservation of Amino Acids

The NCBI PSI-BLAST search of CLIC5 (NP_058625.2) against the non-redundant protein database
found the variant position p.(L75P) to be highly conserved across all non-human species retrieved
in the top 500 BLAST hits (Figure 2). As expected, there was substantial conservation across an
extensive aa block (on which the variant resides) which forms the thioredoxin/Genetic Diversity
Statistics (GST)–N-terminal binding domain. This was consistent with the GERP and PhyloP scores for
conservation, indicating a strong evolutionary and functional constraint on the region.

3.4.2. Protein Modelling: Secondary Structure Analysis and Domain Search

A significant attenuation of the protein’s secondary structural features was predicted for
the NM_016929.5(CLIC5):p.(L75P) variant using the PSIPRED v4.0 server, whereby; there was an
abolishment of the β4 strand (Figure 3 and Figure S1 red box) and multiple changes affecting the
lengths of β strands and several helices were inflicted (Figure S1 black boxes). Using Swiss-Model,
a similar distortion in the secondary structure of the mutant protein was observed; shortening of the
β4 strand, although no β-strand loss was apparent. A domain search with InterProScan (InterPro
v80.0) predicted the loss of the N-terminal GST domain due to the variant (Figure S2). This domain
loss was also predicted to lead to the abrogation of CLIC5′s protein binding function (GO:0005515).
Model parameters were refined and showed improvement in model qualities (Table S4).
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Figure 3. (a) The residue Leu234 of NM_001114086.1:c.701T>C:p.(L234P), representing the long isoform
of missense variant NM_016929.5:c.224T>C:p.(L75P) is located in the extracellular domain of the CLIC5
protein. (b,c) The overall structure of CLIC5 and the Leu234 residue (represented by a stick model).
(d) Close-up view of the interaction pattern at position 234 of wild-type and mutant protein (f). Due to
the mutation, the shortness of the β-strand observed in the mutant protein was highlighted by a
dotted-circle. (e) The surface charge distribution of wild and (g) mutant CLIC5. Intra: intracellular;
extra: extracellular.
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Finally, we performed 3D modelling of the wild-type and mutant long isoform of CLIC5 (Figure 3).
The NM_016929.5:c.224T>C missense variant is located in a β-sheet in the extracellular domain of the
long isoform of CLIC5 [NM_001114086.1:c.701T>C:p.(L234P)] (Figure 3c). We found that there was
a local perturbation in the hydrophobic interaction of nearby residues at position 234 of the CLIC5
protein (Figure 3d,f). Pro234 affects the shortness of the nearby β-sheet conformation in the mutant
protein, as shown in Figure 3f. There was also a difference observed on the surface charge distribution
between wild-type and mutant (Figure 3e,g).

4. Discussion

This study is, to our knowledge, the first report highlighting the association of HI with CLIC5
variants in individuals of African ancestry, and the second to demonstrate this association globally.
Thus, the data confirms CLIC5 as a novel HI gene. Both pathogenic variants reported are novel:
(NM_016929.5:c.224T>C) and the splicing variant (NM_016929.5:c.63+1G>A), and were not found in
118 unrelated sporadic cases of NSHI cases, reinforcing the genetic and locus heterogeneity nature of
HI, and the importance of investigating diverse populations, particularly the understudied African
populations, to help to enhance and refine HI disease-gene curation. The contribution of CLIC5
to NSHI in humans was first described with the identification of a homozygous nonsense variant
[NM_016929.5:c.96T>A; p.(Cys32Ter)] that abrogated the protein function and co-segregated with
ARNSHI in a Turkish family [14]. The two affected individuals from the aforementioned Turkish family
presented an early onset sensorineural HI, which started mildly and progressed to severe-to-profound
HI. This HI phenotype is similar to that described in the present study, as our three affected participants
described a history of prelingual HI, and presented profound sensorineural HI at the time of the
study [14]. The corresponding mutant mice model (jbg mice), which has a deletion in the CLIC5
mice ortholog gene, resulting in impaired hearing and vestibular dysfunction [15]. CLIC5 was also
studied in 69 unrelated Spanish and 50 predominantly Dutch patients with ARNSHI, and no PLP
variants were identified [14]. In the present study, we did not find any clinical evidence of vestibular
or renal dysfunctions, unlike what was previously reported in the Turkish family [14], as well as in the
corresponding mutant mice model (jbg mice) that were also shown to have abnormalities in the foot
processes of the kidney podocytes leading to proteinuria [34,35]. Biological exploration of the kidney
functions of affected Cameroonian individuals with PLP in CLIC5 should be performed. In addition
to the inner ear and kidney abnormalities, the jbg-mutant mice also exhibited emphysema-like lung
pathology, hyperactivity, and gastric haemorrhage [14,36]. Additional studies on more families and
populations worldwide are needed to refine the phenotype of CLIC5-induced HI in humans.

CLIC5 (mapped on 6p21.1 locus) encodes a protein that belongs to the chloride intracellular ion
channel (CLIC) family [37]. The encoded protein (CLIC5) was shown to be highly expressed in the inner
ear, and important for sensorineural hearing [15]. CLIC5 protein associates with actin-based cytoskeletal
structures and may play a role in multiple processes, including hair cell stereocilia formation [15].
The main function of CLIC5A in the ear is the stabilization of membrane-actin filament linkages at the
base of hair cell stereocilia [15]. Therefore, a variant that abrogates CLIC5A or destabilizes its activity
would lead to the destabilization of actin-based complexes, fusion, and the elongation of hair cell
stereocilia, and consequently, impaired hearing [14,38]. The missense NM_016929.5(CLIC5):p.(L75P)
variant reported in this study is predicted to lead to the loss of the N-terminal GST domain. This is in
turn expected to abrogate CLIC5′s protein binding function (GO:0005515), and is therefore likely to
affect binding to ERM proteins. Interaction of CLIC5 with the actin-based cytoskeleton is dependent
upon its protein–protein interaction with ERM proteins [38].

There are three isoforms of CLIC5 [39]: The canonical isoform CLIC5B (410aa), CLIC5A (251aa) and
CLIC5C (205aa). All three isoforms show evidence of expression in the human inner ear, of which
CLIC5A shows the highest expression (251aa) [40]. The splice site variant we identified in this
study is predicted to affect two of these three isoforms, [NM_016929.5:c.63+1G>A (251 aa; CLIC5A);
NM_001256023.1:c.63+1G>A (205 aa; CLIC5C)], including isoform CLIC5A. This splice site variant is



Genes 2020, 11, 1249 9 of 12

located at the 5′ donor canonical splice site of exon 1 of these two isoform transcripts (position +1) and
predicted to lead to a loss of the consensus 5′ donor site. The missense variant reported in this study
[NM_016929.5: p.(L75P)] is predicted to affect all three isoforms of CLIC5 as a missense change.

Although the identified variants in the present study are predicted to be pathogenic (Table S2),
and to also affect the structure and function of the protein (Figure 2, Figures S1 and S2), more studies
in other populations will likely inform and strengthen the HI disease gene-pair curation, globally, as
illustrated with this case report.

5. Conclusions

We identified bi-allelic novel compound heterozygous pathogenic variants in CLIC5
(MIM:607293), the missense variant [NM_016929.5:c.224T>C; p.(L75P)] and the splicing variant
(NM_016929.5:c.63+1G>A), that co-segregated with non-syndromic autosomal recessive hearing
impairment in three affected members of a non-consanguineous family from Cameroon. This study
is the second report, worldwide, to describe the CLIC5–HI gene-disease pair in humans, and thus
confirms CLIC5 as a novel NSHI that should be included in targeted diagnostic gene panels. Our study
emphasizes the urgent need of using WES to investigate hearing impairment in understudied African
populations, in order to improve our understanding of hearing pathobiology.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/11/1249/s1,
Table S1: Demographic and clinical characteristics of isolated NSHI cases screened for the identified CLIC5
pathogenic variants. Mean age = 10.92 ± 4.84 (3–31) years, Table S2: Description of pathogenic variants identified
in CLIC5, Table S3: Synonymous likely benign variants identified in the CEP250 gene, Table S4: Model parameters
before and after refinement showing improvement in protein model qualities, Figure S1: Secondary structure
prediction of CLIC5 using the 251 amino acids isoform (NM_016929.5). Boxes indicate positions of difference
between the wild-type (CLIC5A:p.75L) and mutant (CLIC5A:p.75P). Red boxes show loss of the fourth strand
in the wild-type, while black boxes show changes in the lengths of strands and helices, Figure S2: Domains of
CLIC5A:p.75L (wild-type) and CLIC5A:p.75P (mutant) predicted by InterPro, based on the 251 amino acids isoform
(NM_016929.5). The GST N-terminal domain is lost in the mutant and its protein-binding activity is abolished.
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Appendix A Web Resources

ANNOVAR https://annovar.openbioinformatics.org/

Bureau international d’audiophonologie (BIAP) https://www.biap.org/en/recommandations/recommendations/tc-02-classification
ClinVar https://www.ncbi.nlm.nih.gov/clinvar/
dbNSFP (including dbscSNV) https://sites.google.com/site/jpopgen/dbNSFP
dbSNP https://www.ncbi.nlm.nih.gov/snp/

DRAGEN germline pipeline
https://emea.illumina.com/products/by-type/informatics-products/basespace-sequence-
hub/apps/edico-genome-inc-dragen-germline-pipeline.html

Ensembl https://www.ensembl.org/index.html
Gene ontology (GO) http://geneontology.org/

Genome aggregation database (gnomAD) https://gnomad.broadinstitute.org/

http://www.mdpi.com/2073-4425/11/11/1249/s1
https://annovar.openbioinformatics.org/
https://www.biap.org/en/recommandations/recommendations/tc-02-classification
https://www.ncbi.nlm.nih.gov/clinvar/
https://sites.google.com/site/jpopgen/dbNSFP
https://www.ncbi.nlm.nih.gov/snp/
https://emea.illumina.com/products/by-type/informatics-products/basespace-sequence-hub/apps/edico-genome-inc-dragen-germline-pipeline.html
https://emea.illumina.com/products/by-type/informatics-products/basespace-sequence-hub/apps/edico-genome-inc-dragen-germline-pipeline.html
https://www.ensembl.org/index.html
http://geneontology.org/
https://gnomad.broadinstitute.org/
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Genome analysis toolkit (GATK) https://gatk.broadinstitute.org/hc/en-us
Hereditary hearing loss homepage (HHL) https://hereditaryhearingloss.org/

Human phenotype ontology (HPO) https://hpo.jax.org/app/

Human splice finder (HSF) https://hsf.genomnis.com/home
InterProScan http://www.ebi.ac.uk/InterProScan/

MODELLER http://www.salilab.org/modeller
NCBI-BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
Online Mendelian inheritance in man (OMIM) https://omim.org/

PDB https://www.wwpdb.org/

PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/

PYMOL http://www.pymol.org/

RefSeq https://www.ncbi.nlm.nih.gov/refseq/

Swiss-Model https://swissmodel.expasy.org/

Uniprot https://www.uniprot.org/uniprot/Q9NZA1
UK10K https://www.uk10k.org/

World Health Organisation https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
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