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ABSTRACT

Owing to the advent of high throughput single cell
transcriptomics, past few years have seen exponen-
tial growth in production of gene expression data.
Recently efforts have been made by various research
groups to homogenize and store single cell expres-
sion from a large number of studies. The true value
of this ever increasing data deluge can be unlocked
by making it searchable. To this end, we propose
CellAtlasSearch, a novel search architecture for high
dimensional expression data, which is massively par-
allel as well as light-weight, thus infinitely scalable. In
CellAtlasSearch, we use a Graphical Processing Unit
(GPU) friendly version of Locality Sensitive Hashing
(LSH) for unmatched speedup in data processing and
query. Currently, CellAtlasSearch features over 300
000 reference expression profiles including both bulk
and single-cell data. It enables the user query indi-
vidual single cell transcriptomes and finds match-
ing samples from the database along with necessary
meta information. CellAtlasSearch aims to assist re-
searchers and clinicians in characterizing unanno-
tated single cells. It also facilitates noise free, low
dimensional representation of single-cell expression
profiles by projecting them on a wide variety of ref-
erence samples. The web-server is accessible at:
http://www.cellatlassearch.com.

BACKGROUND

Single cell transcriptomics provides a powerful means for
delineating subtle phenotypic differences among seemingly
similar cells (1). Over the past few years single cell RNA-
Sequencing (scRNA-seq) has emerged as a popular choice
for studying tissue heterogeneity in the context of develop-
ment and disease. Moreover, continuous upgradation of the
throughput capabilities has made scRNA-seq a reliable tool

for systematic discovery of rare cell types (2,3). Owing to
its promises and popularity significant resources have lately
been deployed through community-level initiatives such as
Human Cell Atlas (4) and Oxford Single Cell Biology Con-
sortium.

How to characterize individual cells? How to ward off
noise while clustering transcriptomes? How to ensure if a
seemingly novel transcriptomic pattern indeed corresponds
to a new and unreported cell type? These are among the
most frequent and persistent questions when it comes to
downstream analysis of single cell expression data. We built
CellAtlasSearch to address these important questions by
exploiting the massive amount of pre-existing messenger
RNA sequencing data.

Oftentimes a single cell manifests its identity through
multiple previously known phenotypes. For example,
glioblastomas have traditionally been stratified into four
categories: classical, neural, pro-neural and mesenchymal
(5). However, single cell studies revealed transcriptomes
that have mixed representation of these phenotypes (6). The
ability to compare a query single cell transcriptome with a
large number of reference expression data directly benefits
characterization of single cells, as it assists in zeroing down
on the potential phenotypes.

Efforts have been made in archiving both single cell and
bulk expression data. Single Cell Portal, Recount2 (7) and
JingleBells (8) are notable among these. A few webservers
have also been developed for online search of matching mi-
croarray and bulk-RNA-seq based expression profiles (9–
12). CellAtlasSearch, for the first time, allows user query
single-cell expression profiles to retrieve matching single cell
or bulk expression data from over 2000 different studies.

Besides discerning tissue heterogeneity, large-scale single-
cell studies often lead to the discovery of rare cells (2). Cel-
lAtlasSearch can be used to cross-validate if a suspected rare
cell is indeed unreported. Upon submission of a rare cell
transcriptome as a query, it reports zero hits.

Single cell assays are usually fragile due to the paucity
of input RNA. As a result, clustering single-cell expres-
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sion profiles is often challenging in presence of high lev-
els of noise, technical variation and batch effect (BioRxiv:
https://doi.org/10.1101/025528). In a recent article, it has
been shown that the best way to deal with noise in single-
cell data is to project it on a wide variety of reference sam-
ples (13). However, due to data curation and computation
related challenges, the authors had to limit their scope to
the BioGPS Primary Cell Atlas. CellAtlasSearch breaks the
barrier by allowing comparison of query cells with a vast
pool of reference expression data. Users can download the
resulting similarity matrix and use it as a replacement for
the expression matrix for noise-free clustering of the indi-
vidual transcriptomes.

We have recently shown how Locality Sensitive Hashing
(LSH) improves speed and accuracy of cell type cluster-
ing (14). CellAtlasSearch implements LSH on the powerful
GPU architecture to attain an unmatched speed in archiv-
ing and querying expression data. Hashing based low di-
mensional encoding of expression profiles makes data trans-
actions efficient and inexpensive, thus future-proof.

Here, we first assess the effectiveness of GPU in speeding
up expression data archival and query. We also show the
accuracy of information retrieval using cell line data. No-
tably, CellAtlasSearch shows substantial tolerance to high
dropout rates, which is common in scRNA-seq data. Fur-
ther, we furnish two case-studies depicting the potential ap-
plications of CellAtlasSearch. In the first case study, we
query the transcriptomes of a few circulating tumor cells
(CTCs) along with a large number of non-cancerous im-
mune cells to assess the efficacy of CellAtlasSearch in dis-
tinguishing the rare cells from the previously known abun-
dant cell types. In the second case study, we show how Cel-
lAtlasSearch manages to bypass batch effects in grouping
single-cell expression profiles from two different cell lines,
each processed in two independent batches.

IMPLEMENTATION DETAILS

Data curation and warehousing

CellAtlasSearch currently features 304,769 expression pro-
files from 2044 different studies (Supplementary Table S1).
These include both single cell and bulk RNA-Seq sam-
ples. To compile the reference database, we downloaded
expression profiles in the form of raw-count data from
three sources: Gene Expression Omnibus (GEO) (15), Re-
count2 (7) and the 10xGenomics website (https://www.
10xgenomics.com). For meta-data, we relied on the study
abstracts and sample descriptions. A vast majority of the
sample descriptions were sourced from the GEO submis-
sion pages of the respective studies. For extracting informa-
tion pertaining to lineage and phenotype we used Extract-
2.0 (BioRxiv: https://doi.org/10.1101/111088). Extract-2.0
was able to populate the necessary details for ∼70% of the
studies. We employed Locality Sensitive Hashing (LSH)
(16,17) to generate relative-proximity preserving, low di-
mensional bit vectors (hash-codes) for the individual refer-
ence expression profiles in the CellAtlasSearch database.

LSH projects high dimensional data points (transcrip-
tomes in this case) onto a set of randomly defined hyper-
planes. For each data point, a binary hash code is generated
based on its location with respect to these hyperplanes. For
the embarrassingly parallel computational task of hash code
generation, we exploited the GPU architecture with the sup-
port of the CUDA APIs, distributed by NVIDIA. We then
performed key-value pairing between the hash codes and
the individual expression profiles for efficient warehousing.
A hash-code can be imagined as a bucket. Due to this spe-
cial encoding strategy, similar expression profiles tend to
share their bucket (Figure 1).

When queried, the input expression profiles (read-counts)
are projected onto the pre-defined set of hyperplanes. Hash
codes thus generated are compared with the archived hash
codes and hamming distances are computed between the
bit vectors associated with the query and the buckets (hash-
codes). Of note, hamming distance computed on such hash
codes approximate cosine similarity between the associ-
ated high dimensional data-points (18). Cosine similarity is
known to be ideal for expression data analysis as it is agnos-
tic to scaling (library size) related issues (19). Given a query,
only a few proximal buckets are considered for an exhaus-
tive search of nearest neighbors. LSH reduces the nearest
neighbor search time dramatically (Supplementary Figure
S1a, S1b).

CellAtlasSearch reports the estimated cosine similar-
ity values for the top matches. The approximate nearest
neighbor search implemented in CellAtlasSearch competes
well with its exhaustive counterpart (Supplementary Figure
S1c).

Estimating significance and accuracy of cell-type match

Expression data collected from diverse sources inherit var-
ied levels of noise and technical bias (7,20). Such bewil-
dering level of variability poses a significant challenge on
computing expression similarity. This, motivated us to com-
pute the statistical significance of the search results as a
countermeasure. To do this, we created 2000 randomized
query single cell transcriptomes by averaging 5 expression
profiles at a time collected from independent studies. Then
we calculated cosine similarity between all possible pairs
of random and pre-archived expression profiles. These co-
sine values are taken together to create the null distribu-
tion. For every cosine similarity value corresponding to a
certain search-hit, CellAtlasSearch displays a P-value, es-
timated empirically using the Monte Carlo method (21).
These P-values are then subjected to multiple test correc-
tion using the Benjamini–Hochberg proposed method (22).
Besides significant matches, CellAtlasSearch also provides
heat-map depicting the similarity between the query expres-
sion profiles and the union set of their top hits.

Feature selection

CellAtlasSearch reduces data dimensionality as part of the
Locality Sensitive Hashing. As we evaluated the perfor-
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Figure 1. CellAtlasSearch Pipeline. The entire web-server is based on GPU framework. Expression profiles are stored as hash codes obtained through
LSH. Like-samples are archived in the same bucket. Query expression data is first converted into hash code and then mapped to one of the buckets. User
can query one or more single cell transcriptomes.

mance of CellAtlasSearch in batch effect removal we real-
ized that feature selection also plays an important role (see
Results section). CellAtlasSearch currently provides an op-
tion for using a predefined set of informative (feature) genes.
We created the list of informative genes by using the all-
tissue bulk expression data published by the GTEx con-
sortium (23). For this, we first applied quantile normaliza-
tion on the data. Average expression profiles were then com-
puted for each tissue type. Genes, having high values of ex-
pression fold change over their respective median expres-
sion in at least one of the tissue types were considered as in-
formative. A fold change cutoff of 8.75 returned nearly 500
feature genes. Feature selection option is currently available
purely for experimentation and exploration purposes.

User-friendly graphical user interface

CellAtlasSearch has an easy to use user interface. Figure 2
shows a schematic of user input and output result page
of CellAtlasSearch. The server comes with a simple search
form in which user furnishes some basic details about the
query and uploads the expression data as an excel or CSV
file (Figure 2A). The user can choose between the scRNA-
seq and the bulk-seq databases. After submission of the
query, the user receives a notification about the job status
and a result URL, which he can bookmark for future ref-
erence (Figure 2B). As a query gets processed, the user re-
ceives a table listing the top matches corresponding to the
individual queried cells (Figure 2C) and a D3-js based in-
teractive visualization of the descriptions corresponding to
the matching samples (Figure 2D). Result page also dis-
plays a heat-map of the cosine similarity values between the
query expression profiles and the matching reference sam-
ples (Figure 2E). In addition, a spectral t-SNE based 2D
map provides a view of the query cells on the basis of ref-
erence panel projections (Figure 2F). The CellAtlasSearch
website provides details about the usage and the utilities

through its various content pages such as ‘How to Use’ and
‘Frequently Asked Questions’.

RESULTS

Speedup due to GPU

We first checked if adopting the GPU architecture brings
down the computation time drastically. With the use of
GPU, CellAtlasSearch achieved significant speedup in the
most compute-intensive step, i.e. codifying the reference ex-
pression profiles by projecting them on a set of randomly de-
fined hyperplanes (Figure 3A, Supplementary Figure S1a).
This is a desirable feature as it helps keep up with the ex-
ponential growth in the production of single cell expression
data. We found the GPU architecture to be instrumental
in accelerating the processing of the user queries. Also, we
observed that GPU becomes even more powerful as query
sample size increases (Supplementary Figure S1b).

Gene dropouts and accuracy of search

Single cell expression data suffer from excessive levels of
zero expression values owing to the paucity of input RNA.
To this end, we checked the accuracy of search results
against varied drop-out rates. Although dropouts are of-
ten modeled as a Poisson process, it has not so far been
proved in a systematic manner. Hence, to make our eval-
uation more challenging, we simulated dropouts by mut-
ing gene expression (making the expression zero) randomly.
From our reference database, we randomly picked cells
and introduced artificial dropouts at different rates. For a
specific simulated dropout rate, 20 randomly picked cells
were queried. Our analysis revealed that even with ∼40%
genes missing, CellAtlasSearch reported the exact same cell
within among the top five hits (Figure 3B, Supplementary
Figure S2a, S2b).
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Figure 2. CellAtlasSearch web application interface. (A) Query submission form, where the user insert database preference, uploads the query file and
submits processing request. (B) A custom URL is generated for the result page, even before the result gets compiled. The user can bookmark it for future
references. (C) Result page, showing the top hits in a tabular form, with necessary meta information. (D) The interactive summary shows graphical view
of the frequently occurring descriptions (or phenotypes) corresponding to each query transcriptome. Each big circle represents a query cell whereas the
small ones the corresponding frequently occurring descriptions (or phenotypes). The descriptions are displayed when the bubbles are hovered upon by the
cursor. (E) A heat map of cosine similarity values between pairs of query cells and reference samples. (F) Spectral-tSNE plot of the query cells made using
cosine similarities as feature variables. Elements (E) and (F) are produced when the query has at least 5 samples.

So far we have been considering a match to be cor-
rect even if it comes from the same study from which the
query cells are taken. However, in reality, we expect the user
queries to be independent of our reference database. Hence
we subjected CellAtlasSearch to another round of accuracy
testing. We queried HCT116 (cell-line) transcriptomes that
were not in our reference-dataset. In the absence of expres-
sion profiles from the same study in the reference database,
CellAtlasSearch was still able to report correct cell type for
60–70% of the query cells even at a simulated dropout rate
of 25% (Figure 3C; Supplementary Table S2). Our findings
were similar for HEK293T cells (Figure 3D).

It is possible that gene names in the input data match
partially with CellAtlasSearch genes. In such cases, Cel-
lAtlasSearch assigns zero expression values to the missing
genes. Simulations show that such artificial dropouts do not
cause any remarkable difference in the result quality (Sup-
plementary Figure S3).

Case study: Detecting rare cells––application on circulating
tumor cells (CTCs)

Encountering a suspiciously rare expression signature gives
rise to both excitement and skepticism. CellAtlasSearch al-

lows researchers to check if a newly found transcriptomic
signature is indeed rare. For example, circulating tumor cells
or CTCs are rare in blood. Marker agnostic identification
and characterization of CTCs is considered to be the holy
grail of cancer biology. A general strategy for the same is
the size based enrichment of CTCs in peripheral blood, fol-
lowed by single cell expression profiling. However, in the ab-
sence of pan CTC molecular marker, their identification in
a vast pool of immune cells remains challenging, only by
looking at the transcriptomes (24,25). We hypothesized that
CellAtlasSearch would either report primary or metastatic
cancer cells as top hits or report zero hits as our database
does not yet contain CTC transcriptomes. To verify this
we prepared a query consisting of expression profiles of 10
circulating tumor cells (CTCs) and 90 peripheral mononu-
clear cells (PBMC). CTCs were sorted from the blood of a
mouse xenograft model of human lung cancer (26) (GEO
id: GSE74639). The PBMC scRNA-seq counts were down-
loaded from the 10xGenomics portal. CellAtlasSearch re-
ported correct matches (with Padj < 0.1) for all PBMC cells
for which like expression profiles were found (93%). How-
ever, among the 10 query CTCs 5 cells did not have any
matching result and the remaining five cells matched with
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Figure 3. Speed Up and accuracy analysis of CellAtlasSearch. (A) Time taken to generate hash codes with varying sample sizes. The blue curve shows the
time taken by our parallelized implementation, which is approximately 10 times lesser than the CPU based serialized version. (B) Gene dropout analysis
for randomly chosen cells from the dataset. An accurate match was considered when CellAtlasSearch was able to recover the exact same cell within top five
results. (C) Accuracy of CellAtlasSearch in finding samples of the same source cell line from independent studies, upon submission of the query scRNA-seq
data of HCT116 cell line, produced by a certain research group. A retrieval is deemed successful if expression data of the same cell line, contributed by an
independent group, appears within top five hits. (D) Similar analysis for HEK293T cell line.

samples from cancer and stem cell related studies (Supple-
mentary Table S3). This shows that CellAtlasSearch can be
used in segregating rare cells from major cell subpopula-
tions.

Case study: fighting batch effect

Single cell expression datasets contributed from different
groups come with their own technical biases which could be
due to the difference in chemistry, variable reagents concen-
tration, sequencing errors etc. Inspired by our previous find-
ings (13), we hypothesized that an ideal approach to reduc-
ing the noise level in single cell data is to project it on a wide
variety of reference samples. To test our hypothesis, we con-
sidered scRNA-seq data of GM12878 and H1 cell lines pro-
cessed in two different batches (13) (GEO id : GSE81861).
A spectral tSNE visualization of GM12878 and H1 cells
expression, after quantile normalization and log transfor-
mation, indeed depicted the presence of two batches (Fig-
ure 4A).

Batch effect got partially resolved when the spectral t-
SNE was applied after replacing the genes by reference
panel projection vectors featuring cosine distances between
queries and top hits (Figure 4B). On the next iteration,
we introduced feature selection. We chose 500 top variable
genes using GTEx tissue expression data and repeated the
procedure (Implementation Details). The inherent batch
specific biases got convincingly resolved owing to the care-
ful selection of feature genes (Figure 4C).

DISCUSSION

The emergence of single cell genomics has inspired the de-
velopment of a spectrum of new generation computational
techniques. Many of these techniques involve considerable
ingenuity, mainly aimed at addressing the scalability issues.
The key contribution of the present work lies in the in-
troduction of GPU computing to the field of single cell
transcriptomics. CellAtlasSearch marries LSH, a popular
big data technique with GPU to attain unprecedented ef-
ficiency in archival and query of expression data. Besides
this, CellAtlasSearch exploits its vast pool of expression
data to amplify biological variability while controlling for
technical variabilities. This is particularly beneficial for sin-
gle cell clustering. There are very few studies presenting in-
depth analysis on data curated from multiple heterogeneous
sources, largely due to the technical variability and batch
effect. CellAtlasSearch attempts to overcome this challenge
by making the combined data reliably searchable. The ap-
proach discussed in this article will encourage researchers
for non-redundant experiment designing and use existing
datasets for finding greater insights.

With an example query containing CTC transcriptomes,
we have shown that CellAtlasSearch can be used to iden-
tify previously un-characterized cells. Currently, researchers
are trying to develop different kinds of assays to find multi-
ple types of CTCs without relying on antibody based sort-
ing(25). This is because some well known epithelial markers
like EpCAM may not necessarily be present on the surface
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Figure 4. Dealing with batch-effect. (A) Spectral tSNE based visualization of GM12878 and H1 cells using log transformed scaled counts of genes. For spec-
tral tSNE, top 10 principal components of gene-count matrix were used. For both cell lines, batches are observed to form separate clusters. (B) Visualization
based on cosine similarities between queries (GM12878 and H1 cells) and matching references from single cell dataset, as returned by CellAtlasSearch.
Here top 10 principal components of cosine similarity matrix were used with tSNE. Cells from different batches of same cell type tend to come closer to
each other, yet they did not intermix. (C) Batches of same cell type get intermixed when projection for cosine similarity calculation was done using only
GTEx-selected-features in the transcriptomes.

of all CTCs (24,25). Even after enriching potential CTCs
using different methods, researchers find it challenging to
zero in on the identity of the CTCs. In an unsupervised set-
ting, CellAtlasSearch can help recognizing CTCs in a large
pool of blood PBMCs, either as cells having no matching
transcriptomes or ones with solid cancer transcriptomes as
top hits.

CellAtlasSearch is meant for all human tissue/ cell types.
However, depending on the data availability, frequency of
the matches may vary from cell type to cell type. Due to
the stochastic nature of Locality Sensitive Hashing (LSH),
sometimes it may not find the true nearest neighbors for
a query expression profile. Another major challenge is to
fight the curse of batch effect sourced due to the integration
of transcriptomic datasets of diverse origin. To address the
above difficulties, CellAtlasSearch will continue to explore
novel strategies and methodological advances. With further
improvements and additions, CellAtlasSearch can poten-
tially provide more value added services such as tissue spe-
cific search, RNA-seq based real time infection surveillance,
transcriptome based drug resistance prediction in cancer
etc.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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