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Physical activity refers any bodily movements produced by skeletal muscles that expends

energy. Hence the amount and the intensity of physical activity can be assessed by

energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting

metabolism reflecting metabolic rate during exercise. The standard MET is defined

as 3.5ml/min/kg. However, the expression of energy expenditure by body weight to

normalize the size differences between subjects causes analytical hazards: scaling

by body weight does not have a physiological, mathematical, or physical rationale.

This review demonstrates by examples that false methodology may cause paradoxical

observations if physical activity would be assessed by body weight scaled values

such as standard METs. While standard METs are confounded by adiposity, lean mass

proportional measures of energy expenditure would enable a more truthful choice to

assess physical activity. While physical activity as a behavior and cardiorespiratory

fitness or adiposity as a state represents major determinants of public health, specific

measurements of health determinants must be understood to enable a truthful evaluation

of the interactions and their independent role as a health predictor.

Keywords: adiposity, energy expenditure, intensity, lean mass, metabolic equivalent, MET, PAEE, physical activity

Introduction

This review discusses critically the metabolic equivalent of task (MET) (Weir, 1949; Jetté et al.,
1990), and its applicability to measure energy expenditure or to assess amount and intensity of
physical activity. Physical activity is a major public health determinant (Lim et al., 2012) and
physical activity introduces public health promoting potential. Physical activity research consists
also behavioral aspect, which has been taken into account in elaborate review by Hills et al.
(2014), but from physiological point of view specific and truthful measurement is needed to assess
physical activity related health interactions. While physiologists are familiar with physiological
relevance and potential problems of body size differences related scaling (Tanner, 1949;Weir, 1949;
Hoppeler andWeibel, 2005; Lorenzo and Babb, 2012; Tompuri et al., 2014a), there are physiological
procedures which have been adapted to be used at the population level in health sciences. For
example scaling by body weight or METs has often been used when aiming to assess physical
activity (Strath et al., 2001, 2013; Brage et al., 2004, 2005; Corder et al., 2005; Crouter et al., 2008; US
Department, 2008; Warren et al., 2010; World Health Organization, 2010). This paper enlightens
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the background of the MET as well as rational body size-related
scaling, and demonstrates howmethodological confoundingmay
affect physical activity assessment, which in turn may bias further
analytical conclusions.

Physiological Basis for Measurement of
Physical Activity

The definition of the physical activity as “any bodily movements
produced by skeletal muscles that result in energy expenditure”
includes a rationale why energy expenditure can be used to
assess physical activity (Caspersen et al., 1985). Physical activity
determines the most variable portion of the energy expenditure;
moreover, the rate of the energy expenditure is directly linked to
the intensity of the physical activity (Strath et al., 2013). While
oxygen uptake has equivalency with energy expenditure during
rest and physical activity (Weir, 1949; Dennis and Noakes, 1998),
muscle blood flow is closely related to the oxygen demand of the
exercisingmuscles (Andersen and Saltin, 1984). Furthermore, the
heart rate reflects the level of the oxygen supply (Stringer et al.,
1997) and energy metabolism regardless of the type of dynamic
exercise (Strath et al., 2000; Achten and Jeukendrup, 2003).
Therefore, ambulatory heart rate recording can be used to assess
long-term energy expenditure. As compared with other methods
to assess physical activity, such as questionnaires or movement
sensors, an objective measurement of the energy expenditure
during dynamic exercise by ambulatory heart rate recording has
value in defining the intensity of physical activity especially at
greater intensities (Warren et al., 2010).

The energy cost of a physical activity can be expressed by
the METs that reflect the metabolic rate (Weir, 1949; Jetté et al.,
1990). As a physiological reference for a man who weighs 70 kg,
one MET has been defined as 40 kcal/square meter of the body
surface area∗h. However, its derivative 1 kcal/kg∗h, which refers
an oxygen uptake of 250ml/min, corresponds to the standard
MET expression that is scaled by body weight i.e., 3.5ml/min/kg
(Jetté et al., 1990; Byrne et al., 2005). This value reflects the
resting metabolism during quiet sitting. During physical activity,
multiples of the resting metabolisms refer the metabolic rate
and aims to standardize the energy cost greater than resting
metabolism (Warren et al., 2010). Therefore, standard MET vs.
time integral at daily level should reflect the amount and intensity
of physical activity.

Conversely, the standard expression of one MET has been
criticized because resting metabolism varies according to the
physiological state (Saris et al., 2003; Byrne et al., 2005; Harrell
et al., 2005; Kozey et al., 2010; Wilms et al., 2014). The size of
the individual is a major determinant of the basal metabolism
(Kleiber, 1947; Ravussin et al., 1986) as well as maximal workload
and oxygen uptake (Jensen et al., 2001; Wasserman et al.,
2005). Therefore, to enable comparison between individuals the
absolute values should be scaled by body size (Jensen et al., 2001;
Wasserman et al., 2005; Strath et al., 2013). Already in 1883,
metabolism was discovered to be proportional to the surface of
the body (Rubner, 1883), and in 1949, while determining the ratio
between oxygen uptake and energy expenditure, Weir proposed

that the metabolic rate should be expressed by the body’s surface
area instead of body weight (Weir, 1949). On other hand, exercise
testing has originally been used among endurance athletes who
are lean subjects, and in competitive sports power produced
per body weight as an indicator of functional capacity matters
more than measurement of the cardiorespiratory capacity in the
physiological context (Lee et al., 2002). However, scaling by body
weight is widely used at the population level in health sciences
and epidemiology.

Rationale of the Body Size Differences
Related Scaling

Simple measures, such as height or weight, can easily be used
to assess body size, but the problem is that these measures may
not be able to distinguish the relevant physiological differences
between subjects. The metabolic size matters more as compared
to dimensional differences. While the body weight includes fat
mass, energy metabolism is related to lean mass. Therefore,
scaling by body weight can cause a statistical problem due to
“mathematical coupling” with adiposity (Firebaugh and Gibbs,
1985). Body surface area (DuBois and DuBois, 1916), as a fractal
and indirect indicator (Heaf, 2007) of body size, cannot identify
metabolically relevant lean mass content in the way modern
body composition measurements do (Fosbøl and Zerahn, 2015).
Physiological (Goran et al., 2000; Tompuri et al., 2014a),
mathematical (Firebaugh and Gibbs, 1985), or physical rationales
for scaling oxygen uptake or energy expenditure by body weight
cannot be found.

Basal metabolism is strongly related to lean tissue (Ravussin
et al., 1986), and physical activity-related energy expenditure is
produced by skeletal muscles (Caspersen et al., 1985; Hoppeler
and Weibel, 2000). The skeletal muscle mass per se is a major
determinant for increased metabolism during exercise (Cooper
et al., 1984; Tipton and Franklin, 2006) and the absolute maximal
oxygen uptake (Turley and Wilmore, 1997; LeMura et al., 2001).
Therefore, scaling by lean mass is a physiologically rational
method to perform body size related normalization (Osman
et al., 2000; American Thoracic Society, American College of
Chest Physicians, 2003; Krachler et al., 2014). Correspondingly,
while fat tissue is energy metabolically inactive during exercise
(Andersen and Saltin, 1984; Goran et al., 2000), fat mass
represents most inter-individually variable compartment of the
body (Fomon et al., 1982; Bazzocchi et al., 2013). Therefore,
scaling by body weight has been criticized (Tanner, 1949;
Lorenzo and Babb, 2012). Hence, while energy expenditure has
equivalency with oxygen uptake, body size-related normalization
of the energy expenditure should be done by lean mass as in case
of the oxygen uptake.

Physically fat mass represents a load that must be carried
during physical activity. According to Newton’s second law of
motion, mass, such as extra mass by adiposity, increases the
force. Therefore, adiposity increases total work of exercise during
locomotion-related physical activity (Cureton and Sparling,
1980). Respectively, body fat excess increases basal metabolism
because adiposity also increases the amount of lean mass
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(Wasserman et al., 2005; Heymsfield et al., 2014). However,
body fat per se does not affect the slope of the increase in
oxygen uptake with an increase in the external workload or
the maximal aerobic capacity (Goran et al., 2000; Wasserman
et al., 2005) (Figure 1). Interestingly, the observation that energy
expenditure during physical activity increases as body weight
increases has been assumed to justify the use of body weight in
the scaling of energy expenditure (Strath et al., 2013). However,
this assumption lacks physiological and physical rationale. While
exercise, such as movement from one place to another, is one
task causing energy cost, the subject must simultaneously carry
his excess fat mass, which is an additional task. Both tasks
are physical activities, which are produced by skeletal muscles.
Therefore, scaling to normalize body size differences should be
performed by metabolic size, i.e., by lean mass.

Examples of Methodological Hazards
Encountered When Using Standard MET

Unfortunately the current review is not only theoretical
speculation, but has practical relevance. Standard METs have
been used in many original methodological publications of
physical activity (Strath et al., 2001; Brage et al., 2004, 2005;
Corder et al., 2005; Crouter et al., 2008), and these publications
have been cited in reviews (Warren et al., 2010; Strath et al.,
2013). Furthermore, body weight scaled METs have been used
in recommendations for physical activity measurement in North

America (US Department, 2008) and in global recommendations
on physical activity by the World Health Organization (World
Health Organization, 2010).

While measuring physical activity, the potential problems due
to body weight scaled METs may be clarified through simple
examples using imaginary subjects: (a) a lean subject, (b) an
obese subject, and (c) a lean subject with a backpack representing
an extra load to be carried (Figure 1). To make this example
easier to understand, these subjects have identical lean mass,
absolute maximal oxygen uptake and maximal heart rate. These
examples demonstrate how extra weight carried during similar
sub-maximal or maximal performance effects on alternative
indicators of physical activity, such as (1) absolute energy
expenditure, (2) lean mass proportional energy expenditure, (3)
relative intensity of physical activity and (4) body weight-scaled
energy expenditure, i.e., standard METs.

Absolute Energy Expenditure
A more obese subject has a greater absolute energy cost as
compared with a leaner subject when they are moving at a similar
sub-maximal speed because excess body fat is an extra load that
must be carried (Figure 1). This agrees with Newton’s second
law of motion. While the ratio of work and oxygen cost due to
locomotion in adipose is similar to leaner subject, the additional
energy cost is caused by the greater work because of extra load
due to the additional fat mass. The comparison is similar between
lean subjects with and without the extra load.

FIGURE 1 | Additional work by extra load (marked by red color and

dashed line) due to adiposity or due to backpack limits maximal

performance and increases sub-maximal performance related energy

cost during locomotion related exercise. Maximal oxygen uptake

referring maximal energy expenditure is similar between subjects as well as

lean mass. Increase of oxygen uptake by exercise does not differ between

lean (solid line), adipose and lean with backpack subjects (Wasserman et al.,

2005). Dimensions of the curves are normative and directional.
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In maximal exercise, the subjects would have similar maximal
absolute energy expenditure because they have similar maximal
absolute oxygen uptake [ml/min]. However, a lean subject would
be able to achieve a greater level of external performance than
the obese subject because the lean subject uses less of the
physiological reserve to carry his body weight, as observed by
Cureton and Sparling (1980) (Figure 1).

Lean Mass Proportional Energy Expenditure
When using scaling energy expenditure by lean mass, the
same exercise would introduce a similar lean mass proportional
energy cost due to exercise performance (Wasserman et al.,
2005) (Figure 1). However, additional work due to the extra
load increases the lean mass proportional oxygen uptake and
energy expenditure as compared to the situation without extra
load.

Maximal levels of the lean mass proportional energy
expenditures would be similar, but subjects with a backpack or
greater fat mass would be unable to perform similar locomotion
related maximal performance as the lean subject without an extra
load (Cureton and Sparling, 1980).

Relative Intensity of Physical Activity
The relative intensity of physical activity refers to the percentage

of the maximal oxygen uptake or percentage of maximal
heart rate. As compared to a lean subject with a similar
absolute maximal oxygen consumption, an obese subject would
experience a greater relative intensity of exercise at any given
sub-maximal performance level because excess fat mass must
be carried during locomotion (Cureton and Sparling, 1980).
Correspondingly, if the lean subject carries a backpack, he would
achieve a greater intensity at any sub-maximal performance level
as compared to the situation without any extra load.

Maximal energy expenditure, maximal oxygen uptake or
maximal heart rate can be achieved with or without extra
load. However, the extra load diminishes the maximal external
performance, such as running speed (Cureton and Sparling,
1980) (Figure 1), which also agrees with Newton’s second law of
motion.

Energy Expenditure by Body Weight Scaled METs
If the energy expenditure were expressed proportionally to body
weight, i.e., using standard METs, the obese subject would
have a lower level of physical activity than a lean subject with
the same absolute energy expenditure. If the subjects walk at
the same pace, the absolute or lean mass proportional energy
cost as well as intensity relative to maximal oxygen intake or
heart rate of the adipose subject would be greater. This false
observation results because body weight includes confounding
by adiposity when comparing subjects. The extra load caused
by the fat mass does not in and of itself impair aerobic
capacity or maximal energy expenditure (Goran et al., 2000;
Tompuri et al., 2014a), even though the extra load impairs
physiological performance (Cureton and Sparling, 1980) and
increases energy cost as compared to lean subjects without the
extra load.

Summary of Practical and Analytical
Relevance

It is paradoxical that a subject who has a greater absolute
energy expenditure and a greater relative intensity during similar
performance may be classified as less physically active if using
standard METs. Moreover, it is interesting that the original
definition of the MET (Weir, 1949) was aware of the potential
problems caused by body size normalization by body weight.
Therefore, the use of by body weight-scaled standard METs
should be avoided when assessing physical activity-related energy
expenditure.

When measuring physical activity, it is important to measure
essential dimensions instead of irrelevant confounders (Warren
et al., 2010). Similarly, it is important to recognize the
metabolically relevant size when performing body size-related
normalization (Goran et al., 2000; Hoppeler and Weibel, 2000;
Krachler et al., 2014). However, although scaling by body weight
represents physiologically historic burden, reporting by METs
represents a kind of state of practice in objective measurement
of physical activity, maybe because the MET is a simple measure
(Jetté et al., 1990; Hills et al., 2014). For example as a well-
known method METs and scaling by body weight are often
used in studies considering survival rates (Holick et al., 2008) or
applied physiology (Turzyniecka et al., 2010). However, because
of scaling confounded by adiposity there may be undetected
interactions between relevant measures. The body lean mass
vs. fat mass ratio declines with aging (Bazzocchi et al., 2013)
and would introduce inevitably decline in physical activity if
using standard METs. Similarly, cardiovascular decline (Santulli
et al., 2013) and impairment in insulin sensitivity (Santulli et al.,
2012) are prominent features with aging and are also affected
by adiposity, which should be taken into account analytically,
especially if analyzing with METs.

Adiposity is a major public health risk (Lim et al., 2012),
and confounding by adiposity refers to a situation whereby
body weight-scaled measures reflects adiposity instead of
cardiorespiratory fitness and physical activity per se. In general,
as the prevalence of adiposity has increased at the population
level (Vuorela et al., 2011), potential confounding by adiposity
has become even more important. This causes an increased risk
of false conclusions, if relevant residual confounding has not
been detected when assessing interactions e.g., between physical
activity, adiposity and cardiorespiratory fitness (Wong et al.,
1999; Tompuri et al., 2014a,b; Wilms et al., 2014). For example,
when using standard METs, confounding by adiposity may result
in the biased conclusion that greater intensity and a greater
amount of physical activity would be healthier ad infinitum,
because more fit and leaner, i.e., healthier subjects, would be
classified as engaging in increasingly intensive physical activity as
compared to adipose and unfit subjects even if physical activity
levels based on absolute energy expenditure were similar.

It is important to realize that statistical adjustment for
adiposity may not completely eliminate problems related to
residual confounding (Wong et al., 1999) introduced by standard
METs. It has been observed that the standard MET as compared
to individually measured resting metabolism disproportionally
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impacts subgroups of the population and causes analytical errors
when assessing physical activity (Kozey et al., 2010). Theoretically
individuallymeasured restingmetabolism instead of the standard
MET would potentially diminish analytical problems (Byrne
et al., 2005; Wilms et al., 2014), because similar scaling error
would affect both resting metabolism and energy expenditure by
exercise. On other hand, resting metabolic rate is a quite artificial
measure (Hoppeler and Weibel, 2005), and also measurement
errors will be multiplied along energy expenditure multiplies,
which may cause analytical problems (Wong et al., 1999).

Compendium

To understand physical activity as a behavior and
cardiorespiratory fitness or adiposity as a state representing
major determinants of public health, the specific measurements
of these determinants must be understood to enable a truthful
evaluation of their interactions and their independent role as a
predictor of health outcomes.

A major advantage in the determination of energy
expenditure is that different methods of measurement,

such as movement counts by accelerometer and recordings
of heart rate, can be combined, which may improve the
accuracy of physical activity assessment over a broad range
of intensity levels (Warren et al., 2010). Energy expenditure
can be assessed also without standard METs. Whereas, oxygen
uptake is equivalent to energy expenditure (Weir, 1949),
interpretation of a maximal exercise performance with body
composition measures (Tompuri et al., 2014a) depends
on whether oxygen consumption is scaled by body weight
or lean mass. Thus, we can conclude that scaling energy
expenditure by lean mass would allow to avoid confounding
by adiposity when comparing energy expenditure between
subjects.
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