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Abstract

Modeling the brain as a functional network can reveal the relationship between distributed

neurophysiological processes and functional interactions between brain structures. Existing

literature on functional brain networks focuses mainly on a battery of network properties in

“resting state” employing, for example, modularity, clustering, or path length among regions.

In contrast, we seek to uncover functionally connected subnetworks that predict or correlate

with cohort differences and are conserved within the subjects within a cohort. We focus on

differences in both the rate of learning as well as overall performance in a sensorimotor task

across subjects and develop a principled approach for the discovery of discriminative sub-

graphs of functional connectivity based on imaging acquired during practice. We discover

two statistically significant subgraph regions: one involving multiple regions in the visual cor-

tex and another involving the parietal operculum and planum temporale. High functional

coherence in the former characterizes sessions in which subjects take longer to perform the

task, while high coherence in the latter is associated with high learning rate (performance

improvement across trials). Our proposed methodology is general, in that it can be applied

to other cognitive tasks, to study learning or to differentiate between healthy patients and

patients with neurological disorders, by revealing the salient interactions among brain

regions associated with the observed global state. The discovery of such significant discrim-

inative subgraphs promises a better data-driven understanding of the dynamic brain pro-

cesses associated with high-level cognitive functions.

PLOS ONE | https://doi.org/10.1371/journal.pone.0184344 October 10, 2017 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Bogdanov P, Dereli N, Dang X-H, Bassett

DS, Wymbs NF, Grafton ST, et al. (2017) Learning

about learning: Mining human brain sub-network

biomarkers from fMRI data. PLoS ONE 12(10):

e0184344. https://doi.org/10.1371/journal.

pone.0184344

Editor: Satoru Hayasaka, University of Texas at

Austin, UNITED STATES

Received: April 17, 2017

Accepted: August 22, 2017

Published: October 10, 2017

Copyright: © 2017 Bogdanov et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data from fMRI

scans used in the validation of our techniques will

be made publicly available at time of paper

acceptance.

Funding: AKS would like to acknowledge support

from the National Science Foundation grant IIS-

1219254. This data is based on support to STG by

the US National Institutes of Health (grant: P01

NS044393) and the Institute for Collaborative

Biotechnologies through contract W911NF-09-

0001 from the U.S. Army Research Office. DSB

https://doi.org/10.1371/journal.pone.0184344
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184344&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184344&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184344&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184344&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184344&domain=pdf&date_stamp=2017-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184344&domain=pdf&date_stamp=2017-10-10
https://doi.org/10.1371/journal.pone.0184344
https://doi.org/10.1371/journal.pone.0184344
http://creativecommons.org/licenses/by/4.0/


Introduction

Network-based modeling and characterization of brain architectures has provided both a

framework for integrating imaging data as well as for understanding the function and dynam-

ics of the brain. Brain networks are traditionally constructed either from structural or func-

tional imaging data. Functional brain networks represent the associations between regions

estimated by statistical similarities in regional time series, as measured by correlation or coher-

ence [1–4]. In the case of fMRI data, regional gray matter activity is measured by the blood oxy-
genation level dependent (BOLD) signal.

Brain networks are commonly studied using techniques drawn from graph theory and

machine learning [5]. These techniques provide fundamental and generalizable mathematical

representations of complex neuroimaging data: nodes represent brain regions and edges repre-

sent structural or functional connectivity. This simplified graphical representation enables the

principled examination of patterns of brain connectivity across cognitive and disease states

[6]. While the majority of network-based studies have focused on the brain’s resting state [7],

more recent efforts have turned to understanding brain connectivity elicited by task demands,

including visual processing [1, 2] and learning [3]. Global network analysis of both functional

and structural connectivity has demonstrated that brain networks have characteristic topologi-

cal properties, including dense modular structures and efficient long-distance paths [8, 9].

Traditional network analysis tools are not necessarily sensitive to small perturbations in

functional or structural connectivity as they rely on network-wide statistics [10]. Recent efforts

have focused on developing new algorithms to identify specific subgraphs that are discrimina-

tive between brain states (cognitive or disease) and therefore critical for an understanding of

local neurophysiological processes. Zalesky and colleagues describe a set of methods to identify

groups of edges that are significantly different between two groups of networks [11, 12]. Kim

et al. recently proposed powerful statistical tests for identifying functional edges that differ

between groups [13, 14]. Motifs, defined patterns of local connectivity that occur frequently

across sessions and subjects, are groups of edges with particular topological properties that

may play specific functional roles [15, 16]. Hyperedges, considered by Bassett and colleagues,

were defined as groups of edges that vary significantly in weight over time [17], for example

during adaptive functions like learning or during higher-order cognitive processes like mem-

ory and attention [18]. In general, all of these tools seek to associate local network features (or

subgraphs) with cognitive function, offering fundamental understanding and the opportunity

to inform therapeutic interventions.

Here, we take an approach that is complementary to previous approaches focused on indi-

vidual brain regions or single connections [12, 13, 15, 19, 20]. Our focus is on the network

architecture of the brain, and how that architecture relates to behavior. Specifically, in this

study, we develop and apply a novel analysis framework for identifying subgraphs that dis-

criminate between individuals with differing behavioral variables. Our approach is: (i) data-

driven in that it does not make assumptions about network sparsity, edge independence, etc.;

(ii) enforces subnetwork connectivity in both the discovery and statistical scoring of discrimi-

native subnetworks; and (iii) draws on novel machine learning methods for network state clas-

sification. Particularly, we extend recent techniques from labeled network mining [21], whose

goal is to classify network instances based on individual node/edge states. In our setting, the

goal is uncover a network-specific type of biomarker—a connected subgraph of functional

edges—whose coherence predicts whether individuals are learning a motor sequencing task at

a high or low rate. We learn a low-dimensional subspace of connected brain regions that dis-

criminates among the categories representing high and low learning rates. To ensure generali-

zation in the presence of few training instances, we build multiple models by performing k-
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fold validation and repeating the fold partitioning multiple times. We then mine conserved

discriminative subnetworks across runs using frequent subgraph mining [22] and employ ran-

domized statistical tests to establish the significance (in terms of q-value [23]) of the discovered

subgraphs while implementing a false discovery rate correction for multiple comparisons.

We employ our framework to uncover the subgraphs that maximize the discriminative

potential in explaining the differences in the rate of motor learning between individuals. The

data for our analysis comes from a motor learning task in which subjects’ neural activity was

measured using fMRI in repeated sessions as they learned a set of 12-note finger sequences [3].

Subjects learned three different sequences, each of which was presented as a string of spatial

notes on a 4-line tablature. Each line corresponded to one of four fingers. The performance

measure was movement time, which is the time required to perform a given 12-note sequence.

We assign individual sessions to two categories—high and low rate learner sessions based on

the measured slopes of learning rate. Intuitively, if a subject’s time in a given session decreases

significantly, we classify the subject in this session as high-rate learner. The fMRI data was

aligned to the Harvard-Oxford Brain Atlas (part of the FSL tool [24]) involving 112 cortical

and subcortical regions. A functional edge strength linking two cortical areas was estimated as

the wavelet-based coherence [4] of the corresponding regional time series.

Our work is the first to propose a general methodology for identifying network-based bio-

markers for learning rate based on connected subgraph mining. Amongst tens of thousands of

possible edges between 112 brain regions, we find connected functional subgraphs comprised

of 1-5 edges that predict whether a subject is a high or low rate learner. These learning bio-

markers agree with observations from previous studies [25–27] and further suggest new brain

region relations which are essential to learning. Our proposed methodology is general in that

it can be applied for studying the differences in other kinds of cognitive states or functional

connectivity differences between disease and controls.

Materials and methods

All human participants provided written informed consent after the study was approved by

the University of California Santa Barbara Institutional Review Board. Our goal is to detect a

set of functional edges interconnecting cortical regions whose coherence can predict differ-

ences among subjects in fMRI cognitive or disease-related studies. In the context of our data,

the goal is to predict individual learning rates. We expect that learning-related changes in

functional connectivity will be located in coordinated neural circuits involving co-activated

regions forming a connected component [28–30], and we therefore restrict our attention to

predictive edges that form a connected subgraph. As the rate of learning increases, some func-

tional edges within a subgraph of interest will fall into a low coherence state (i.e., coherence

between their adjacent regions’ activation will approach 0), while others will move into a high

coherence state. We seek to understand these dynamics and extract structures (in the form of

functional subgraphs) that predict the global behavioral state of the individual: high/low rates

of learning that are statistically significant.

Definition: A subnetwork biomarker is a statistically significant connected subgraph of func-

tional edges whose coherence states can collectively differentiate between cognitive scores (e.g.,

learning rate) of subjects.

The potential of a biomarker to differentiate between functional networks corresponding to

low or high learning rate subject sessions is called discriminative power (and the biomarker is

called discriminative). An overview of our approach is presented in Fig 1. We employ a dis-

criminative biomarker mining approach to analyze functional networks constructed from

fMRI scans of 18 subjects performing a motor learning task over 3 learning sessions that
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occurred on 3 different days. The sessions are divided into low and high learning rate sessions

based on the average reduction in movement time to complete the motor task. The goal of our

analysis is to identify biomarkers (subgraphs) that are discriminative of the session type (high

vs. low rate learners), while at the same time statistically significant. We describe the steps in

our approach in more detail in what follows.

Data acquisition and preparation

The data for our analysis was collected during a motor learning experiment in which subjects’

neural activity was measured using fMRI [3, 31]. The data was originally used to analyze the

brain’s functional flexibility during learning. Here, we follow the same protocol for data

Fig 1. An overview of the method. We start with experimental fMRI and learning rate measurements from individual sessions. We compute pairwise

coherence among all regions and create session-specific functional networks with a global label based on the learning rate. We transform the coherence

networks into edge-dual graphs and perform a discriminative subspace learning with multiple-split k-fold validation to produce a set of discriminative

connected subgraphs. Next, we mine conserved connected subgraphs identified by subspace learning and compute the significance of their individual

accuracy while implementing a false discovery rate correction for multiple comparisons to obtain our final biomarkers.

https://doi.org/10.1371/journal.pone.0184344.g001
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preparation, but focus on subgraph biomarkers associated with learning. Next, we provide a

description of the original experimental procedure, apparatus, imaging protocol and data

processing.

Experimental procedure. While in supine position, subjects performed a cued sequence

production (CSP) task using the four fingers of their left hand, thumb excluded. To maximize

comfort and to provide an angled surface to position the response box, subjects were posi-

tioned inside the scanner with foam padding under their knees. Padding was also placed

under the left arm to provide extra support when responding during the task. Subjects per-

formed the CSP task by responding to visually cued sequences on the response box using their

left hand. The sequences were presented in static form, as a series of 12 music notes on a 4-line

music staff. Subjects were instructed to type the sequences, reading from left to right, so that

the top line of the staff mapped to the leftmost finger and the bottom line mapped the right-

most finger. Each 12-element sequence contained 3 notes per line. Each trial began with a fixa-

tion ‘+’, displayed for 2 seconds. The complete 12-element sequence was presented

immediately following the offset of the fixation ‘+’, and participants were instructed to initiate

responding quickly and accurately. The sequence remained on screen for the responding dura-

tion, or a time limit of 8 seconds, whichever came first. After completion of a correct sequence,

the notes were replaced with a fixation signal until the trial duration was reached. With any

incorrect press, a verbal cue “INCORRECT” appeared and the participant waited for the next

trial.

Subjects trained on 16 different sequences, with training divided into 3 levels of intensity.

Of these, 3 sequences were trained frequently (189 trials/sequence), with training distributed

for these “frequent” sequences evenly across the training sessions. In addition, a second set of

three sequences were presented moderately for 30 trials, and a third set of ten additional

sequences, were presented rarely between 4 and 8 trials during training.

Frequent sequences were practiced in blocks of 10 trials, with 9 out of 10 trials in a block

belonging to the same frequent sequence, and the other trial belonging to one of the ten rarely

trained sequences. Trials were presented using an event-related structure, with sequence trials

separated using an interstimulus interval that ranged between 0 and 20 seconds, along with

additional time remaining following the completion of the previous trial. To provide some

motivation for good performance, after each block of trials, subjects received feedback that

detailed the number of correct trials and the average movement time (defined as the time to

complete a sequence) needed to complete a correct sequence in that block. Scan epochs lasted

40 trials (4 blocks, 345 scan TRs), and each training session contained 6 scan epochs (2070

scan TRs).

Apparatus. Task presentation and online behavioral data acquisition was handled using a

Dell Latitude D620 laptop computer running MATLAB 7.1 (Mathworks, Natick, MA) and the

Cogent 2000 toolbox. Key-press responses and response times were collected using a custom

response box with fiber optic signal transduction connected to a response card (DAQCard-

6024e, National Instruments, Austin, TX).

Imaging protocol. Functional MR images were collected using a 3T Siemens Trio with a

12-channel phased-array head coil. For each scan epoch, a single-shot echo planar imaging

sequence sensitive to BOLD contrast was used to acquire 33 slices per scan (repetition time

[TR]/echo time[TE] 2000/30 ms, 3 mm axial slice, 0.5 mm gap, flip angle of 90˚, field of view

192 mm, 64 × 64 inplane acquisition matrix). Prior to the initial functional scan epoch, a high-

resolution T1-weighted scan (TR/echo time 15.0/4.2 ms, flip angle of 9˚, 3D acquisition, 0.89

axial slice, field of view 256 mm, 256 × 256 inplane acquisition matrix) was collected.

Image preprocessing was performed using the FMRIB (Oxford Centre for Functional Mag-

netic Resonance Imaging of the Brain) included in the Software Library (FSL) [24]. Functional
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imaging time series realignment was performed using the fully automated program MCFLIRT

(Motion Correction using FMRIB’s Linear Image Registration Tool) with realignment to the

middle time series image. Images were high-pass filtered (50s cutoff), and spatially smoothed

8mm with a Gaussian kernel. No temporal smoothing was used. Further, signal intensity was

normalized across all functional volumes in order to control for possible fluctuations in across

sessions. Functional volumes were normalized to the Montreal Neurological Institute (MNI)-

152 template with affine transformation (12 DOF) using FLIRT (FMRIB’s Linear Image Regis-

tration Tool). We parcellated the brain into 112 cortical and subcortical regions using the Har-

vard-Oxford structural atlas as supplied with FSL in standard space (MNI-152). For each

individual participant and for each of the 112 regions, we calculated the regional activation

level time series by finding the mean across all voxels in a region.

Subjects. The study involved 18 paid young adult participants without formal training in

playing a musical instrument, with normal vision, and without neurological or psychiatric dis-

orders. The number and order of sequence trials was identical for all participants. All partici-

pants completed three training sessions in a five-day period.

Functional networks and learning rate labels. Edges between nodes represented the pair-

wise coherence of the average fMRI time series for a pair of brain regions [32]. More specifi-

cally, we estimated a magnitude squared wavelet coherence, which identified areas in time-

frequency space where two time series co-varied in the frequency band 0.06-0.12 Hz (we used

fixed binning of this interval). This measure of functional connectivity was estimated using the

minimum-variance distortionless response method [33], and provides a measure of nonlinear

functional association between any two time series. In using the coherence, which has been

demonstrated to be useful in the context of fMRI neuroimaging data [4], we were able to mea-

sure frequency-specific linear relationships between time series.

The coherence matrix of every session corresponds to a fully connected graph (a clique)
involving all brain regions as nodes and coherence values associated with edges. Apart from

the coherence values, each session is also characterized by movement time—the time to com-

plete the sequence. Motor learning is well-characterized by an exponential drop-off in move-

ment time; early learning shows a fast rate of drop-off, and is well-fit by one exponential curve,

and later learning shows a slower rate of drop-off, and is well-fit by a second exponential curve

[34, 35]. Here we study early learning, taking place over 3 days of moderate practice, and there-

fore examine a single exponential fit of the movement time versus trial bin. The magnitude of

the exponential drop-off parameter indicates the gradient of the learning slope, where a

sharper drop-off in movement time corresponds to individuals who are faster learners in the

session, and a less-sharp drop-off in movement time corresponds to individuals who are

slower learners respectively [30, 36].

We derive a learning rate class label (high and low) for each session-specific network based

on the drop-off in learning slope. To estimate the threshold between the two classes, we cluster

the drop-off values in two groups multiple times and adopt the consistent pivot between clus-

ters over multiple runs as a threshold. Details on the threshold estimation are provided in the

Supporting Information (S1 File). It is worth mentioning that multiple levels of learning rate

can also be accommodated within our framework, requiring only minor modifications, how-

ever we restrict the analysis to two classes due to the limited number of instances. Further dis-

cussion of multiple-class analysis is available in the following section.

Mining discriminative subgraphs

As a result of the data preparation we obtain a set of global-state networks: graphs with local

coherence values on edges and a global network state indicating whether high or low learning
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rate was observed in the corresponding session. The setting is similar to that in a classification

task in machine learning in that we have a set of instances (functional coherence networks)

characterized by features (coherence values) and associated with labels (learning rates). The

distinctive aspect in global network state classification is that there is an inherent structure

imposed on the features: the shared network topology. The aim in global state network classifi-

cation and feature selection is to find small connected subgraphs involving the most discrimi-

native nodes, whose labels predict the global state of network instances. In our case, these

subgraphs will correspond to interconnected brain regions, whose patterns of pairwise coher-

ence discriminates between high and low learning rates.

We employ our recently proposed method for global state classification [21] to mine candi-

date substructures. Prior to describing our method, let us briefly discuss existing techniques

[21, 37, 38] that deal with global network state classifications. They typically work with node

labels as opposed to edge labels. Hence, in order to employ those techniques, we represent our

data in this common framework by transforming the original functional network into its

edge-dual graph. Original functional edges become vertices in the edge-dual graph. Two verti-

ces have a link between them if their corresponding edges in the original network shared a

common end-node (region in the brain). To avoid confusion, we will use edges and nodes

when discussing the original functional graph among brain regions (112 nodes and 6216

edges); and vertices and links to refer to the elements of the edge-dual graph (6216 vertices and

344988 links). Similar consideration of original edges as vertices in a line graph has been also

adopted by others in the network analysis literature [39, 40].

The transformation is demonstrated in Fig 2 for a small example network of 4 nodes and 6

edges. If we start with a complete graph G(N, E) of |N| nodes and |E| = |N|(|N| − 1)/2 edges, the

corresponding edge-dual graph Ged(E, L) will have |E| vertices and |L| = |E|(|N| − 2) links. In

our example graph (Fig 2), we have 4 nodes and 6 edges and in the corresponding edge-dual

graph we obtain 6 vertices and 12 links. In this transformation, originally adjacent edges

become vertices in the dual graph and two vertices are connected by a link. Note that this

Fig 2. Edge dual graph. Transformation from edge-weighted graph (A) to a corresponding edge-dual graph (B). Edges between nodes

become vertices and are connected by links if they share a node in the original graph.

https://doi.org/10.1371/journal.pone.0184344.g002

Learning about learning: Mining human brain sub-network biomarkers from fMRI data

PLOS ONE | https://doi.org/10.1371/journal.pone.0184344 October 10, 2017 7 / 22

https://doi.org/10.1371/journal.pone.0184344.g002
https://doi.org/10.1371/journal.pone.0184344


transformation ensures that a subgraph of connected vertices in the dual graph corresponds to

a connected subgraph of edges in the original functional network.

Discriminative subgraphs in a global network state setting can accurately differentiate

between the global states. The space of potential discriminative subgraphs encompasses the set

of all possible connected substructures of the functional brain network, which is exponential

in the number of brain regions. Hence, the fair consideration of all subgraphs is computation-

ally intractable even at the spatial resolution of 112 cortical and subcortical regions. Early

methods in this area resort to sampling [37, 38]. While computationally efficient and ensuring

the connectivity of discovered subgraphs, such approaches produce subgraphs that vary signif-

icantly across runs. To avoid such variation, we employ our recently introduced spectral learn-

ing method called Sub-Network Learning (SNL) [21] to produce candidate biomarkers. The

key idea behind SNL is to project the original network instances to a low-dimensional sub-

space in which instances of different global states are well separated. Simultaneously, the

method regularizes the learning process by enforcing locality in the edge-dual network topol-

ogy within the projection. Consequently, dimensions of the learned low-dimensional subspace

correspond to combinations of connected subnetworks with high global-state classification

accuracy.

SNL constructs two meta-networks that capture the similarity relationships among network

samples corresponding to individual sessions. It is important to note that vertices in these

meta-networks correspond to edge-dual graphs, while a value associated with an edge repre-

sents the similarity between two edge-dual graphs. We denote with G+ the first meta-network,

and with A+ its associated affinity matrix where an entry Aþij captures the similarity between

two session-specific graphs i and j that have the same global state value. Likewise, we use G− to

denote the second meta-network and A− its associated affinity matrix where entry A�pq captures

the similarity between graphs p and q that have different global states.

In [21] we discuss several ways to compute the similarity among graph samples and for this

study we adopt the cosine distance. Under this measure, all edge coherence values within a ses-

sion are modeled as a vector and the pairwise cosine distances between session-specific vectors

are used as weights in G+ and G−. Modeling more than two classes, e.g., different levels of

learning rate, is possible within the framework where the semantics of G+ and G− remain

unchanged. For ordinal classes, i.e. learning rates with an order imposed on them, it might be

desirable to apply an appropriate scaling for elements of G− such that pairs of instances of

“closer” labels incur smaller penalty. Prediction of continuous network labels (regression)

would require a significant redesign of our learning framework, a direction we plan to explore

in the future. It is important to note that higher number of classes or regression analysis would

require much bigger training sets, hence we focus on two-class analysis for the sensorimotor

experiment at hand.

Given the dissimilarity information encoded in G+ and G−, we learn a transformation func-

tion that maps graph samples from the original space to a d-dimensional latent subspace, of

which graphs with the same global labels are mapped close to each other, while graphs with dif-

ferent global labels are rendered far apart. This objective ensures that graphs from different

classes are well-discriminated. Learning this transformation function is further regularized by

the graph topology, which promotes the inclusion of well-connected subgraphs that are related

to the prediction of the global low and high learning rates.

SNL can learn an optimal subspace of arbitrary dimensionality d as long as d is smaller than

the total number of vertices in the edge-dual graphs. However, similar to the approach of spec-

tral clustering [41] or Fisher’s linear discriminant analysis [42], one often chooses d equal to

one less than the number of expected clusters (or classes). Hence, to discriminate between low
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and high learning states, we project network samples onto a 1-dimensional subspace (i.e.,

d = 1). The dual-optimization function can be formulated as follows:

( minimize
Pm

i¼1

Pm
j¼1
k uTvi � uTvj k2Aþij

maximize
Pm

p¼1

Pm
q¼1
k uTvp � uTvq k2A�pq

subject to uTCu � t

and uTVDVTu ¼ 1;

ð1Þ

where m denotes the number of edge-dual graphs, and vector vi stores vertex values (i.e.,

coherence) of the i-th graph sample. Session-specific vectors vi comprise the columns of matrix

V. Matrix D is diagonal with entries Dii ¼
P

jA
þ

ij . Additionally, C is the combinatorial Lapla-

cian matrix encoding the topology of the edge-dual graphs, and t is a parameter that captures

the impact of this topology on the coefficients of the mapping vector u. Unlike Lasso [43]

where a solution path can be found via varying a parameter controlling the L1-norm sparsity,

here we impose a quadratic form penalty similar to L2-norm ridge regression [44]. Thus, the

solution defines a rank order (based on u’s elements) of network edges. The optimal value for t
is selected via cross-validation which is typical for such settings [21, 44]. More specifically, we

tune not only t, but also the number of selected edges based on grid search using an inner

cross-validation on the training data. The first constraint in Eq (1) is similar to ridge-shrinkage

in linear regression [44] based on the graph topology, and thus its purpose is to “shrink” values

of irrelevant vertices to zero, while the second constraint removes the scale freedom of vector

u to ensure uniqueness of the solution. Detailed derivations and algorithmic solutions for opti-

mizing this objective function can be found in [21].

Compared to recent alternative techniques [37, 38], SNL always produces a unique solution

and more importantly, its solution is globally optimal with respect to the optimization func-

tion. Specifically, one alternative method, termed MINDS [37], is based on Markov Chain

Monte Carlo (MCMC) while while another, called NGF [38], relies on a heuristic sampling

procedure from the exponential space of all possible subgraphs. Both produce unstable results

across runs due to their sampling from a large (exponential) space of possible subgraphs.

These alternatives are, thus, less suitable for selecting consistent subgraph biomarkers within

cohorts.

For our task of learning rate classification, we learn the projection vector u using SNL and

further threshold it to obtain a subset of the features. A linear classification model based on the

retained features produces on average cross-validation accuracy of 81%. In contrast, a widely

adopted support vector machine (SVM) classifier presented with the full set of 6216 features/

vertices achieves 76% classification accuracy. Note that both results are based on 9-fold cross

validation of the session instances. The reason for this difference is that SVM does not take

advantage of the inherent graph structure among features which in our case model coherence

values. Importantly, SNL outperforms SVM while using only a small subset of the features (i.e.,

those included in the discriminative subgraphs), while SVM uses all features. While feature

selection can be performed as a preliminary step to improve SVM’s accuracy, off-the-shelf fea-

ture selection methods cannot enforce graph connectivity of the selected features. On the con-

trary, SNL optimizes classification accuracy and connectivity of employed features

simultaneously. Hence, beyond classification accuracy, we employ SNL as a feature selector in

order to identify candidate subnetworks that we then subject to significance testing, retaining

only conserved and statistically significant subnetwork biomarkers. SNL’s source code is avail-

able at http://www.cs.ucsb.edu/*dbl/publications.php.
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Significant biomarkers

Our substructure mining approach extracts a set of connected discriminative subgraphs based

on the classes of global network state instances. For our application, one can view SNL as a fea-

ture selection method with regularization based on the graph structure captured using edge

coherence values. When the number of training instances is small and the instances are high-

dimensional, feature selection approaches may suffer from overfitting to the training data. Our

goal, however, is to discover biomarker subgraphs whose predictive power is expected to gen-

eralize to novel unseen instances of functional networks and is also statistically significant. To

achieve these desirable properties, we perform subgraph selection multiple times for random

subsets of the training instances and focus on conserved subgraphs that are consistently

selected. This approach is conceptually similar to Bootstrap aggregation [45] with the distinc-

tion that our goal here is to detect a stable subset of discriminative features as opposed to com-

bine the predictions of multiple classifiers. Therefore, since there is no available ground truth

for biomarkers (i.e. functional edges that are guaranteed to be associated with learning), con-

ventional quality measures like sensitivity, specificity and ROC curves are not applicable for

quantifying the quality of the outcome. Instead, we evaluate the statistical significance of the

predictive power of conserved subgraphs using a q-value statistic that implements a strict false

discovery rate correction for multiple comparisons [23].

Conserved subgraphs. A common machine learning approach used to improve the gener-

ality and stability of a learned model is Bootstrap aggregation [45], where multiple versions of

a training set are generated and the individually trained models are aggregated to produce a

single model. Our method generally follows this strategy. However, unlike Bootstrap aggrega-

tion which samples the data with replacement and actually is an ensemble method, we train

our models based on cross validation and perform such cross validation multiple times in

order to evaluate the consistency of the uncovered subnetworks. Specifically, we perform

9-fold cross validation 5 times (45 training sets in total) and select candidate biomarker sub-

graphs based on their consistency in cross validation, i.e., subgraphs conserved over multiple

training runs. We also ensure connectivity in the resulting candidate biomarker subgraphs, as

our goal is to capture differences in coordination among communicating brain regions

involved in a common cognitive function or neurophysiological process (further details avail-

able in S1 File).

The problem of obtaining conserved subgraphs using SNL is similar to frequent connected

subgraph mining (FSM) [46]. Given a database of subgraphs and a frequency threshold, the

goal of FSM is to compute connected subgraphs that appear more frequently in the database

than a specified frequency threshold [22]. For our setting, such subgraphs will appear in at

least a pre-specified number of trained models (i.e., subgraphs obtained by SNL). The rich lit-

erature on the general problem of frequent subgraph mining includes applications to compu-

tational chemistry, program analysis, and others with multiple proposed variations of the

problem and corresponding methods [46]. For our analysis, we employ gSpan [22], a com-

monly used and computationally efficient approach for general subgraphs. The input to the

algorithm is the set of possibly disconnected subgraphs obtained over multiple runs of SNL

and a frequency threshold. For our analysis, we require that subgraphs are selected in at least a

third of the runs of SNL. Less conservative frequency thresholds, significantly increase the

number of candidate subgraphs but do not increase the number of subgraphs that pass the sig-

nificance test (described next). Further details on this step of the analysis are provided in the

Supporting Information (S1 File).

Testing the statistical significance of conserved subgraphs. To evaluate the significance

of the individual discriminative power of the obtained conserved subgraphs, we compute their
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q-values [23] with respect to a random population of connected subgraphs of matching size.

We choose the q-value as our significance measure as it reflects the false discovery rate (FDR),

as opposed to the false positive rate (FPR) captured by p-values. The q-value measure of statis-

tical significance has been employed for genome-wide studies and has significant advantages

over alternative corrections for FDR [23].

One challenge in computing the q-value for our subgraphs is that we need a background

model of expected discriminative power of random graphs. To estimate this background

model for subgraphs of varying number of edges, we sample connected graphs of fixed size

uniformly at random and compute their accuracy in classifying all training instances based on

an SVM classifier with polynomial kernel, involving the corresponding subset of features. To

ensure uniform sampling of connected subgraphs, we employ a random-walk based sampling

technique with degree-based rejection [47, 48] (details available in S1 File). To estimate the p-

values and subsequently q-values for our conserved subgraph candidates, we use the corre-

sponding background accuracy distributions. We retain subgraphs of q-value�0.015, thus the

FDR for our selected subgraphs is 0.015 [23].

Results

We apply our biomarker mining technique to the fMRI data acquired during the sensorimotor

learning task described above consisting of session-specific functional networks coupled with

global states: high and low learning rates. We discover 21 subgraph biomarkers that are both

conserved in the sets of candidates produced by SNL and whose individual accuracy is signifi-

cant (q-value� 0.015). These candidate subgraphs are selected based on their consistent detec-

tion (at least in a third of all runs) in 9-fold cross validation performed 5 times where the

optimal parameters are chosen based on the training accuracy and tested on the left-out fold

according to [44]. The sizes of the subgraphs range between 1 and 5 edges which connect 2 to

6 brain regions. Their individual training accuracy ranges between 74% and 85% (based on an

SVM with a polynomial kernel). The list of all conserved and significant subgraphs as well as

their individual accuracy and significance is provided in the Supporting Information (S1 File).

These subgraphs share edges and larger substructures, i.e., there is redundancy in the brain

regions and connections they cover. We, thus, focus our analysis on the union of their edges

which corresponds to two disjoint connected regions.

Fig 3 shows the two biomarker regions (mapping of all brain region ids to anatomical

names is provided in S1 File). The first biomarker is the bilateral superior temporal-parietal

(BSTP) biomarker (Fig 3A), and it involves bilateral planum temporale and parietal operculum

as well as the right superior temporal gyrus (the posterior portion). We represent the correla-

tion between edge coherence and learning rate in Fig 3B. The arrows associated with edges

capture both the correlation sign (positive correlation corresponding to upward green arrow)

and the magnitude (arrow length). In the case of the BSTP biomarker (Fig 3B), the dominant

correlation is positive and in particular higher coherence in the circuit composed of the left

and right planum temporale and the superior temporal gyrus corresponds to sessions of high

learning rate.

Particularly interesting in the bilateral superior temporal-parietal biomarker is the involve-

ment of the parietal operculum whose coherence with planum temporale has a negative corre-

lation with learning rate. Notably, the parietal opercular cortex is involved in manipulation

and macroscopic tactile sensation [25, 49], processes that are critical to participants learning

this task which requires a growing familiarity with the keyboard and the mapping of stimuli to

movements. Parietal opercular cortex is also involved in predicting sensory consequences of

motor commands [26, 50]. In light of these roles for the parietal operculum in motor tasks, we
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can now interpret the BSTP biomarker. The learning rate is high when the earlier required

dependence on simple sensory motor mapping has been completed, and therefore parietal

operculum is no longer needed.

The second biomarker is predominantly in the occipital lobe (Fig 3C) and we will refer to it

as the bilateral occipito-temporal (BOT) biomarker. It interconnects the bilateral occipital fusi-

form gyrus, lingual gyrus, occipital pole, and intracalcarine cortex, as well as the right supercal-

carine cortex. All of the above regions are involved in visual processing. Overall, the coherence

between the cortical regions in the left and right hemisphere is negatively correlated with

learning rate. This means that there is communication among visual cortex regions in the

early sessions when subjects are still getting familiar with the visual cues and do not register

high rates of task completion. This visual cortex coordination is reduced in high learning rate

sessions. An exception to that trend is the circuit involving the left and right lingual gyrus and

its coherence with the occipital poles and occipital fusiform gyri. This circuit is more coherent

Fig 3. Discriminative biomarker regions related to learning formed as the union of edges in individual

biomarkers. (A) The bilateral superior temporal-parietal (BSTP) biomarker region involves planum

temporale, parietal operculum and the right superior temporal gyrus, while (C) the bilateral occipito-temporal

(BOT) biomarker region resides predominantly in the occipital cortex, involving vision-related regions. The

biomarker regions are visualized both superimposed on the brain (A), (C) and as logical graphs (B), (D). The

latter also shows the correlation between edge coherence and the learning rate of task completion (green

upward arrow means the edge is coherent in sessions with high learning rate). Mapping of all brain region ids

to anatomical names is provided in (S1 File).

https://doi.org/10.1371/journal.pone.0184344.g003
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in high learning rate sessions and less coherent in low learning rate sessions. Unlike the calcar-

ine cortices, the lingual and fusiform gyrus are higher order visual areas. We speculate that the

nature of the task—visually decoding tablature with 12 different colored notes—is highly

dependent on these higher order visual processing areas. Stronger coherence among these

areas would lead to faster learning.

The CSP task requires subjects to plan sequential movements from relatively complex visual

stimuli. Interestingly, we found that subjects with more shallow learning curves had greater

connectivity of primary visual cortical areas, typically involved in processing of low level visual

features. On the other hand, we found that steeper learning curves were correlated with

increased connectivity in higher-order visual regions, regions which are involved in visual

object recognition [51], including words [52]. These results indicate that greater synchrony in

higher-level visual regions supports quicker learning in particular, when learning a motor skill

involves the parsing of complex visual stimuli. This suggests that greater connectivity of

higher-level visual regions involved in recognition might signify the perception of sequential

note patterns as unique motor sequence identifiers and less as collections of individual notes.

It is important to note that the available training data in our learning task do not deem any

significant and predictive bridging edges/paths that connect the two biomarker regions.

Under more observations or different learning tasks the two biomarker regions may merge in

one or may change in terms of edge and region memberships.

All distinct biomarker edges are also listed in Table 1 together with corresponding statistics

such as average coherence in low and high learning rate sessions and the actual value of corre-

lation with learning rate. Additional analysis and discussion of the two biomarker regions fol-

lows in the subsequent sections.

Table 1. Summary statistics of the selected biomarker edges. The first two columns show the region names and involved functional edges within the 2 bio-

marker regions. The next three columns show the average coherence values in high-rate and low-rate learning sessions, respectively. The last column shows

the correlation of edge coherence and the session learning rate.

Region Functional edge Avg-high Avg-low Correl. with learn. rate

BSTP R sup. temporal gyrus, post / R planum temporale 0.531 0.466 0.523

L planum temporale / R sup. temporal gyrus, post 0.370 0.296 0.492

L planum temporale / R planum temporale 0.419 0.307 0.467

L parietal operculum / L planum temporale 0.422 0.432 -0.087

R parietal operculum / R planum temporale 0.446 0.502 -0.241

BOT L lingual gyrus / R lingual gyrus 0.699 0.652 0.298

R occipital fusiform gyrus / R occipital pole 0.553 0.446 0.191

L occipital fusiform gyrus / L occipital pole 0.576 0.444 0.164

L lingual gyrus / L occipital pole 0.462 0.401 0.005

L supercalcarine cortex / R lingual gyrus 0.43 0.457 -0.0293

L intracalcarine cortex / R intracalcarine cortex 0.623 0.626 -0.0749

L supercalcarine cortex / R intracalcarine cortex 0.546 0.598 -0.152

L occipital pole / R intracalcarine cortex 0.390 0.368 -0.187

L supercalcarine cortex / L occipital pole 0.309 0.344 -0.264

R intracalcarine cortex / R occipital pole 0.386 0.383 -0.299

L supercalcarine cortex / R occipital pole 0.296 0.356 -0.419

https://doi.org/10.1371/journal.pone.0184344.t001
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Differences in high- and low-rate learning sessions

Biomarkers are discriminative between learning rates based on their individual edge coherence

values. However, to better understand the potential differences in their coordination of distrib-

uted neural circuits, we next examine the biomarkers’ average coherence profile patterns. We

visualize both biomarkers in their anatomical locations in the brain, and we vary the thickness

of the edges to represent the average coherence observed in high (Fig 4A and 4D) and low

(Fig 4B and 4E) learning rate sessions. The actual average values and their difference are also

reported in Table 1. The most salient features of high-rate learning sessions associated with

substantially high coherence are edges 40L/48L (left occipital fusiform gyrus—left occipital

pole), 88R/96R (right occipital fusiform gyrus and right occipital pole) and 46L/94R (left and

right planum temporale). These areas are key players in visual processing and color recogni-

tion [27], critical cognitive processes required by the task.

The most salient features of high-rate learning sessions associated with substantially lower
coherence are edges 47L/72R (left supercalcarine cortex and right intracalcarine cortex), 47L/

96R (left supercalcarine cotex and right occipital pole) and 91R/94R (right parietal operculum

and right planum temporale). In Fig 4C and 4F, we display edges with reduced coherence in

high learners in red and edges with increased coherence in high learners in blue; the thickness

of each edge corresponds to the magnitude of the difference.

Discussion

Identifying the neural-circuit level drivers of higher order cognitive processes in humans is a

critical frontier in human neuroscience. Reaching this goal will require concerted efforts across

many fields of science, leading to the development of technologies from novel imaging tech-

niques to new powerful computational tools that can extract both descriptive statistics and pre-

dictive features. We seek to address the latter challenge by offering a methodological approach

Fig 4. Average coherence of edges between high- and low-rate learning sessions in the two

biomarker regions. Edge thickness encodes the average coherence in high (A), (D) and low (B), (E) learning

rate sessions, as well as the absolute difference between the averages (C), (F). Furthermore, the blue color in

(C), (F) designates the average high-rate learning coherence being larger than that of low-rate learning and

the red color shows the opposite case. Mapping of all brain region ids to anatomical names is provided in S1

File.

https://doi.org/10.1371/journal.pone.0184344.g004
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to identify discriminative network biomarkers in the form of connected subgraphs that can be

used to separate non-invasive neuroimaging measurements according to cognitive perfor-

mance. Our approach capitalizes on recent advances in computer science and graph mining,

and is accompanied by strict statistical testing and validation. We exercise our approach in the

context of visuo-motor skill learning, and uncover two predictive biomarkers that distinguish

high from low learning rate training sessions. Together, the method and application offer an

important perspective on higher-order cognition in humans, and provide a generalizable tool-

set for use in other studies.

Visuo-motor learning as a network process

Traditionally, visuo-motor learning in both humans and animals has been studied at a rela-

tively local level from the general perspective of brain mapping. In this view, regions of the

brain, or ensembles of neurons, are identified as physical volumes whose activity may change

as the animal learns. This approach has led to the extensive insights that build our intuitions

about motor learning today [30]. However, in recent years, this regionally-focused view has

begun to be complemented by other perspectives highlighting the fact that changes in time

series properties [53], functional connections [54], or even large-scale connectivity patterns

may each play a role in neural computation and its relationship to behavior [55].

Focusing on this latter approach, previous network-based studies of visuo-motor learning

in humans in the specific context of finger sequences have delineated several features of the

network dynamics or reconfiguration properties associated with learning [3, 17, 56–58]. These

studies together demonstrated that temporal changes in the community structure and central-

ity of brain regions (network nodes) can be detected in networks estimated from functional

magnetic resonance imaging, complementing prior work in electrophysiological measurement

modalities such as EEG and MEG [59]. Here we take a complementary approach and instead

ask the question of whether we can identify local subnetwork patterns that can predict high

from low learning, irrespective of the time at which that learning occurred (e.g., early versus
late in training). We address this question by comparing and contrasting the brain network

structures observed in groups characterized by low versus high learning rate, and thereby iden-

tifying the most discriminative subnetworks. The uncovered patterns are thus in the form of

local interactions among functionally correlated brain regions, and thus provide a deeper

understanding of the local network structures facilitating visuo-motor learning in healthy

adult humans.

Our approach—deeply steeped in recent advances in computer science and graph mining

—complements other recently developed statistical approaches. For example, Kim and col-

leagues recently proposed a set of statistical tests for comparing the functional connectivity

between brain (or mental) states [13, 14]. The authors employ sparse matrix estimation based

on the graphical lasso [60] by imposing a fixed level of sparsity within a set of observations of

one kind (e.g., disease or control), followed by regression and normalization of individual

edges [13]. Using this preprocessed data, the authors then apply the spatial pairwise clustering

approach [12], or the network based statistic approach [11] to test for network differences

between classes. Importnatly, this analysis of Kim et al. enables a robust characterization of

individual essential edges. Here, by comparison, we focus on the discovery of connected sub-

graphs that are discriminative using edges scores of both classes simultaneously. Our frame-

work is, in a sense, orthogonal to the statistical tests for individual edges, in that the scores

estimated by Kim et al.’s methodology can serve as features in our methods instead of raw

coherence values. The novelty of our approach comes from enforcing connectivity of sub-

graphs (as opposed to disjoint edges) in both the discovery process and in the subsequent
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significance tests. That is, we test subgraph significance as opposed to individual-edge or all-

edges significance.

Our study also differs from prior work building on this same data, which has predomi-

nantly focused on extracting network patterns that distinguish good from poor learners in a

purely descriptive manner that did not incorporate any sophisticated tools from machine

learning [57, 58]. Indeed, the aforementioned studies focused on describing global network

changes as a new skill was acquired over an extended training period of 6 weeks. For example,

the results described in [57] reveal that the core-periphery organization [61] of the brain can

predict individual differences in extended learning estimated from out-of-scanner behavior.

More specifically, good learners were more likely to have a greater separation between the net-

work core and the network periphery than poor learners. In a more recent study [58], the

group sought to identify the fundamental functional modules present during visuo-motor skill

learning, and reported a growing autonomy of these systems as participants acquired the new

skill. In contrast to these descriptive approaches, the subgraph biomarker analysis that we pres-

ent here offers an alternative lens in which to understand the differences in learners in a long-

term training setting. Indeed, rather than identifying meso-scale structures such as communi-

ties, or macro-scale features such as centrality, this approach identifies sparse, local network

motifs or subgraphs whose pattern of coherence can predict the behavioral outcome. In other

words, this approach offers a much more parsimonious account of network characteristics

supporting human learning.

Biomarker regions, learning and further interpretation

The human parietal operculum (OP) is a heterogeneous cortical area overlapping with multi-

ple Broadmann regions [62, 63]. Evidence shows that it contains at least 2 sensory representa-

tion maps of the body and is involved in the processing of somatosensory information,

responding to both non-noxious and noxious stimulation [64, 65]. Moreover, this region is

involved in proprioceptive feedback during active movements, with recent work suggesting

that this region is involved in the coordination of finger movements [66, 67]. The planum tem-

porale (PT) is considered secondary auditory cortex and is functionally involved in higher

order auditory and language processing, including speech, reading, and auditory-motor inte-

gration [68]. Together, converging evidence suggests that this region acts as a specialized hub

for spectrotemporal processing of stimuli [69]. We found that reduced connectivity between

the PT and OP was related to faster learning. This suggests that a greater independence of spe-

cialized hubs, one that is involved in hand related sensorimotor feedback (OP) and the other,

in spectrotemporal processing (PT), served to promote learning. Moreover, greater cross-

hemispheric connectivity of the PT with other neighbors, might serve to strengthen learning

as well. In this regard, we presented participants with stimuli that represented a music-like

notion, which required participants to “read” the notes, and map vertical and horizontal posi-

tion to the appropriate finger. So, it is possible that greater connectivity with PT leads to swift

learning, which could reflect a greater proficiency in translation of the music staff to motor

output. It is unlikely that this effect is due to individual differences in music training because

we selected participants with minimal music experience (less than 4 years total). More gener-

ally, the relationship between individual differences of learning rate and local functional con-

nectivity is consistent with an emerging literature that considers the evolution of brain activity

across networks rather than local regions. Historically, both increases and decreases of regional

activity have correlated with amount of training, but not individual differences of learning rate

[70]. With the development of functional connectivity metrics, it was evident that local, pair-

wise connectivity could also change with learning [20, 71] and correlate with depth of
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knowledge. In recent studies that consider the evolution of functional connectivity across

larger brain networks, it has become apparent that the strength of connectivity, both positive

and negative, between separable network communities can evolve with training [31]. Alle-

giance of a network node to a community, as well as allegiance between networks are strong

predictors of learning as well as individual differences in the rate of learning [58]. Indeed, it

has been possible to show that over-involvement of prefrontal areas associated with executive

control are associated with slower rates of learning, presumably by delaying the emergence of

autonomous motor behavior. In this context, the current results provide additional comple-

mentary evidence by demonstrating that increased connectivity between secondary somato-

sensory cortex and the temporal cortex associated with abstract sequential information can

also result in slower learning. Whether this is due to a delay in the development of autonomous

motor behavior, a competition between brain systems that represent sequential information

differently or some other process remains to be determined.

Methodological considerations

There are several important methodological considerations pertinent to this work. First, it is

important to note that the methodological approach that we develop and apply in this work—

based on subgraph biomarker mining—does not consider dynamic or time-evolving aspects of

the functional interactions. However, extensions of the approach that we develop here to time-

evolving networks could be particularly useful in studying the ability of a brain region to

broadcast or receive information in learning tasks. Such extensions are likely possible by build-

ing on the recent methods for extracting significant dynamic subgraphs from temporal net-

works of various genres [72, 73]. Indeed in future, it will be particularly interesting to ask how

to mine neuroimaging data for significant subgraph biomarkers as the functional (or struc-

tural) networks evolve in time. Answering this question could offer an important view into the

dynamics of circuit function essential for human learning.

A second important consideration lies in the empirical challenges inherent in collecting

long-term training data. In this study, we used data acquired in 3 sessions spaced over 5 days

from 18 healthy adult individuals. Such a longitudinal study is extremely difficult to complete

in terms of recruiting, cost, and personnel resources, and is therefore a particularly valuable

resource. Nevertheless, it would be important in future to validate our results on similar longi-

tudinal data sets acquired in a separate set of healthy adult human subjects.

A third important factor that deserves consideration is the length of training time. We kept

each practice session below 1.5hr to decrease potential for fatigue, thus extending our study

over 3 days to adequately sample of the first, fast rate of improvement characteristic of early

motor skill learning. We anticipate that the extracted biomarker is relevant for the initial stages

of learning, but we cannot claim that this same biomarker would be identified if we studied

longer term learning, where other cognitive processes are thought to be involved [30].

Another consideration of interest is that the discriminative subgraphs that we identify in

this work are likely to be highly-specific to the particular visuo-motor task performed. Other

types of learning tasks, and even other types of visuo-motor tasks (such as visuo-motor track-

ing) may display different discriminative subgraphs. It will be particularly interesting in future

to catalogue the discriminative subgraphs that distinguish high versus low cognitive perfor-

mance or task performance across a range of motor and non-motor learning tasks.

Limitations

There are several limitations of the current imaging and analysis, that will be important to

address in the future via additional experimentation and generalized computational analysis.
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One important limitation of the neuroimaging component is that the acquisition was per-

formed without multiband technology, thus decreasing the temporal resolution of the data. It

would be useful in future studies to use recently developed higher-resolution temporal sam-

pling techniques [74] to increase the statistical power to detect individual differences in neural

markers of learning.

The complexity of the experimental task resulting in a limited number of subjects and

respectively learning sessions is another limitation. While we have taken extensive measures to

alleviate this drawback: (i) repeated cross validation with fold re-sampling, (ii) L2 regulariza-

tion to increase the stability of selected subgraphs and (iii) subsequent subgraph statistical sig-

nificance testing based on q-values, we expect that larger datasets will enable even more stable

and statistically significant biomarkers. Beyond more data, further computational extensions

can be considered to further alleviate the relatively small number of instances compared to fea-

tures. In future studies, we will seek to incorporate L1-norm constraints which can shrink

coefficients of irrelevant edges to zero (sparsity).

Another improvement may be enabled by adopting structural connectivity maps as priors

for coordination among regions as opposed to solely the observed functional coherence from

fMRI [75]. Such analysis will benefit from low level of spurious interactions due to noise, imag-

ing artifacts or concurrent processes in the brain, but will require diffusion imaging scans for

the participating subjects.

Conclusions

We developed a general approach for the discovery of brain subgraph biomarkers from fMRI

data associated with global labels. Our approach is based on discriminative subspace learning

in network space coupled with significant conserved subgraph mining. We applied our

method to data acquired during the performance of a sensorimotor learning task. We obtained

two significant biomarkers involving circuits related to visual processing, motor performance,

and learning, which together suggest novel interactions among regions that may play a critical

role in visuo-motor skill learning. While we focused on data from a learning experiment as a

case study for our method, our framework can be applied to a variety of settings. Beyond anal-

ysis of other cognitive tasks, one can also adopt our method to detect biomarkers specific to

neurological and psychiatric diseases, by applying the method to fMRI data acquired in

patients and controls.
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