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 Abstract: Background: The evaluation of metabolites that are directly involved in the physiological 
process, few steps short of phenotypical manifestation, remains vital for unravelling the biological 
moieties involved in the development of the (MDD) and in predicting its treatment outcome.  

Methodology: Eight (8) urine and serum samples each obtained from consenting healthy controls 
(HC), twenty-five (25) urine and serum samples each from first episode treatment naïve MDD 
(TNMDD) patients, and twenty (22) urine and serum samples each s from treatment naïve MDD pa-
tients 2 weeks after SSRI treatment (TWMDD) were analysed for metabolites using proton nuclear 
magnetic resonance (1HNMR) spectroscopy. The evaluation of patients’ samples was carried out 
using Partial Least Squares Discriminant Analysis (PLS-DA) and Orthogonal Partial Least Square-
Discriminant Analysis (OPLSDA) models. 

Results: In the serum, decreased levels of lactate, glucose, glutamine, creatinine, acetate, valine, alanine, 
and fatty acid and an increased level of acetone and choline in TNMDD or TWMDD irrespective  of 
whether an OPLSDA or PLSDA evaluation was used were identified. A test for statistical validations of 
these models was successful. 

Conclusion: Only some changes in serum metabolite levels between HC and TNMDD identified in 
this study have potential values in the diagnosis of MDD. These changes included decreased levels of 
lactate, glutamine, creatinine, valine, alanine, and fatty acid, as well as an increased level of acetone 
and choline in TNMDD. The diagnostic value of these changes in metabolites was maintained in sam-
ples from TWMDD patients, thus reaffirming the diagnostic nature of these metabolites for MDD. 
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1. INTRODUCTION 

Multifactorial disorders like major depression disorder 
(MDD), a mood disorder, require a multidisciplinary ap-
proach to unravel their aetiology, and novel drug targets with 
the potential mechanism of action, efficacy, and safety pro-
file of drugs [1, 2]. The interaction between serotonergic and 
adrenergic pathways in the brain and the gut had been impli-
cated in mood changes. These interactions involve the enter-
ochromaffin cells (ECs), the enteric nervous system (ENS),  
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autonomic nervous system (ANS), hypothalamus-pituitary-
adrenal (HPA) axis, and the central nervous system (CNS) 
[3]. 

Metabolic signatures representing the totality of genomic, 
symbiotic, parasitic, environmental, and co-metabolic inter-
actions within the biological systems may be described by 
evaluating bio fluids, such as urine and serum [4, 5]. Poten-
tial biomarkers discovery can be elucidated using advanced 
analytical technologies and protocols of metabolomics [6, 7]. 
In addition, novel metabolites, potential targets, and a net-
work of reactome pathways attributed with on-target and off-
target activities of medications may also be identified fol-
lowing a successful metabolomic assessment - a key feature 
of pharmacometabolomics [5, 8].  
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Multivariate analysis, including principal component analy-
sis (PCA), partial least squares-discriminate analysis (PLS-DA), 
and orthogonal-projection to latent structure-discriminate analy-
sis (O-PLS-DA), are central to metabolomics evaluations. Prin-
cipal component analysis (PCA), an unsupervised assessment, 
was commonly used to highlight the pattern of clustering for 
samples when there were no secondary classification features 
available for the analysis. Partial Least Square Discriminant 
Analysis (PLS-DA) and orthogonal projections to latent struc-
tures-discriminant-analysis (OPLS-DA) are supervised methods 
that maximize the variations between the different study groups 
based on the class information, thus enumerating the metabo-
lites involved in the separation of the samples based on class 
identifiers. Therefore, multivariate analysis is vital for compari-
son, visualizations, and discriminations of outcome-based stud-
ies entirely on differences in underlying metabolites [9]. In the 
current study, evaluating the metabolites in urine and serum 
samples of healthy controls (HC), treatment-naïve first-episode 
MDD (TNMDD) and treatment-naïve first-episode MDD pa-
tients treated with SSRI for 2 weeks (TWMDD), are hypothe-
sized to harbor different metabolites that may predict each phe-
notype reliably. 

2. MATERIALS AND METHODS 

2.1. Chemical Reagents and Equipment 

Reagents used in this study include 3-trimethylsilylpro- 
ipionic-2,2,3,3-d4 acidic sodium salt (TSP), molecular grade 
sodium chloride, sodium deuterium oxide (NaOD), and phos-
phate buffer solution. Equipment used include a -80°C freezer, 5 
mm NMR tubes, the centrifuge machine, Varian unity INOVA 
500 MHz spectrometers (Varian Inc, CA), sterile plain bottles, 
PH meters, the SIMCA software, the Kinomics software, pi-
pettes, conical flasks, and ice packs. 

2.2. Study Design 

2.2.1. Subject Recruitment 

This study is a pilot study to identify validated metabo-
lites identifiable using nuclear magnetic resonance (NMR) 
for the determination of MDD as well as its treatment out-
comes among newly diagnosed patients within the first 2 
weeks of treatment. Healthy controls were recruited among 
persons visiting the ear, nose, and throat outpatient Depart-
ment of Hospital Kuala Lumpur and the Surgery Department 
of Hospital Kajang. All treatment Naïve patients recruited in 
this study had been completely oblivious of MDD diagnosis 
and were not on any MDD treatment until they came to the 
hospital with complaints that suited the diagnosis for MDD 
identified by a trained physician, thus they were never on 
any MDD treatment regimen before recruitment. 

Ethical approval for the study was awarded by the Medical 
Research and Ethics Committee (MREC) of Malaysia (NMRR-
14-688-19696). Cases were recruited from psychiatric clinics in 
the Hospital Kuala Lumpur, Hospital Kajang, Hospital Serdang, 
and Hospital Putrajaya. Senior Psychiatrists and Medical offic-
ers with long-standing experience in the diagnosis and man-
agement of psychiatric cases were responsible for establishing 
the MDD diagnosis in line with the diagnostic criteria of the 
fourth Diagnostic and Statistical Manual of Mental Disorders 
(DSMIV) before patients were recruited [10]. Recruitment of 
patients following the diagnosis of MDD was done by a team of 
well-motivated and trained research assistants and a medically 
qualified postgraduate student (IBM).  

The recruitment process started with obtaining the in-
formed consent of potential participants. Taking informed 
consent entailed that patients were enlightened on the goals 
and objectives of the study. Detailed explanations were read-
ily offered for any questions the volunteering study partici-
pants asked. The roles the study participants were expected 
to play in fulfilling the objectives of the study were de-
scribed in great detail to each one of them. Responding to 
questionnaires before and after the commencement of SSRI 
antidepressant medications, fasting blood sampling before 
and at 2 weeks after the commencement of medications, 
strict adherence to the medications, and reporting of adverse 
drug reactions formed part of the responsibilities of the study 
participants that were emphasized at recruitment and the 
subsequent visits. The Montgomery Asberg depression rating 
scale-self (MADRS-S) questionnaire was administered to the 
patients at the point of recruitment before treatment onset 
(baseline) and by the second visit (2 weeks after treatment 
onset) in order to ascertain their responses to treatment. The 
diary enumerating a number of potential adverse effects 
commonly associated with SSRI treatment of MDD, which 
is similar to the patient-rated inventory of side effects 
(PRISE), was given to each study participant at baseline. The 
patients were instructed to carefully highlight any of the ad-
verse effects that they experience in the diary during the next 
2 weeks of treatment, and it was retrieved during the second 
visit (2 weeks after treatment onset) to extract the adverse 
effect data into the PRISE questionnaire. It is pertinent to 
note that the PRISE questionnaire was collaboratively filled 
up using a semi-assisted approach relying on patients’ in-
formation from the diary as well as their hospital records.  

2.2.2. Inclusion Criteria for Cases 

Malaysians, 18-65 years, newly diagnosed with MDD by 
a trained psychiatrist or MDD patients on SSRI treatment for 
2 weeks and a short course of any sedative-hypnotics, were 
included in this study. 

2.2.3. Inclusion Criteria for Control  

Participants should be free of any mental health disorder 
both in the present and the past. Stable medical conditions, 
such as diabetes mellitus and hypertension are not contrain-
dications for recruitment. 

2.2.4. Exclusion Criteria for Cases 

Non-Malaysians, those with cognitive impairments, less 
than 18 or older than 65 years, diagnosed with axis 1 psychi-
atric disorders other than MDD or receiving non-SSRI medi-
cations (except sedative-hypnotics) were barred from partic-
ipating in the study. 

2.2.5. Exclusion Criteria for Controls 

Patients diagnosed with mental illnesses in the past, cur-
rently diagnosed, and are undergoing management for men-
tal health disorders (or not), as well as patients with unstable 
medical conditions, were excluded from the study.  

2.2.6. Blood and Urine Sampling  

Trained and qualified hospital staff volunteered in carry-
ing out blood sampling for the consenting patients. Fasting 
blood and urine samples were collected after patients’ diag-
nosis for MDD was established at the first visit. Healthy vol-
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unteers who consented to participate in this study as controls 
were sampled in the recruiting clinics by staff appointed by 
the hospital to carry out the task. Routinely, patients’ hospi-
tal visits after the first one was scheduled for the next 2 
weeks by the managing physician to ascertain the clinical 
efficacy and tolerance of the prescribed medications. A re-
peat sampling for fasting blood and urine samples was con-
ducted during second hospital visit. Three milliliters (3 mls) 
of blood samples were collected in sterile plain bottles, while 
a variable quantity of mid-stream urine was collected in ster-
ile urine universal tubes. All samples were collected during 
the morning clinic session (between 8.00 am to 12.00 pm).  

2.2.7. Transportation and Storage of Samples 

Samples were transported in ice-containing packs to the 
Pharmacotherapeutics lab of UPM for further processing and 
storage. Storage in a -80ºC freezer in the laboratory was car-
ried out after centrifuging the samples at 1500 g for 10 
minutes. Experiments were carried out at the Institute Bi-
osains, Department of Natural Products of the University 
Putra Malaysia.  

2.2.8. Questionnaires 

English and Malay versions of the MADRS-S question-
naires were obtained and utilized in this study because both 
languages are widely spoken in Malaysia. English and Malay 
versions of the PRISE questionnaires were also retrieved and 
utilized too.  

2.2.9. Assessment of Depression Severity 

Different approaches and paradigms have been used in 
describing the severity of depression in patients as a guide in 
clinical assessments of the efficacy of treatment phenotype. 
A  decrease in the severity of depression by 50% had com-
monly been adopted as the hallmark for a clinical response to 
antidepressant medications [11]. After 2 hospital visits     
spanning over a period of 2 weeks, the patients were grouped 
empirically based on established guidelines as either “treat-
ment responders” or “non-responders.”  

2.2.10. Assessment of Adverse Effect 

The patients were grouped empirically based on the pres-
ence or absence of AE after 2 weeks of SSRI treatment. 

2.3. Processing Urine and Serum 

Proton (1H) NMR processing of urine and serum was car-
ried out in accordance with the methods reported in an earli-
er NMR metabolomics study [12]. Urine samples were 
thawed and centrifuged at 13000 rpm for 10 minutes. 400 ul 
of the supernatant was mixed with 200 ul of phosphate buff-
er solution. The phosphate buffer solution consisted of 0.1% 
of 3-trimethylsilylproipionic-2,2,3,3-d4 acidic sodium salt 
(TSP), which was used as an internal standard. Sodium deu-
terium oxide (NaOD) was used in adjusting the pH to 7.4. 
The mixture of urine and phosphate buffer solution was 
transferred meticulously into a 5 mm NMR tube. Serum 
samples were also thawed and centrifuged at 1300 rpm for 
10 minutes, and 200 ul of supernatant was mixed with 400 ul 
of saline containing 0.2 % TSP, and the mixture was trans-
ferred into 5 mm NMR tubes. All buffers and solutions were 
prepared using deuterated water (D2O). 

2.4. Metabolic Profiling and Data Acquisition using 
1
H 

Nuclear Magnetic Resonance   

Spectra for urine samples were acquired on a Varian Uni-
ty INOVA 500 MHz spectrometer (Varian Inc, CA), with a 
frequency of 499.887 MHz. Standard one-dimensional PRE-
SAT was used for the suppression of water peaks. For each 
sample, 64 scans were conducted within an acquisition time 
of 193 seconds, a pulse width of 3.75 microseconds, and a 
relaxation delay of 2.0 seconds. Acquisition of the spectra 
from serum samples was carried out using the combination 
of PRESAT and Carr-Purcell-Meibom-Gill (CPMG), which 
suppresses both water peaks and broad signals from macro-
molecules. The CPMG spectra were acquired after 128 scans 
[13].  

2.5. Chenomx NMR Spectral Data Reduction  

Chenomx NMR suite (Chenomx, Calgary, Canada) was 
used for metabolite identifications and quantifications. Spec-
tral preprocessing, including autophasing, auto baseline cor-
rection, and alignment to TSP signal as the internal refer-
ence, was applied to each spectrum separately. In the semi-
automated chenomix metabolites identification approach 
(SACMI), metabolites were assigned to spectra based on the 
suggestions of metabolites from the Chenomx data base and 
information from the literature. Processed spectra (0-10 
ppm) were segmented into bins of 0.04 ppm using the profil-
er module. Residual signals of water (4.75-4.85 ppm) and 
those of urea (5.50-6.00 ppm) were excluded from the analy-
sis. The binned spectral data were properly labelled in excel 
sheets and imported into Simca-P software (Umetrics, Umea, 
Sweden) for multivariate data analysis. 

2.6. Statistical Data Analysis  

Statistical assessment of clinical socio-demographic fea-
tures and levels of metabolites in serum samples of patients 
was done using Chi-square test, multinomial logistic regres-
sion, or Mann-Whitney U statistics in IBM-SPSS (Chicago, 
IL) software version 22 for Microsoft® Windows. Multivari-
ate data analysis was performed using Pareto scaling. Princi-
pal component analysis (PCA), an unsupervised assessment, 
was used to highlight the pattern of clustering for the sam-
ples. Partial least square discriminant analysis (PLS-DA) and 
orthogonal projections to latent structures-discriminant-
analysis (OPLS-DA) are potent supervised methods that 
maximize the variation between the different study groups 
based on the class information. Thus, they enumerate the 
metabolites involved in the separation. Multivariate analysis 
was conducted using the SIMCA-P software 14.0. The R2X, 
R2Y, and Q2 values are common pointers for the robustness 
of the supervised models. The goodness-of-fit of a super-
vised model was determined by its R2Y cum and Q2 cum 
scores. Q2 values assess the predictability of the model (Ma-
hadevan et al., 2008). The loading plot of the built model 
sheds more light on the tentative identities of the metabolites 
that discriminate between the different categories of diagno-
sis (HC, TNMDD, TWMDD) and treatment outcomes of 
study participants [14]. An iteration permutation test can be 
conducted to assess the level of fitting for models that were 
generated [15]. Higher original values of R2 and Q2 com-
pared to those of the permutation test suggest that the model 
was robust [15].  
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Table 1.  Socio-demographic features of study participants. 

- MDD  Controls  Remarks  

Age*(median /range) years 32/18-55 24.50/20-55 Mann Whitney U = 106.500, Z = -2.010, p = 0.044 

Gender, n = (male/female) 9/16 3/11 - 

Ethnicity, n = Malay/Chinese/Indian 12/8/5 7/3/4 - 

Educational status*, n = (basic/tertiary) 14/11 2/12 p = 0.011, OR = 7.632, CI = 1.406-41.488 

Family income, n = (low/high) 21/4 9/5 - 

Abbreviations: *p ≤ 0.05, OR = Odds ratio, CI= Confidence interval, MDD = major depressive disorder, control = Healthy non-MDD volunteers. 

 

 

Fig. (1). Multivariate evaluation of the serum samples of healthy volunteers in comparison to the samples of treatment naïve MDD patients 
(TNMDD labelled as depressed); (a) = PLS-DA score plot, (b) = OPLS-DA score plot. (A higher resolution/colour version of this figure is 
available in the electronic copy of the article). 
 
3. RESULTS 

3.1. Sociodemographic Features of Study Participants 

A total of 8 urine and serum samples each  from healthy 
controls (HC) and twenty-five urine and serum samples each  
from first episode treatment naïve MDD (TNMDD) patients 
were recruited for this study. Twenty-two of urine and serum 
samples from the treatment naïve MDD patients who had 
received SSRI treatment for 2 weeks (TWMDD) each  were 
made up of ten 2 weeks follow-up samples from some of the 
initial twenty-five TNMDD patient samples. The remaining 
twelve urine and serum samples each were from patients 

who had unsuccessful sampling attempts at baseline (before 
the commencement of SSRI treatment) with subsequent suc-
cessful sampling at their 2 weeks follow-up after SSRI 
treatment onset. 

Most of the MDD patients received 54.6% fluvoxamine, 
27.3% received sertraline, 13.6% received escitalopram, and 
4.5% received fluoxetine. The patients diagnosed and re-
cruited with MDD were of the age range of 18-55 with a 
median of 32 years, which was significantly (p = 0.044) 
higher than the median age of the healthy controls, which 
was 24.5 years (Table 1). Most of the MDD patients had a 
basic level of education, while most of the HC attained a 
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Fig. (2). Multivariate evaluation of the urine samples of healthy controls (control) and samples of treatment naïve MDD patients (TNMDD 
(labelled as pre)); (a) = PLS-DA score plot, (b) = OPLS-DA score plot. (A higher resolution/colour version of this figure is available in the 
electronic copy of the article). 

 

Fig. (3). Multivariate evaluation of the serum samples of treatment naïve MDD patients on SSRI treatment for 2 weeks (TWMDD (labelled as 
post)) and samples of healthy control (control); (a) = PLS-DA score plot, (b) = OPLS-DA score plot. (A higher resolution/colour version of 
this figure is available in the electronic copy of the article).

���

���

�

����

����

����
�� ���� ���� ���� ���� � ��� ��� ��� ���

���
��� ���

���

���

��� ��� ���

���

�	
��	

�	
��	 �	
��	
�	
��	

�	
��	
�	
��	

�	
��	
�	
��	

���

�	
��	��
��

����

���

���

���

���

�

����

����

����

����

��

����
���� ���� ���� ���� � ��� ��� ���

�����	�
�
����

��
��



�


��
��

�

���

�	
��	

���

�	
��	
�	
��	�	
��	

�	
��	

�	
��	 �	
��	

�	
��	

�	
��	

���

��� ��� ���

���

��� ���

���

���

���

�

����

����

����
���� ���� ���� ���� � ��� ��� ���

����

��
��

�	
��	

�	
��	

�	
��	�	
��	

�	
��	

����
����

����
����
����
��������

����
����
����

����

����

����

������
�
����� ������
�
����� ��������
��������� �
!�
"�#$

���

���

�

����

����

����

����
���� ���� ���� ���� ��� � �� ��� ��� ���

������
�
����

��
�	

��
�


�

��

��
�

�	
��	

�	
��	

�	
��	

����

����
����
����

��������
����

����
����

����

����

����

�	
��	
�	
��	

������
�
���� �����%�&�
'�(��
��
�
����� ��������
��������� �
!�
"�#$

(a) 

(b)

(a)

(b)



970    Current Neuropharmacology, 2022, Vol. 20, No. 5 Badamasi et al. 

 

Fig. (4). Multivariate evaluation of the urine samples of treatment naïve major depressive patients on SSRI treatment for 2 weeks (TWMDD 
(labelled as post) and samples of healthy control (control); (a) = PLS-DA score plot, (b) = OPLS-DA score plot. 
 

Table 2.  Metabolites identified in serum samples using chenomx profiler in study participants. 

Metabolites Chemical Shifts  Remarks  

Alanine  1.47 (d), 3.76 (q) 
Significant (p = 0.001) in TNMDD vs. HC, and in TNMDD vs. TNMDD-after 2 weeks 

SSRI treatment (p = 0.041) 

Lactate 1.32 (d), 4.11 (q) 
Significant (p = 0.001) in TNMDD vs. HC; TNMDD-after 2 weeks SSRI treatment vs. 

HC (p = 0.003); TNMDD vs. TNMDD-after 2 weeks SSRI treatment (p = 0.020) 

Glycine  3.55 (s) Significant (p = 0.035) in TNMDD vs. TNMDD-after 2 weeks SSRI treatment  

Choline  
3.19 (s), 3.52(s), 

4.06 (s) 

Significant (p = 0.004) in TNMDD vs. HC; TNMDD-after 2 weeks SSRI treatment vs. 
HC (p = 0.037); TNMDD vs. TNMDD-after 2 weeks SSRI treatment (p = 0.02); re-

sponder vs. non-responder to 2 weeks SSRI treatment (p = 0.012) 

Acetate  1.91 (s) Significant (p = 0.006) in TNMDD vs. HC; 

Betaine 3.88 (s), 3.24 (s) Responder vs. non-responder to 2 weeks SSRI treatment (p = 0.038) 

Pyruvate 2.35 (s) Responder vs. non-responder to 2 weeks SSRI treatment (p = 0.024) 

Acetone  2.22 (s) - 

Valine 0.98 (d), 1.040 (d) 
Significant (p = 0.012) in TNMDD vs. HC; TNMDD vs. TNMDD-after 2 weeks SSRI 

treatment (p = 0.006); 

Leucine 3.72 (m) - 

3-Hydroxybutyrate 1.2 - 

(Table 2) contd…. 
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Metabolites Chemical Shifts  Remarks  

Creatinine 3.0 (s), 4.1 (s) 
Significant (p = 0.009) in TNMDD vs. HC; TNMDD vs. TNMDD-after 2 weeks SSRI 

treatment (p = 0.014) 

Glutamine 2.10 (s), 2.46 (s) 
Significant (p = 0.023) in TNMDD vs. HC; TNMDD vs. TNMDD-after 2 weeks SSRI 

treatment (p = 0.014) 

GPC 3.200 (s) Responder vs. non-responder to 2 weeks SSRI treatment (p = 0.004) 

3.26 PPM  

(TMAO and Betaine) 
3.261 (s) Responder vs. non-responder to 2 weeks SSRI treatment (p = 0.031) 

Glucose 

5.23 (s), 3.89 (d),  

3.82 (dd), 3.41 (m),  

3.40 (m) 

Significant (p = 0.00019) in TNMDD vs. HC; responder vs. non-responder to 2 weeks 

SSRI treatment (p = 0.038) 

Phenylalanine 7.32 (d) - 

Fatty acids 0.86 (m) 
Significant (p =0.007) in TNMDD vs. HC; TNMDD-after 2 weeks SSRI treatment vs. 

HC (p = 0.025) 

Abbreviations: S: singlet, d: doublet, ppm: part per million. 

 

Table 3.  Metabolites identified in urine samples using chenomx profiler in study participants.  

Metabolites Chemical Shifts (ppm) Remarks 

Imidazole 8.18 (s), 7.28 (s) - 

Formate 8.4 (s) TNMDD vs. TNMDD-after 2 weeks SSRI treatment (p = 0.039); re-
sponder vs. non-responder to 2 weeks SSRI treatment (p = 0.035) 

Hippurate 7.821 (s), 7.619 (s), 7.531 (s) TNMDD vs. TNMDD-after 2 weeks SSRI treatment (p = 0.014); 

N-phenylacetylglycine (NPAG) 3.666 (s), 3.774 (d), 7.349 (m) 

 7.4080 (m) 7.98 (s) 

- 

Creatinine phosphate 3.950 (s) and 3.000 (s) - 

Glycolate 3.95178 (s) - 

Betaine 3.252 (s) - 

Glycine  3.545 (s) - 

O-phosphocholine 4.166 (dd), 3.637 (t), 3.215 (s) Significant (p = 0.041) in TNMDD vs. HC 

Methylmalonate 3.119 (q) 1.216 (d) - 

Trimethylamine- 2.892 (s) - 

Alanine  1.46 (d) - 

Glucose  3.820 (dd) 5.226 (d) - 

Creatinine 

Citrate 

4.043 (s)  

2.52 (d), 2.7(d) 

 

Significant (p = 0.041) in TNMDD vs. HC  

3-Hydroxybutyric acid 2.397 (m)  - 

N-acetylglycine 2.028 (s) - 

N-acetylglutamine 2.235 (t) - 

3-methylhistidine 3.66 (s) - 

Phenylacetate 3.545 (s) - 

Methyl malonate 1.230 (s) - 

Leucine  0.948(s) - 

Valine  2.282(m) - 

Abbreviations: S: singlet, d: doublet, ppm: part per million 
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tertiary level of education and the difference in the educa-
tional levels attained by the study participants was statistical-
ly significant (p = 0.011). There were more female partici-
pants in the current study compared to males, and the study 
sample was multiethnic. Nevertheless, these differences are 
not statistically significant (Table 1).  

3.2. Statistical Determination of MDD Diagnostic Metab-
olites in Serum and Urine 

Multivariate data analysis results were generated via 
score plots, loading columns, and variable importance in 
projection (VIP) in this study, and they facilitated the identi-
fication of metabolites that discriminates samples from dif-
ferent phenotypes (Figs. 1-4). 

Metabolites identified from urinary and serum spectra of 
samples from study participants were identified in reference 
to similar spectra from the HMD-database (Tables 2, 3 and 
Fig. (5-7).  

 

 

Fig. (5). Schematic representation of the key metabolites differenti-
ating between Treatment Naïve MDD (TNMDD) patients and 
Healthy controls (HC). (A higher resolution/colour version of this 
figure is available in the electronic copy of the article). 

 

Fig. (6). Schematic representation for the key metabolites distin-
guishing the serum samples of Treatment Naïve MDD on SSRI 
treatment for 2 weeks (TWMDD) from those of health control 
(HC). (A higher resolution/colour version of this figure is available 
in the electronic copy of the article). 

 

Fig. (7). Schematic representation for the key metabolites distin-
guishing the serum samples of Treatment Naïve MDD on SSRI 
treatment for 2 weeks  (TWMDD) from those of Treatment Naïve 
MDD (TNMDD). (A higher resolution/colour version of this figure 
is available in the electronic copy of the article). 
 

In addition, the metabolites involved in the separation of 
samples from contrasting phenotypes, including those with 
high VIP scores and associated levels of reliability and pre-
dictability, were highlighted in this study (Tables 4-7).  

Serum metabolites in TNMDD patients, distinguishing 
them from HC, were observed to include glucose, choline, 
and acetone when OPLS-DA or PLS-DA models were used 
for the evaluation (Table 4). Betaine and leucine were addi-
tional metabolites identified when the evaluation was done 
using the PLS-DA model (Table 4). Samples from HC had 
fatty acid, valine, lactate, alanine, acetate, glutamine, py-
ruvate, creatinine, choline, GPC, TMAO, betaine, and glu-
cose metabolites when evaluated using the PLS-DA or 
OPLS-DA models (Table 4). Leucine was an additional me-
tabolite identified when the evaluation was done using the 
OPLS-DA model; GPC was also an additional metabolite 
that was identified in the samples from HC when the evalua-
tion was done using the PLS-DA model (Table 4). Lactate, 
glucose, alanine, valine, fatty acid, choline, glutamine, creat-
inine significantly contributed to the separation of samples 
from HC and TNMDD patients in the multivariate (OPLS-
DA or PLS-DA) and univariate models. Acetate metabolite 
was an additional metabolite involved in the separation of 
samples from TNMMDD and HC phenotypes when the 
evaluation was done using PLS-DA multivariate or univari-
ate Mann-Whitney U statistics. Acetone was also identified 
as an additional metabolite only when the evaluation was 
done using the PLS-DA or OPLS-DA models (Tables 2 and 
4). 

Urinary metabolites identified in TNMDD patients rela-
tive to HC include creatinine, NPAG and phosphocholine 
when the evaluation was done using the PLS-DA or the 
OPLS-DA model (Table 5). N-acetylgylcine, N-acetylglu- 
tamate, methylmalonate and betaine were additional metabo-
lites identified when the evaluation was done using the 
OPLS-DA model, while Imidazole was an additional metab-
olite identified when the evaluation was done using the PLS-
DA model (Table 5). Samples from HC were observed to 

����� ��
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Table 4.  Metabolites involved in the separation of serum samples from patients with different phenotypes of depression and its 

treatment outcome. 

Samples 

Involved 
Phenotypes  

Metabolites Identified using OPLS-

DA or PLS-DA 

Additional  

Metabolites  
VIP Metabolites 

TNMDD 

vs. HC 

TNMDD Glucose, acetone, choline 
Betaine, leucine 

(PLS-DA) Acetone, lactate, glucose, alanine, valine, fatty 

acid, choline, glutamine, creatinine (OPLS- & PLS-

DA); Acetate (OPLS-DA)  HC 

Fatty acid, valine, lactate, alanine, ace-

tate, glutamine, pyruvate, creatinine, 

choline, GPC, TMAO, betaine, glucose, 

GPC (PLS-DA); 

Leucine (OPLS-DA) 

TWMDD-2 

weeks after 

SSRI 

treatment 

vs. HC 

HC 

Fatty acid, valine, lactate, alanine, glu-

tamine, creatinine, TMAO, betaine, 

choline, lactate 

- Acetone, lactate, leucine, glucose, alanine, choline 

(OPLS- & PLS-DA);  

Glycine, betaine, acetate (PLS-DA); fatty acid 

(OPLS-DA)  

      

TWMDD-2 

weeks after 

SSRI treatment 

 

Glucose, alanine, betaine, leucine, cho-

line, pyruvate, acetone, acetate 

Glutamine, glycine, 

GPC (PLS-DA) 

TNMDD 

(Pre) vs. 

TWMDD-2 

weeks after 

SSRI 

treatment 

(post) 

 

TNMDD (Pre) Glucose, acetone - 

Acetone, lactate, glucose, glycine, leucine, choline, 

GPC, alanine, valine, betaine, TMAO (OPLS- & 

PLS-DA), pyruvate (PLS-DA), fatty acid, gluta-

mine, creatinine (OPLS-DA)  

TWMDD-2 

weeks after 

SSRI treatment 

(post) 

Lactate, choline, creatinine, glucose, 

alanine, leucine, glycine, TMAO, gluta-

mine, pyruvate, acetate, valine, fatty 

acid, betaine  

- 

Non-

responder 

vs. re-

sponder 

Non-responder 

(nr) 

Choline, creatinine, glucose, betaine, 

alanine, leucine, glycine, TMAO, beta-

ine, GPC. 

Alanine (PLS-DA), 

fatty acid (OPLS-

DA) 

Acetone, pyruvate, choline, GPC, glucose, acetate, 

TMAO, betaine, glycine, lactate (OPLS- & PLS-

DA), Creatinine, valine (PLS-DA), leucine  

(OPLS-DA)  
Responder (r)  Lactate, creatinine, glutamine, pyruvate, 

acetone, acetate, alanine, valine, fatty 

acid. 

- 

Adverse 

effects (se) 

vs. 

No adverse 

effect (nse) 

Adverse effect 

(AE) 

Lactate, acetone Glucose, glutamine 

(OPLS-DA) 

Acetone, lactate, acetate, choline, alanine, py-

ruvate, glycine, glucose, leucine, betaine, TMAO, 

GPC (OPLS- & PLS-DA), creatinine, valine (PLS-

DA)  
No adverse 

effect (NAE) 

Fatty acid, valine, alanine, acetate, glu-

tamine, creatinine, choline, GPC, 

TMAO, betaine, glucose, glycine, leu-

cine 

Pyruvate (PLS-DA) 

Abbreviations: TNMDD = treatment naïve major depressive disorder, TWMDD = Treatment naïve MDD patients 2 weeks after SSRI treatment, PLSDA = partial least square-
discriminant analysis, OPLSDA = orthogonal partial least square-discriminant analysis, VIP = variable important projections. 

 

contain alanine, formate, 3-hydroxybutyrate, citrate, trime-
thylamine, creatinine, glycine, phenylacetate, phosphocho-
line, glucose, 3-methylhistidine, NPAG, and Hippurate when 
the evaluation was done using the PLS-DA or the OPLS-DA 
model. Nevertheless, in the PLS-DA model, N-acetylglycine, 
N-acetylglutamate, methylmalonate, and betaine (PLS-DA) 
were additional metabolites observed in the samples of HC. 
(Table 5). Phosphocholine and citrate metabolites contribut-
ed significantly to the multivariate (OPLS-DA and PLS-DA) 
and univariate separation models for urine samples of 
TNMDD and HC in this study (Table 3 and 5). Creatine, 
creatinine, 3-methylhistidine, phosphocholine, citrate, hippu-
rate, phenylacetate, glucose, and NPAG were metabolites 
that were significantly involved in the multivariate model 
(PLS- & OPLS-DA) for the separation of the urine samples 

between the  TNMDD and the HC phenotypes (Table 5). 
Glycine, when the evaluation was done using the OPLS-DA 
model, as well as methylmalonate and/or betaine when the 
evaluation was done using the PLS-DA model, were addi-
tional urinary metabolites for the separation of TNMDD 
from HC phenotypes (Table 5).  

Serum metabolites in samples of TWMDD when using 
either PLS-DA or OPLS-DA models during evaluation in-
cluded glucose, alanine, betaine, leucine, choline, pyruvate, 
acetone, and acetate. Glutamine, glycine, and GPC were ad-
ditional metabolites observed in these serum samples follow-
ing an evaluation using the PLS-DA model (Table 4). The 
samples from participants with the HC phenotypes were ob-
served to contain fatty acid, valine, alanine, glutamine, 
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Table 5.  Metabolites involved in the separation of urine samples from patients with different phenotypes of depression and its 

treatment outcome. 

Samples 

Involved 
Phenotypes  

Metabolites Identified using OPLS-DA or  

PLS-DA 
Additional Metabolites  VIP Metabolites 

TNMDD vs. 
HC 

TNMDD NPAG, creatine, phosphocholine 

N-acetylgylcine, N-

acetylgluta-

mate,methylmalonate, 

betaine (OPLS-DA); 

Imidazole (PLSDA) 

Creatine, creatinine, 3-

methylhistidine, phosphocholine, 

citrate, hippurate, phenylacetate, 

glucose, NPAG, (PLS- & OPLS-

DA), glycine (OPLS-DA), 

methylmalonate, betaine (PLS-DA) HC 

Alanine, formate, 3-hydroxybutyrate, citrate, trime-

thylamine, creatinine, glycine, phenylacetate, phos-

phocholine, glucose, 3-methylhistidine, NPAG, 

Hippurate 

N-acetylgylcine, N-

acetylglutamate, 

methylmalonate, betaine 

(PLS-DA) 

TWMDD- 2 

weeks after 

SSRI treat-

ment vs. HC 

HC 

Creatinine, glucose, NPAG, 3-methylhistidine, phe-

nylacetate, glycine, phosphocholine, methylmalo-

nate, trimethylamine, alanine, N-acetylglutamate, N-

acetylglycine, 3-hydroxybutyrate, citrate 

Hippurate (OPLS-DA) 

Creatine, creatinine, 3-

methylhistidine, phosphocholine, 

citrate, betaine, glycine, phe-

nylacetate, glucose, NPAG, N-

acetylglutamate, N-acetylglycine, 

methylmalonate, 3-hydroxybutyrate 

(PLS- & OPLS-DA), hippurate, 

imidazole, trimethylamine, alanine, 

(PLS-DA) 

TWMDD-2 

weeks after 

SSRI treat-

ment (Post) 

Formate, imidazole, NPAG, creatine, betaine Hippurate (PLS-DA) 

TNMDD 

(Pre) vs. 

TWMDD-2 

weeks after 

SSRI treat-

ment (Post) 

TNMDD 

(Pre) 
- - Creatine, creatinine, betaine, 

NPAG, citrate, phosphocholine, 

glucose, hippurate, 3-

methylhistidine, N-acetylglutamate, 

phenylacetate, methylmalonate, 

alanine (OPLS- & PLS-DA), imid-

azole, N-acetylglycine (PLS-DA) 

TWMDD-2 

weeks after 

SSRI treat-

ment (Post) 

Formate, imidazole, NPAG, Hippurate, phosphocho-

line, creatinine, creatine, glucose, 3-methylhistidine, 

alanine, N-acetylglutarate, N-acetylglycine, phe-

nylacetate, phosphocholine, NPAG, glycine, 

methylmalonate, 3-hydroxybutyrate, glucose  

Betaine, citrate, 3-

hydroxybutyrate, alanine 

Responder 

(r) vs. non- 

responder 

Responders 

(r) 

Hippurate, phospholine, creatinine, glucose, NPAG, 

3-methylhistidine, phenylacetate, glycine, betaine, 

methylmalonate, trimethylamine, citrate, 3- hy-

droxybutyrate, N-acetylglutamate 

N-acetylglycine  

(PLS-DA) 

Creatinine,creatine, 3-

methylhistidine, Hippurate, phos-

phocholine, Hippurate (PLS- & 

OPLS-DA);  

Citrate, NPAG, betaine, methylma-

lonate, glucose, phenylacetate, N-

acetylglutamate (PLS-DA) 

- 

Non-

responders 

(nr) 

NPAG, formate, imidazole, creatinine, alanine, 

creatine 

Trimethylamine  

(OPLS-DA) 
- 

Adverse 

effects (se) 

vs. 

No adverse 

effect (nse) 

Adverse 

effects (se) 

Phosphocholine, creatine, glucose, glycine, creati-

nine, trimethylamine, N-acetylglycine, methylmalo-

nate 

Betaine, citrate, 3-

hydroxybutyrate, ala-

nine, hippurate Phosphocholine, 3-methylhistidine, 

NPAG, betaine, glucose, glycine, 

citrate (OPLS- & PLS-DA);  

Creatine, creatinine(PLS-DA) No adverse 

effect (nse) 

Formate, Imidazole, NPAG, 3-methylhistidine, 

phosphocholine, phenylacetate 

Alanine, 3-

hudroxybutyrate, citrate, 

methylmalonate, beta-

ine, creatinine, hippu-

rate. 

Abbreviations: TNMDD = treatment naïve major depressive disorder, PLSDA = partial least square-discriminant analysis, OPLSDA = orthogonal partial least square-discriminant 
analysis, VIP = variable important projections. 

 
creatinine, TMAO, betaine, choline, and lactate. Lactate and 
choline are metabolites that were significantly responsible 
for the separation of serum samples of TWMDD from those 
of HC when the evaluation was done using multivariate 
(OPLS- & PLS-DA) as well as univariate analysis. Acetone, 

leucine, glucose, alanine were the key determinant for dis-
crimination when the evaluation was done using multivariate 
evaluation (OPLS- & PLS-DA) for samples from HC and 
TWMDD. Glycine, betaine, acetate were the metabolites of 
interest when the evaluation was done using the PLS-DA 



A Preliminary Nuclear Magnetic Resonance Metabolomics Study Current Neuropharmacology, 2022, Vol. 20, No. 5    975 

Table 6.  The performance of discriminatory models in correctly separating study observations into their respective classes based 

on metabolites in the serum and urine. 

Sample Type Phenotypes Under Study Model  
Predictive Perfor-

mance in Score Plot  

Fischer’s Exact 

Statistics 

Serum samples 

Treatment naive MDD patient vs. non-

depressed volunteers 

PLSDA  96.88% 2.4e-006 

OPLSDA  96.88% 2.4e-006 

MDD patient on treatment for 2 weeks vs. 
non-depressed volunteers 

PLSDA  95.83% 2.3e-005 

OPLSDA  95.83% 2.3e-005 

MDD patient on treatment for 2 weeks vs. 
treatment naive MDD patients  

PLSDA  84.85% 7.5e-005 

OPLSDA  84.85% 7.5e-005 

Treatment response vs. non-response to 

treatment 

PLSDA  88.89% 0.0011* 

OPLSDA  88.89% 0.0011* 

Adverse effect vs. no adverse effect  
PLSDA  94.12%  0.0021* 

OPLSDA  94.12%  0.0021* 

Urine samples  

TNMDD vs. HC 
PLSDA  84.21% 0.0024* 

OPLSDA  84.21% 0.0024* 

TNMDD after 2 weeks of SSRI vs. HC 
PLSDA  90.91% 0.00019* 

OPLSDA  90.91% 0.00019* 

TNMDD vs. TNMDD after 2 weeks of SSRI 
PLSDA  78.57 0.063 

OPLSDA  78.57 0.063 

Responders vs. non-responders to SSRI 

treatment for 2 weeks 

PLSDA  85.71% 0.015* 

OPLSDA  85.71% 0.015* 

Adverse effect vs. no adverse effect to SSRI 

treatment for 2 weeks 

PLSDA  83.33% 0.045* 

OPLSDA  83.33% 0.045* 

Abbreviations: PLSDA = Partial Least Square Discriminant Analysis, OPLSDA = Orthogonal Projections to Latent Structures-Discriminant Analysis, N = sample size, A = number 
of principal components, R2Y = measure of the reliability of the model, Q2Y = measure of predictability of model, pCV ANOVA* = statistics for cross-validation. 

 
model, while fatty acid was the metabolite of interest when 
the evaluation was done using the OPLS-DA model or uni-
variate statistics for the discrimination of samples from 
TWMDD patients from those of HC (Table 4). 

Urinary imidazole, NPAG, creatine, betaine, and formate 
were increased in samples of patients with TWMDD pheno-
types when compared to samples from HC, and this was irre-
spective of the model (PLS-DA or OPLS-DA) used for eval-
uation (Table 5). Methylmalonate, creatinine, glucose, 
NPAG, 3-methylhistidine, phenylacetate, glycine, phospho-
choline, trimethylamine, alanine, N-acetylglutamate, N-
acetylglycine, 3-hydroxybutyrate, and citrate were present in 
the samples of HC when evaluations were done with either 
OPLS-DA or PLS-DA models (Table 5). Hippurate was an 
additional metabolite identified in samples from HC when 
the evaluation was done using OPLS-DA. It was also ob-
served in samples from TWMDD when the evaluation was 
done using the PLS-DA model. Creatine, creatinine, 3-
methylhistidine, phosphocholine, citrate, betaine, glycine, 
phenylacetate, glucose, NPAG, N-acetylglutamate, N-
acetylglycine, methylmalonate and 3-hydroxybutyrate con-

tributed significantly in the separation of samples when the 
evaluation was done using either PLS-DA or OPLS-DA 
model. Hippurate, imidazole, trimethylamine, and alanine 
were additional metabolites significantly involved in the 
separation of samples when the evaluation was done using 
the PLS-DA model (Table 5).  

3.3. Statistical Determination of SSRI Treatment Prog-
nostic Metabolites in Serum and Urine 

In both OPLS-DA and PLS-DA models, serum levels of 
lactate, glutamine, pyruvate, acetone, acetate, alanine, valine, 
fatty acid, and creatinine were relatively higher in the pa-
tients who responded to SSRI treatment compared to those 
who did not. Choline, glucose, betaine, alanine, leucine, gly-
cine, TMAO, betaine, GPC, and creatinine were observed to 
have increased in the samples of patients who did not re-
spond to 2 weeks SSRI treatment when the evaluation was 
done using either PLS-DA or OPLS-DA model. Acetone, 
pyruvic acid, choline, GPC, glucose, acetate, TMAO, gly-
cine, betaine, and lactate contributed significantly to the sep-
aration of samples based on treatment response phenotypes, 
as observed in the PLS-DA or OPLS-DA model. Additional 
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Table 7.  Validation of the models for the separation of the metabolites in urine and serum samples. 

Phenotype Under Study Samples  Models  N A R2Y Q2Y pcv ANOVA 

TNMDD vs. HC 

Serum  
PLS-DA 32 2 0.767 0.595 6.24429e-005* 

OPLSDA 32 1+1+0 0.767 0.599 3.9984e-005* 

Urine  
PLS-DA 19 2 0.485 0.024 0.9665 

OPLSDA 19 1+1+0 0.485 0.173 0.584 

TNMDD on SSRI treatment for 2 

weeks  

vs. HC 

Serum  PLS-DA 24 2 0.832 0.662 0.00055* 

- OPLSDA 24 1+1+0 0.832 0.595 0.00124* 

Urine  PLS-DA 22 2 0.628 0.450 0.0306* 

- OPLSDA 22 1+1+0 0.628 0.425 0.0417* 

TNMDD vs. TNMDD on SSRI 

treatment for 2 weeks  

Serum  
PLS-DA 33 2 0.493 0.303 0.0205 

OPLSDA 33 1+1+ 0 0.493 0.309 0.0301 

Urine  
PLS-DA 14 2 0.597 0.157 0.7032 

OPLSDA 14 1+1+0 0.597 0.349 0.3734 

Responder vs. non-responders to 

SSRI treatment for 2 weeks 

Serum  
PLS-DA 18 2 0.671 0.380  0.1578 

OPLSDA 18 1+1+0 0.671 0.333 0.2268 

Urine  
PLS-DA 14 2 0.574 0.161 0.500 

OPLSDA 14 1+1+0 0.574 0.125 1.000 

Adverse effect vs. no-adverse 

effect to SSRI treatment for 2 

weeks 

Serum  
PLS-DA 17 2 0.626 0.294 0.2055 

OPLSDA 17 1+2+0 0.72 0.281 0.6890 

Urine  
PLS-DA 12 2 0.464 -0.21 1.000 

OPLSDA 12 1+1+0 0.464 -0.164 1.000 

Abbreviations: PLSDA = Partial Least Square Discriminant Analysis, OPLSDA = Orthogonal Projections to Latent Structures- Discriminant Analysis, N = sample size, A = number 
of principal components, R2Y = measure of the reliability of the model, Q2Y = measure of predictability of model, pCV ANOVA*= statistics for cross-validation. 

 
metabolites, such as valine and creatinine, also contributed to 
the separation of samples in evaluation using the PLS-DA 
model, while leucine contributed to the separation of the 
samples for evaluations using the OPLS-DA model. Univari-
ate statistical evaluation revealed a significant increase of 
betaine (p = 0.038), choline (p = 0.012), glucose (p = 0.038), 
3.26 ppm (TMAO and betaine) (p = 0.031) and GPC (p = 
0.004) in samples of patients who failed to respond to the 
treatment. It also showed an increased level of pyruvate (p = 
0.024) in the samples of patients who responded to treatment 
(Table 2). Therefore,  choline, glucose, TMAO, betaine, 
GPC, and pyruvate metabolites were observed to be signifi-
cantly involved in the separation of samples from patients 
with phenotypes responding and/or not responding to SSRI 
treatment regardless of the method of statistical evaluation 
applied. 

NPAG, hippurate, phospholine, creatinine, glucose, 
NPAG, 3-methylhistidine, phenylacetate, glycine, betaine, 
methylmalonate, trimethylamine, citrate, 3- hydroxybutyrate, 
and N-acetylglutamate were increased in urinary samples 
from patients who responded to SSRI treatment when the 
evaluation was done using OPLS-DA or PLS-DA model 
(Table 5). N-acetylglycine was an additional metabolite that 

was identified in the sample obtained from responders to 
SSRI treatment when the evaluation was done using the 
PLS-DA model (Table 5). NPAG, formate, imidazole, creat-
inine, alanine, and creatine were metabolites that increased 
in the urine samples obtained from patients with the non-
responder phenotype when the evaluation was done using 
OPLS-DA or PLS-DA model (Table 5). Trimethylamine was 
an additional metabolite identified when the evaluation was 
done using the OPLS-DA model (Table 5). Creatinine, crea-
tine, 3-methylhistidine, phosphocholine and hippurate were 
metabolites that were significantly involved in the separation 
of urinary samples of both responders and non-responders to 
SSRI treatment in this study when the evaluation was done 
using either PLS-DA or OPLS-DA model (Table 5). Citrate, 
NPAG, betaine, methylmalonate, glucose, phenylacetate, N-
acetylglutamate were additional metabolites that were in-
volved in the separation for the samples when the evaluation 
was done using the PLS-DA model (Table 5). Univariate 
statistical evaluation revealed a significantly increased level 
of formate (p = 0.035) in the samples obtained from patients 
with the phenotype non-responsive to 2 weeks of SSRI 
treatment compared to those of the responders to treatment 
(Table 3). 
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Serum fatty acid, valine, alanine, acetate, creatinine, cho-
line, GPC, TMAO, betaine, glucose, glycine, leucine, and 
glutamine were identified among patients with no-adverse 
effects when separation was based on AEs phenotypes, irre-
spective of the evaluation model used (OPLS-DA or PLS-
DA) (Table 4). Pyruvate was an additional metabolite identi-
fied when the evaluation was done using the PLS-DA model 
only (Table 4). Lactate and acetone were increased in the 
serum samples of patients with AEs when the evaluation was 
done using the PLS-DA or OPLS-DA model (Table 4). Glu-
cose and glutamine were also observed to have increased in 
the samples from patients with AEs when the evaluation was 
done using the OPLS-DA model. Acetone, lactate, acetate, 
choline, alanine, pyruvate, glycine, glucose, betaine, TMAO, 
GPC, and leucine contributed significantly to the separation 
of samples based on phenotypes of AEs when the evaluation 
was done using the PLS-DA or OPLS-DA model (Table 2). 
In addition, creatinine and valine also contributed signifi-
cantly to the separation of these samples when the evaluation 
was done using the PLS-DA model (Table 2). 

The evaluation using the OPLS-DA or PLS-DA model 
revealed that phosphocholine, creatine, glucose, glycine, 
creatinine, trimethylamine, N-acetylglycine, and methylma-
lonate were increased in urinary samples obtained from pa-
tients reporting at least one AE to treatment (Table 5). The 
evaluation using the PLS-DA revealed that betaine, citrate, 
3-hydroxybutyrate, alanine and hippurate were additional 
metabolites that were increased in urinary samples from pa-
tients reporting an AE to treatment. Samples from patients 
without any AEs were observed to have increased formate, 
imidazole, NPAG, 3-methylhistidine, phosphocholine, and 
phenylacetate when the evaluation was done using the 
OPLS-DA or PLS-DA model. Alanine, 3-hydroxybutyrate, 
citrate, methylmalonate, betaine, creatinine, hippurate were 
additional metabolites identified when the PLS-DA model 
was used (Table 5). Phosphocholine, 3-methylhistidine, 
NPAG, betaine, glucose, glycine, and citrate are metabolites 
that were significantly involved in the separation of the uri-
nary samples from patients with the phenotypes of AEs 
and/or No AEs when the evaluation was done using the 
OPLS-DA or the PLS-DA model (Table 5). Creatinine and 
creatine were additional metabolites that significantly con-
tributed to the separation of these samples when the evalua-
tion was done using the PLS-DA model. 

3.4. Validation of MDD Diagnostic Model 

Diagnostic models of serum samples of TNMDD (before 
and after 2 weeks of SSRI treatment) and HC were observed 
to have significant cross-validation outcomes for the OPLS-
DA model and optimal permutation outcomes for the PLS-
DA model in this study (Tables 6, 7).  

3.5. Validation of the MDD Treatment Outcome Prog-
nostic Models  

All the prognostic models for AEs and/or efficacy pheno-
types were observed to have non-significant levels of cross-
validations and poor permutation outcomes in this study 
(Tables 6, 7), and thus, were considered to have little or no 
validity. 

4. DISCUSSION 

In the literature, urine samples obtained from MDD pa-
tients had high levels of α-ketoglutarate, TMAO, indoxyl-
sulphate, m-hydroxyphenylacetate, malonate, 3-hydroxy- 
phenylacetic acid, N-methylnicotinamide and oxalacetate. The 
samples had low levels of nicotinate, p-Hydroxyphenylacetate, 
sucrose, alanine, taurine, choline, citrate, hydroxylamine, 
myristic acid, formate, isobutyrate, palmitic acid, lactate and 
glycine [16]. The metabolite changes that differentiate urine 
samples of HC from those of patients with moderate MDD 
include reductions in TMAO, N-Methylnicotinamide, acetone, 
choline, malonate and glyceroylphosphocholine (GPC) as well 
as increases in the levels of fructose, nicotinate, citrate, isobu-
tyrate, ribose, vanillic acid, sorbitol and azelaic acid [16]. Sta-
tistical evaluations have revealed that citrate, choline, azelaic, 
N-methylnicotinamide metabolites are the most vital metabo-
lites identified in samples of HC patients relative to those pa-
tients with moderate MDD. Citrate, 3-hydroxyphenylacetic 
acid, palmitic acid, and lactate metabolites were identified in 
the samples of HC and profoundly played a vital role in dis-
criminating severe MDD from HC [16]. In the current study, 
samples of HC in relation to those obtained from TNMMD 
patients contain alanine, formate, 3-hydroxybutyrate, trime-
thylamine, creatinine, phenylacetate, phosphocholine, glucose, 
3-methylhistidine, NPAG, hippurate. glycine, citrate and for-
mate metabolites. The last 3 metabolites (glycine, citrate, and 
formate) were the same metabolites identified in the literature. 
The significant observation for lower levels of citrate and 
phosphocholine in TNMDD patients’ samples compared to 
HC, irrespective of the model used during evaluation, was also 
similar to the findings in the literature. The differences ob-
served in the direction of metabolites concentration, the speci-
ficities for chemical moieties identified in this study as well as 
the literature findings may be related to the severity of MDD 
of participants in the literature study, which was not consid-
ered in the current study. In addition, the inability of the cur-
rent study to identify other metabolites, such as azelaic and N-
methylnicotinamide for moderate MDD or 3-hydroxyphe- 
nylacetic acid, palmitic acid, and lactate for severe MDD re-
ported in the literature may be attributed to the fact that the 
severity of TNMDD was not factored in determining the sam-
ples for analysis. Therefore, these significant metabolites for 
the separation of HC and TNMDD samples identified in the 
literature may be specific for assessments based on MDD se-
verity, while the separating metabolites observed in the current 
study are not based on MDD severity. 

In the current study, serum samples from TNMDD pa-
tients indicate relatively high levels of acetone, choline, and 
glucose as well as low levels of glutamine, lactate, and py-
ruvate. High levels of glutamine (in addition to glycine and 
serine) had been reported from the serum evaluation in post-
mortem studies of MDD patients [17-20]. Some studies cited 
in the literature have not indicated any differences in plasma 
glutamate, glycine, and serine of MDD patients when com-
pared to those of HC [17, 21, 22]. In addition, another study 
using column-switching high-performance liquid chromatog-
raphy (HPLC) system for evaluating plasma amino acid lev-
els among MDD patients has revealed an increase in the lev-
el of serine amino acid, a decrease in glycine, glutamate, and 
glutamine [21, 23]. In the current study, failures to detectin-
creases in serum glycine, serine, glutamate in the samples of 
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TNMDD patients, as reported in earlier studies, and the iden-
tification of decreased glutamine in serum of patients with 
TNMDD phenotype could be due to their roles in the dis-
crimination of samples remaining contentious. Glutamine is 
one of the serum metabolites that significantly determined 
the separation of TNMDD from HC samples in this study. 
This suggests high reliability and predictability in discrimi-
nating between serum samples from TNMDD and those 
from HC. Nonetheless, there are other significant metabolites 
that play a key role in separating TNMDD from HC serum 
samples, such as lactate, glucose, alanine, valine, fatty acid, 
creatinine, acetate and choline in this study. An earlier urine 
metabolomic study had demonstrated that lactate and cho-
line, in tandem with other metabolites, significantly contrib-
uted to the separation of MDD from HC samples. The differ-
ence in study design, especially as it relates to the recruit-
ment of samples in the earlier study based on the severity of 
MDD, may account for the difference observed in the find-
ings of the current and earlier studies. In the current study, 
acetone, lactate, glucose, alanine, and choline are metabolites 
that significantly differentiated serum samples of patients 
with the phenotypes of TNMDD and/or TWMDD from those 
with HC phenotype. Nevertheless, fatty acid, valine, gluta-
mine, creatinine have proven to be additional significant 
metabolites for the separation models of TNMDD from HC, 
while leucine acts as an additional metabolite in the separa-
tion model involving samples of TWMDD and HC. There-
fore, from the foregoing discussion, it is evident that the 
study design, tools, and techniques used in ascertaining me-
tabolites may play vital roles in the specific differences of 
the array of metabolites reported to be involved in the diag-
nosis of MDD. Additionally, key metabolites involved in the 
discrimination of samples may continue to be highlighted 
regardless of the evaluation models. 

Decreased urinary creatinine, proline, betaine, hippurate, 
PAG, m-HPPA, formate, acetate, propionate, DMA, MA and 
increased levels of O-acetyl and N-acetyl glycoproteins fol-
lowing treatment with SSRI have been reported in the litera-
ture. Low levels of glycine, glutamic acid and high levels of 
asparagine, aspartic acid, and hydroxylamine have also been 
associated with a better SSRI treatment outcome. A key 
source of glycine is the activity of a hydroxymethyltransfer-
ase enzyme on serine     thus, lower levels of serine may also 
be encountered in MDD patients responding to SSRI treat-
ment [21, 23]. In a liquid chromatography–tandem mass 
spectrometry (LC-MS/MS) study, metabolite changes fol-
lowing SSRI treatment in MDD patients revealed that re-
sponders to SSRI had a significantly high baseline of alpha-
aminobutyric acid (ABA) level and a marked reduction fol-
lowing treatment response. The level of glutamic acid among 
the treatment responders was significantly decreased, thus 
significantly altering the ratio of glutamine to glutamic acid 
(p = 0.014) [24]. Decrease in the levels of ribose, trehalose, 
and cystine commonly followed SSRI treatment with an im-
provement in depression symptoms. Attenuations of the lev-
els of branched-chain amino acids (valine, leucine and iso-
leucine), linoleic, palmitic, oleic, palmitoleicheptadecanoic 
acids, glycerol, ornithine, citrulline, and xanthine were corre-
lated with an SSRI reduction of depression severity. The 
correlations of decreased levels of linoleic, arachidonic, pal-
mitic acids, ornithine, and glycerol were more evident after 4 

weeks of SSRI treatment as appraised using a GCMS sys-
tem. Increased levels of cysteine, lactic acid and pseudouri-
dine, arachidonic acid and alpha-ketoglutarate were also cor-
related with SSRI-related reductions in the severity of de-
pression [24-29]. A validated liquid chromatography electro-
chemical array (LCECA) platform revealed changes in the 
concentration of 5HT, HPAC, KYN, 5-MTPM, LD, HGA, 4-
HPLA and HGA in the plasma of MDD patients treated with 
SSRI. These metabolites are members of the methoxyindole 
and kynurenine (KYN) branches of the tryptophan pathway 
that were associated with SSRI treatment response [30]. The 
ratio of the KYN/MEL and 3-OHKY/MEL were significant-
ly decreased in post-treatment plasma samples of MDD pa-
tients who had a significant treatment response to SSRI 
compared to their pre-treatment levels. This implies that the 
methoxyindole branch of the tryptophan pathway was rela-
tively more active in these patients compared to the KYN 
branch [30, 31]. The activity of the KYN pathway,which was 
promoted by pro-inflammatory cytokines that activate the 
indoleamine 2,3-dioxygenase (IDO) responsible for catalys-
ing the metabolism of tryptophan into KYN as well as in-
creasing activation of the KYN pathway, play a substantial 
role in the reductions of 5-HT synthesis levels in both MDD 
patients and individuals who develop depression following 
cytokine administration [32, 33]. An evaluation of metabo-
lites in remitted MDD (rMDD) patients revealed a higher 
TYR/4HPLA and low 5HIAA/KYN, TYRA, HVA/ MHPG, 
HVA/TYR ratios. This means that more tryptophan was 
shunted towards the KYN pathway and not the 5-HT and/or 
the norephinephrine synthesis. The pro-inflammatory state of 
depression appears to persist among rMDD patients despite 
the resolution of depressive symptoms [34]. Reductions of 
IL-6 and TNF–alpha activities following SSRI treatment 
have been reported, and these were pro-inflammatory factors 
that were most consistently associated with MDD [35, 36]. 
In the current study, the different approaches to evaluating 
SSRI treatment outcomes using either the PLS-DA or OPLS-
DA model nominally identified various metabolites, as re-
ported in the results section. However, none of the separation 
models has survived the different statistical tests for reliabil-
ity and predictability. The failure of the reliability and pre-
dictability tests of the prognostic models in the current study 
could be associated with either short durations of SSRI 
treatment, the diversity in the SSRI medications prescribed 
to the patients, or the limited sample size in our study. 

4.1. Putative Metabolism Pathway Implicating Identified 
Metabolites 

In healthy individuals, lactic acid is generated mainly 
from RBC skin and brain. Kidney and liver activities pro-
mote the conversion of lactic acid into carbon dioxide, water, 
and a substrate for gluconeogenesis. Its production and utili-
sation with pyruvic acid are in a state of homeostasis [37], 
which is also due to the aerobic breakdown of pyruvate, 
which generates NAD+ and acetate, a vital substrate for the 
Kreb cycle. Oxidation of pyruvate and NADH generated 
from glucose in glycolysis is hampered in an anaerobic set-
ting. The regeneration of NAD+ by reducing pyruvate to 
lactate is thus an adaptive process that ensures a continued 
metabolism in anaerobic settings to ensure the regeneration 
of NAD+. Aerobic metabolisms of glucose with the genera-
tion of lactate and NAD+ have also been elucidated in the 
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Fig. (8). Pictorial representation of normal-state metabolites status and pathway for metabolism in non-MDD healthy volunteers. (A higher 
resolution/colour version of this figure is available in the electronic copy of the article).
 

 

Fig. (9). Pictorial representation of shift of metabolites status among MDD patients (both treatment naive and those on treatments for 2 
weeks). There is a prevalence for fatty acid-beta oxidation pathway, thus accounting for increased levels of its metabolic products.  See the 
highlighted segment of the diagram. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 

literature [38]. Energy generation from oxidation of succin-
ate, citrate, maleate and glutarate has also been reported. 
Formations of succinate from fumarate and oxaloacetic acid 
through oxidative and reductive processes are key features of 

the Kreb cycle. The generation of succinate is enhanced by 
the activity of malonate, a key inhibitor of succinate dehy-
drogenase. NAD-linked malate dehydrogenase oxidizes ma-
lonic acid to oxaloacetic acid with the generation of energy. 
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Nonetheless, malonic acid is commonly associated with 
NADP rather than NAD thus, providing an alternative source 
of reduced NADP for numerous other biosynthetic reactions 
[39]. Therefore, regardless of the scenario, the generation of 
energy and reduction factors for biochemical reactions are 
maintained in health [39]. Disturbances in the energy metab-
olism of different etiologies, such as mitochondrial dysfunc-
tion, have been hypothesized to be key in the development of 
MDD [40-43]. Mitochondrial dysfunction renders the activi-
ty of the Kreb cycle enzymes, including the citrate synthase 
and the succinate dehydrogenase. SSRI treatment has report-
edly been associated with improving the activity levels of 
these enzymes in preclinical studies [24]. 

In the current study, the normal levels of lactate and py-
ruvic acid observed in samples of HC compared to their low 
levels in TNMDD before and after an SSRI treatment for 2 
weeks suggest that the carbohydrate metabolism in depres-
sion is low. Increased pyruvate, lactate and other pointers to 
carbohydrate metabolism are hypothetically envisaged to be 
encountered among patients with a treatment response effi-
cacy, as observed in this study. Schematic representations of 
metabolic pathways in non-depressed volunteers and MDD 
patients have been illustrated in Figs. (8 and 9). 

CONCLUSION 

There were some variabilities in the enumerated metabo-
lites identified in both this study and in the literature, while 
there are some findings in this study that are consistent with 
the literature. Statistical validations of discriminatory metab-
olites were successful for the model of MDD diagnosis using 
serum samples of TNMDD and TWMDD patients in com-
parison to samples from HC. The main metabolites underly-
ing these validated discriminatory models included de-
creased levels of lactate, glucose, glutamine, creatinine, ace-
tate, valine, alanine, fatty acid and increased levels of ace-
tone and choline in TNMDD and TWMDD samples, irre-
spective of whether an OPLS-DA or a PLS-DA model of 
evaluation was used. These results were also in line with the 
statistical results obtained using univariate evaluations of the 
relative concentrations of the metabolites in various samples. 
In addition, univariate evaluations have revealed that urinary 
citrate and phosphocholine metabolites were significantly 
different in the samples of TNMDD and HC, although the 
OPLS-DA and PLS-DA models were not validated for relia-
bility and predictability.  
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