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Abstract
Drones and machine learning-based automated detection methods are being used by 
ecologists to conduct wildlife surveys with increasing frequency. When traditional 
survey methods have been evaluated, a range of factors have been found to influ-
ence detection probabilities, including individual differences among conspecific ani-
mals, which can thus introduce biases into survey counts. There has been no such 
evaluation of drone-based surveys using automated detection in a natural setting. 
This is important to establish since any biases in counts made using these methods 
will need to be accounted for, to provide accurate data and improve decision-making 
for threatened species. In this study, a rare opportunity to survey a ground-truthed, 
individually marked population of 48 koalas in their natural habitat allowed for direct 
comparison of the factors impacting detection probability in both ground observa-
tion and drone surveys with manual and automated detection. We found that sex and 
host tree preferences impacted detection in ground surveys and in manual analysis of 
drone imagery with female koalas likely to be under-represented, and koalas higher in 
taller trees detected less frequently when present. Tree species composition of a for-
est stand also impacted on detections. In contrast, none of these factors impacted on 
automated detection. This suggests that the combination of drone-captured imagery 
and machine learning does not suffer from the same biases that affect conventional 
ground surveys. This provides further evidence that drones and machine learning are 
promising tools for gathering reliable detection data to better inform the manage-
ment of threatened populations.
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1  | INTRODUC TION

The detection of individual animals remains the cornerstone of 
wildlife monitoring and abundance estimation, particularly for 
threatened species. For terrestrial species, surveys have typi-
cally been carried out by researchers on the ground. Surveys are 

often organized as line transects or point counts and rely on the 
visual detection of target species (Dique et  al.,  2003; Scheele 
et al., 2018). The advent of new technologies such as drones, in 
combination with appropriate sensors and machine learning algo-
rithms for automated detection, has the potential to revolution-
ize wildlife surveys (Hollings et al., 2018). Drones can cover large 
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areas more rapidly than ground surveyors, often where it may not 
be feasible or practical for ground-based researchers to conduct 
surveys (Koh & Wich, 2012; Seymour et al., 2017). While the data 
captured by drones have most often been analyzed manually, 
machine learning-based methods are being used with increasing 
frequency to automated detection (Corcoran et al., 2019; Lhoest 
et  al.,  2015; Longmore et  al.,  2017; Oishi et  al.,  2018; Seymour 
et  al.,  2017). This has led to faster and more accurate counts of 
wildlife population with fewer false-negative results compared to 
manual image analysis and conventional ground surveys (Corcoran 
et al., 2019; Gonzalez et al., 2016; Lhoest et al., 2015; Longmore 
et al., 2017; Oishi et al., 2018; Seymour et al., 2017).

Given the surge in the use of drones, machine learning, and their 
potential importance in conservation programs, it is important to 
establish their limits and any possible biases. For example, in tradi-
tional surveys, accounting for the probability of detection of individ-
ual animals is fundamental for accurate abundance estimation (Royle 
& Dorazio, 2006). Unaccounted for biases in detection of species 
introduced by new survey methods could mask declines if the new 
methods result in an increased probability of detection compared to 
currently used methods (Kery & Schmidt,  2008). Conversely, they 
could erroneously suggest declines if they result in decreased prob-
ability of detection compared to currently used methods (Kery & 
Schmidt, 2008). Differences among individuals due to demographic 
traits, behaviors, and habitat selection can lead to hidden biases that 
result in inaccurate counts of populations when using traditional sur-
vey methods (Biro, 2013; Carter et al., 2012; Merrick & Koprowski, 
2017). For example, the abundance of wolves in France was found 
to be underestimated by 27% when individual differences in detect-
ability were not considered (Marescot et al., 2011).

While efforts have been made to understand variables that 
influence detection probabilities in drone surveys (Baxter & 
Hamilton, 2018), as yet there have been no studies that have been 
able to robustly compare these factors with traditional survey meth-
ods. Traits such as sex, age, and reproductive status and behaviors 
such as movement, burrowing, and microhabitat preferences that 
differ among individual animals have been shown to impact on de-
tection probability in remotely sensed camera trap data (Karp, 2020; 
Meek et al., 2014, 2016). These factors are important to consider, 
as they may lead to certain demographics of a population being less 
likely to be detected and therefore under-represented in counts. This 
leads to underestimations of abundance, with important conserva-
tion implications (Brack et al., 2018; Karp, 2020; Meek et al., 2014, 
2016).

We explore this issue by comparing the factors that impact on 
the probability of detection of koalas (Phascolarctos cinereus) ob-
served by experts from the ground to the factors that impact on 
the probability of detection for the same koala population data 
using manual and automated analysis of thermal images collected 
from drones. Koalas are a vulnerable Australian mammal species 
that are cryptic, widespread, and often occur in inaccessible areas 
(Beyer et  al.,  2018; McAlpine et  al.,  2015). Automated analysis of 
drone-derived thermal imagery of koalas has been shown to be 

more accurate than ground-based detections (Corcoran et al., 2019) 
and to be useful for koala detection across a range of environments 
(Hamilton et  al.,  2020). The impact of individual traits and behav-
iors such as sex and host tree preferences on detection of koalas 
using this method and how these detectability variables compare to 
those impacting on ground observation and manual analysis remain 
unknown (Corcoran et al., 2019; Ellis & Bercovitch, 2011). Gaining 
an understanding of this will provide insight into how individual dif-
ferences may bias automated detection of wildlife in drone imagery 
more broadly and better inform the use of these new technologies 
so that reliable data on vulnerable populations can be gathered from 
which to make effective management decisions.

2  | METHODS

More detailed description of the survey design, manual, and auto-
mated image analysis methods used collect data for model develop-
ment can be found in Corcoran et al. (2019). In summary, the dataset 
for this study consisted of 119 observations of individually identified 
radio-collared koalas surveyed at two sites in Petrie, Queensland. 
The north site was approximately 1.1 km by 0.5 km in size, and the 
south site was approximately 1.0 km by 0.7 km. The radio-collared 
koalas were surveyed 5 times between May and August 2018 using a 
FLIR Tau 2 640 thermal infrared sensor (FLIR) mounted to the under-
side of a Matrice 600 Pro drone and A3 flight controller, allowing an 
overhead view of the canopy. The drone flew at a fixed speed of 8 m 
per second and at a fixed height of 60 m above the ground (approxi-
mately 30 m above the top of the canopy) in a preprogramed pattern 
of transects 20 m apart, covering the entirety of the survey sites. 
All surveys were conducted during predawn hours in temperatures 
ranging from 8.0–21.7°C to ensure maximum contrast between 
the body temperature of koalas and their surroundings (Corcoran 
et al., 2019). On the same day that each of the five drone surveys 
was conducted, ground surveys were conducted by expert observ-
ers, resulting in a total of five ground surveys. All radio-collared 
koalas present within the study sites at the time of surveying were 
tracked using conventional radio telemetry and their GPS locations 
recorded. Due to koalas being free to move in and out of the bounda-
ries of the study sites, this meant that some individual koalas were 
observed in all or multiple surveys and some in only one survey.

Generally, determining the factors impacting on probability of 
detection can be challenging because of the difficulty in disentan-
gling availability (whether the individual animal is present in the area 
and so available to be detected or not) with the capacity to detect 
the individual once it is available (Brack et al., 2018). Because the ko-
alas in this study are radio-collared, their exact location is available. 
This means we can know with certainty that a nondetection occurs 
because they are present but unable to be seen. Ground observers 
thus assigned a visibility score that can be considered an indepen-
dent proxy for ground-based detection probability. This visibility 
score was assigned by ground observers to each individual koala 
identified within the site during each survey given on a scale of 0‒5, 
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with 0 being completely obscured from view of the ground observer 
at all angles, and five being completely unobscured from all angles. 
No visibility scores of 5 were allocated by the ground observers at 
any time, reducing this to a 5-point scale from 0 to 4.

The identity, sex, and height in tree of individual koalas were re-
corded as well as the genus, diameter at breast height (DBH), and 
height of host trees. The height of host trees and height of koalas 
in host trees was measured using a clinometer. The height of koa-
las from the top of host trees was then calculated by subtracting 
the height of koalas from the total height of host trees. Tree genus 
was divided into categories of Corymbia spp., Eucalyptus spp., and 
“Other” which included tree species of the Casuarina, Lophostemon, 
Ulmus, Melaleuca, Acacia, Cinnamomum, and Alphitonia genera.

The drone-derived thermal images were analyzed both man-
ually, by a researcher evaluating the footage frame by frame and 
recording instances and co-ordinates of possible koalas, and using 
the automated koala detection algorithm described full in Corcoran 
et al. (2019). This algorithm pipeline involved a combination of two 
previously published deep convolution neural networks referred 
to as Faster R-CNN and YOLO, the results of which were fused so 
that only objects that were detection above a set threshold of cer-
tainty (0.05) were recorded as possible koalas (Corcoran et al., 2019; 
Redmon & Farhadi, 2016; Ren et al., 2015). The authenticity of pos-
sible koalas identified in both manual and automated image analysis 
was verified by comparing their co-ordinates to those of the radio-
collared koalas confirmed to be on site by the telemetry-guided 
ground observers. It was then recorded whether the radio-collared 
koalas found to be present within the survey site at the time of 
ground and drone surveying were successfully detected in manual 
or automated image analysis (1) or not detected (0).

Using Shapiro–Wilk tests for normality, the height of host trees 
(W = 0.98, p =  .14) and height of koalas above ground (W = 0.98, 
p  =  .08) were found to be normally distributed, while the height 
below the top of the host tree (W = 0.90, p = 1.84e−06) and DBH of 
host trees (W = 0.82, p = 2.56e−09) were not normally distributed. 
Ordinal regression models were therefore developed to investigate 
the impact of covariates on detectability of individual radio-collared 
koalas to ground observers, as the response variable was ordered 
categorical data, the five-point scale visibility rating and the some 
of the covariates investigate were not normally distributed. These 
models were constructed using the “MASS” package “polr” function 
in R (Venables & Ripley, 2002). Because the response variable for 
manual and automated analysis of drone images was a binary out-
come (detected = 1, undetected = 0) and some of the covariates in-
vestigated were not normally distributed, generalized linear models 
(GLMs) with binomial error distributions and logit link functions were 
developed for probability of detection for these methods using the 
“lme4” R package (Bates et al., 2015).

Separate models for detectability of koalas by ground research-
ers, in manual, and in automated analysis of thermal images derived 
from the drone were developed using the same training dataset, 
which was comprised of a random 80% split of the total dataset 

(n = 95). The data were split into separate training and testing data-
sets in this way to ensure predictions made with the final models 
were not biased by predicting values for data they had already been 
trained on. Models of probability of detecting koalas with each 
method were developed separately in a forward stepwise manner. 
First, univariate models were evaluated for each variable listed in 
Table 1 and ranked by Akaike information criterion (AIC), residual de-
viance, and p-value. Interaction variables between host tree height 
and koala height above ground, host tree height and koala height 
below treetop, and host tree height and host tree diameter at breast 
height were also investigated as possible covariates. Subsequently, 
multivariate models with all possible combinations of covariates 
found to have a significant p-value in univariate model testing were 
evaluated. A covariate was only retained in the final model if it re-
sulted in a reduction of AIC of greater than or equal to two compared 
to the model with the next best fit (Bozdogan,  1987; Terletzky & 
Koons,  2016). McFadden's pseudo R-square values were then cal-
culated for the final models in order to determine the percentage 
of variation in the response variable that could be explained by the 
selected model covariates.

The final models were then used to predict the probability of 
detection for koalas in manual and automated image analysis and 
which visibility rating they would receive from ground observers. 
The classification rate of each was calculated as the proportion of 
test data correctly classified as either “undetected” or “detected” 
(manual and automated analysis of drone-derived thermal images) or 
into the correct visibility score from 0–4. The dataset used to evalu-
ate predictions made based on the final models was comprised of the 
remaining 20% of randomly split data (n = 24).

To examine the differences in host trees used by males and fe-
males, t tests were conducted to compare the difference in mean 
host tree height and height above ground between sexes, while 
Mann–Whitney U tests were conducted to compare the difference 
in mean DBH of host trees and height of koalas below tree tops.

TA B L E  1   List of covariates used in models of probability of 
manual and automatic detection of koalas in RPAS-derived thermal 
imagery, and visibility rating given to koalas by ground observers

Covariate
Unit of 
measurement

Sex Categorical (Male, 
Female)

Height of koala above ground Meters (m)

Distance of koala from top of host tree Meters (m)

Host tree genus Categorical 
(Corymbia, 
Eucalyptus, Other)

Host tree diameter at breast height Centimeters (cm)

Host tree height Meters (m)

Observer (ground observation only) Individual 
identification code 
of ground observer
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3  | RESULTS

The training dataset was comprised of observations of 59 female 
and 36 male koalas. There was no significant difference in the mean 
height of host trees male, and female koalas were found in during 
surveys (t = 0.07, df = 63.87, p = .95). There was no difference found 
between the mean height above ground at which male (13.53(±5.28)) 
and female (14.80(±4.44)) koalas were positioned in host trees dur-
ing surveys (t = 1.20, df = 64.40, p = .23) or the mean height of male 
(4.86(±3.97)) and female (3.68(±2.92)) koalas from the top of host 
trees (W = 881, p = .16). There was no difference in mean diameter 
at breast height of host trees used by male 62.64(±45.36) and fe-
male 49.15(±24.99) koalas during surveys (W = 928, p =  .31). Male 
and female koalas were not significantly associated with any host 
tree genus (Chi-squared = 4.35, df = 2, p = .11).

The sex of koalas was found to significantly impact the visibil-
ity rating assigned to individuals by experienced ground observers 
(p  <  .01). Male koalas were more likely to receive higher ratings 
of 3 or 4 compared to females, which were more likely to receive 
lower ratings of 1 or 2. Overall, male koalas were found to be 3.817 
(βkoala sex = 1.16 ± 0.41) times more likely to receive a higher visibility 
rating than females.

Tree genus was also found to significantly affect the visibility of 
koalas to ground observers, specifically when comparing Corymbia 
spp. host trees to Eucalyptus spp. host trees (p =  .02). Visibility of 
koalas was similar in both Eucalyptus spp. and trees of “other” genera, 
with koalas in Eucalyptus trees 3.50 (βEucalyptus  =  1.25  ±  0.52) and 
3.31 (βOther = 1.20 ± 0.62) more likely to receive a higher rating than 
koalas in Corymbia spp.

Height of koalas above ground was also found to have a signifi-
cant impact on the visibility rating given to individuals by ground ob-
servers (p = 1.35e−05). The visibility rating given to koalas was more 
likely to be lower when koalas were positioned higher above the 
ground with the likelihood that the visibility score would increase by 
1 increasing 0.82 times for every meter increase in height (βkoala height 

above ground = −0.20 ± 0.05). This meant that koalas that were posi-
tioned higher above the ground during surveys were more difficult 
for ground-based observers to detect.

Finally, host tree height significantly impacted on the visibility 
rating given to koalas by ground observers (p < .01). For every meter 
increase in host tree height, it was 0.903 times as likely that the 
visibility score would increase by 1 (βHost tree height  =  −0.10(±0.04)) 
resulting in koalas receiving lower ratings in taller trees. Host tree 
diameter at breast height (p = .36), distance of koalas from the top 
of host trees (p = .23), and the identity of the observer who assigned 
the score (p = .28) were all not found to be significant in determining 
the visibility rating ground observers gave koalas.

The top-performing model of visibility rating for koalas observed 
by ground observers was a multivariate ordinal regression model 
with koala height above ground, koala sex, and host tree genus as 
covariates (Table 2). This model explained 14.95% of variation in vis-
ibility score (McFadden's pseudo R-squared = 0.15) and achieved a 
classification rate of 54.17% for the test dataset.

Tree genus significantly impacted the probability of manually de-
tecting koalas using thermal imagery, specifically when comparing 
trees of “other” genera to Corymbia spp. trees (p  <  .01). Koalas in 
other trees were 0.11 times as likely to be detected than koalas in 
Corymbia trees (βOther = −2.23 ± 0.79). Host tree height also signifi-
cantly impacted on probability of manual detection (p  =  .04). For 
every meter increase in host tree height, koalas were 1.08 times as 
likely to be detected (βHost tree height = 0.081(±0.039)); therefore, ko-
alas resting in taller trees during drone surveys were more likely to 
be detected using manual analysis than koalas in shorter host trees. 
Koala sex (p =  .48), host tree DBH (p =  .79), height of koalas from 
ground (p = .12), and distance of koalas from tree tops (p = .18) had 
no significant effect on probability of manual detection of koalas in 
RPAS-derived thermal imaging.

The top-performing model of probability of manual detection 
was a univariate ordinal regression with host tree genus as the ex-
planatory variable, as the multivariate model with host tree genus 
and tree height did not provide a lower AIC (Table  3). This model 
explained 8.0% of variation in visibility score (McFadden's pseudo 
R-squared = 0.08) and achieved a classification rate of 41.67% for 
the test dataset.

In contrast to ground-based observations and manual detections 
using drone-captured thermal imagery, none of the covariates inves-
tigated explained a significant amount of the variation in probability 
of detecting koalas in thermal images derived from drones using au-
tomated methods (Table 4).

A summary comparison of the effects of each covariate on prob-
ability of detecting koala using ground observation, manual, and au-
tomated analysis of drone-acquired thermal imagery can be found 
in Table 5.

4  | DISCUSSION

A key finding of this study was that none of the traits of koalas or 
their host trees had a significant impact on the probability of detec-
tion of individuals in automated analysis of drone-derived thermal 
imagery. Conversely, several of these factors significantly impacted 
on ground-based detection by experts and even on manual detec-
tion of koalas in drone-derived thermal imagery. This is significant 
in light of recent work that has proposed using drone thermal im-
agery for the detection of koalas in the absence of automated im-
agery (Beranek et al., 2020). The results of the current study suggest 
that attempts to detect koalas without machine learning approaches 
may yield significant biases. More broadly, this important finding 
suggests that drone-based automated detection methods have the 
potential to overcome the biases in detection due to environmen-
tal and behavioral factors (Corcoran et  al.,  2019, 2020; Hamilton 
et al., 2020).

When using traditional ground-based counts for koalas, this anal-
ysis suggests that female koalas are likely to be under-represented. 
A possible explanation for this is the size difference between male 
and female koalas, as female koalas have been found to have a 
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significantly lower average adult body mass of 6.2(±0.2)  kg com-
pared to 7.1(±0.3)  kg for males, resulting in females making for 
smaller targets for ground observers to detect which are more eas-
ily obscured by foliage between the animal and the observer (Ellis 
& Bercovitch,  2011). It was also found that koalas higher in taller 
trees may have fewer detections, likely because they were further 
away from the ground observer. This may also explain why koalas in 
taller trees were more likely to be found in manual analysis of drone 
imagery as koalas higher above the ground were positioned closer 
to the overhead drone-mounted camera. Tree species composition 

of a forest stand was found to impact on detection for both ground 
observation and manual image analysis methods.

A surprising result was that ground observers found it harder 
to detect koalas in Corymbia spp. host trees compared to trees of 
Eucalyptus spp. and other genera, given the morphological similari-
ties between trees of the Corymbia and Eucalyptus genera (Vlasveld 
et al., 2018); further investigation revealed a higher ratio of female 
koalas in Corymbia host trees. This may explain a portion of the 
decreased detectability of animals in these trees as smaller female 
koalas were found to be more difficult to detect. However, as this 

Covariates Null deviance
Residual 
deviance AIC

Koala height above ground + Koala 
sex + Host tree genus

232.52 197.77 211.77

Koala height above ground + Koala sex 232.52 204.12 214.12

Koala height above ground + Host tree genus 232.52 202.91 214.91

Koala height above ground 232.52 211.64 219.64

Koala height above ground + Host tree 
height

232.52 210.30 220.30

Host tree height 232.52 223.52 231.52

Koala sex 232.52 224.12 232.12

Host tree genus 232.52 226.13 236.13

Interaction between host tree height and 
distance of koala from treetop

232.52 230.29 238.29

Null model 232.52 232.52 238.52

Interaction between host tree height and 
host tree DBH

232.52 230.64 238.64

Distance of koala from treetop 232.52 231.07 239.07

Host tree DBH 232.52 239.69 239.69

Interaction between host tree height and 
koala height above ground

232.52 232.49 240.49

Observer 232.52 226.68 240.68

TA B L E  2   Models of visibility score 
assigned to koalas by ground observer 
ranked by AIC

Covariates Null deviance Residual deviance AIC

Host tree genus 126.07 115.99 121.99

Host tree genus + Host tree height 126.07 114.48 122.48

Host tree height 126.07 121.54 125.54

Interaction between host tree height 
and koala height above ground

126.07 122.79 126.79

Koala height above ground 126.07 123.58 127.58

Null model 126.07 126.07 128.07

Distance of koala from treetop 126.07 124.16 128.16

Host tree DBH 126.07 124.87 128.87

Interaction between host tree height 
and host tree DBH

126.07 125.30 129.30

Koala sex 126.07 125.56 129.56

Interaction between host tree height 
and distance of koala from treetop

126.07 125.92 129.92

TA B L E  3   Models of probability of 
manually detecting koalas in drone-
derived thermal images ranked by AIC
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covariate resulted in better model fit even when koala sex was al-
ready accounted for in the model, there are likely other attributes of 
Corymbia spp. host trees impacting on detection by ground observ-
ers that remain unaccounted for.

While drone data have the potential for false-positive detections, 
methods for abundance estimation have been developed to account 

for this (Corcoran et  al.,  2020). A review by Kellner and Swihart 
(2014) found that despite numerous potential methods of account-
ing for imperfect detection in wildlife abundance and distribution 
estimates only 23% of studies (out of 537) accounted for these. This 
also reinforces the need for appropriate abundance modeling regard-
less of the technique used. Simultaneous collection of RGB as well 

Covariates
Null 
deviance

Residual 
deviance AIC p value

Null model 59.54 59.54 61.54 N/A

Host tree height 59.54 58.31 62.31 .28

Koala height above 
ground

59.54 58.34 62.34 .28

Interaction between 
host tree height and 
host tree DBH

59.54 59.23 63.23 .59

Koala sex 59.54 59.36 63.36 .67

Interaction between 
host tree height and 
distance of koala 
from treetop

59.54 59.37 63.38 .68

Host tree DBH 59.54 59.39 63.39 .69

Distance of koala 
from treetop

59.54 59.43 63.43 .74

Host tree genus 59.54 59.45 65.45 .77 (Corymbia | Eucalyptus),. 
91 (Corymbia | other)

Interaction between 
host tree height and 
koala height above 
ground

59.54 59.49 63.49 .84

TA B L E  4   Models of probability of 
automatically detecting koalas in drone-
derived thermal images ranked by AIC

TA B L E  5   Comparison of effects and significance for each possible covariate in explaining variance in probability of detection koalas in 
traditional ground surveys, manual, and automated analysis of drone-acquired thermal imagery

Covariate Ground observation
Manual analysis of drone-acquired 
thermal imagery

Automated analysis of drone-
acquired thermal imagery

Sex Females significantly less likely to be 
detected than males

No significant effect on detection No significant effect on detection

Height of koala above 
ground

Koalas positioned higher above 
ground significantly less likely to be 
detected than koalas closer to the 
ground

No significant effect on detection No significant effect on detection

Distance of koala from 
top of host tree

No significant effect on detection No significant effect on detection No significant effect on detection

Host tree genus Koalas in Corymbia sp. host trees 
significantly less likely to be 
detected than koalas in Eucalyptus 
sp. or “other” host trees

Koalas in “other” host trees 
significantly less likely to be 
detected than koalas in Eucalyptus 
sp. and Corymbia sp. host trees

No significant effect on detection

Host tree diameter at 
breast height

No significant effect on detection No significant effect on detection No significant effect on detection

Host tree height Koalas in taller host trees 
significantly less likely to be 
detected than koalas in shorter host 
trees

Koalas in taller host trees 
significantly more likely to be 
detected than koalas in shorter host 
trees

No significant effect on detection
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as thermal images from drone surveys could also help reduce the 
number of spurious detections as after analysis of thermal imagery 
has been conducted to detect the heat signatures of cryptic animals, 
analysis of RGB images may provide more information on features of 
detected animals and their surroundings (McKellar et al., 2020). This 
additional information may then make it easier to identify duplicates 
and distinguish between species of similar size (Corcoran et al., 2021; 
McKellar et al.,2020). However, only manual analysis of simultane-
ously collected RGB and thermal imagery from drones has only been 
conducted thus far, and it remains unknown whether these two data 
streams could be integrated into automated image analysis methods 
due to difficulties synchronizing the images collected with RGB and 
thermal infrared sensors (Corcoran et al., 2021; McKellar et al., 2020).

The capture of thermal data from drones in combination with 
machine learning may have advantages over human observers due 
to the thresholds and features used by computer vision to identify 
koala heat signatures being different than the features used by the 
human eye, allowing for detection even in cases where animals are 
partially obscured (Lhoest et al., 2015; Longmore et al., 2017; Oishi 
et  al.,  2018; Seymour et  al.,  2017). This is an intriguing possibility 
considering that in this experiment, human observers were advan-
taged by knowing not only that koalas were available to be detected 
but because they tracked radio-collared koalas; observers also had 
a reasonable idea of where to search in the canopy. Where radio 
telemetry is not used, we would expect ground-based observers 
to perform worse than in this experiment. Compounding that, in 
traditional surveys observer expertise and fatigue can also reduce 
detections, where this has no impact on detection with machine 
learning (Lhoest et al., 2015; Longmore et al., 2017; Oishi et al., 2018; 
Seymour et al., 2017).

While this study has been conducted at a single site with sev-
eral sampling events, and using a single species, the rapid increase 
in the number of drone surveys for threatened species using auto-
mated detection suggests that it is important to continue to com-
prehensively evaluate the methodology. All combinations of species 
and environment will have their own set of factors that will impact 
on detectability. However, as demonstrated in this study, machine 
learning algorithms have the capacity to detect cryptic koalas in a 
complex and challenging environment without being subject to the 
same observation biases as traditional detections methods. This 
can provide some reassurance that these methods provide a robust 
method for wildlife surveys, and we look forward to additional stud-
ies that will contribute to this important topic.
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