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Internetwork connectivity 
of molecular networks 
across species of life
Tarun Mahajan1* & Roy D. Dar1,2,3,4*

Molecular interactions are studied as independent networks in systems biology. However, molecular 
networks do not exist independently of each other. In a network of networks approach (called 
multiplex), we study the joint organization of transcriptional regulatory network (TRN) and protein–
protein interaction (PPI) network. We find that TRN and PPI are non-randomly coupled across five 
different eukaryotic species. Gene degrees in TRN (number of downstream genes) are positively 
correlated with protein degrees in PPI (number of interacting protein partners). Gene–gene and 
protein–protein interactions in TRN and PPI, respectively, also non-randomly overlap. These design 
principles are conserved across the five eukaryotic species. Robustness of the TRN–PPI multiplex is 
dependent on this coupling. Functionally important genes and proteins, such as essential, disease-
related and those interacting with pathogen proteins, are preferentially situated in important parts 
of the human multiplex with highly overlapping interactions. We unveil the multiplex architecture 
of TRN and PPI. Multiplex architecture may thus define a general framework for studying molecular 
networks. This approach may uncover the building blocks of the hierarchical organization of molecular 
interactions.

Biological functions and characteristics are consequences of complex interactions between numerous 
components1. These components can be molecules such as DNA, RNA, proteins and other small molecules 
or larger units such as cells, tissues, whole organisms or entire ecosystems. These interactions are organized 
into a hierarchy of networks. Networks at different levels of this hierarchy have been studied extensively. For 
instance, at the subcellular level, transcriptional regulatory networks (TRN) model protein–DNA interactions1–12, 
protein–protein interaction (PPI) networks capture physical interactions between proteins6,13–26 and metabolic 
networks map interactions between the set of biochemical reactions in an organism1,27–29. Analysis of individual 
network layers has answered important biological questions ranging from organization of gene expression5,8,29–31, 
predicting phenotype from molecular interaction networks16,24, to understanding disease biology32–36.

However, biological networks do not function in isolation. These networks comprise of different types of 
interactions and even interact with other networks1,37. For instance, TRN and PPI networks interact with each 
other. Proteins are translated from genes in accordance with the regulatory program encoded in the TRN. These 
translated proteins interact with each other in the PPI layer. Transcription factor proteins interact with other 
proteins in the PPI layer and also regulate downstream genes in the TRN network. Further, PPI networks can also 
encode different kinds of physical interactions between proteins, such as the ones revealed by Yeast Two-Hybrid 
(Y2H) binary, Affinity Purification (AP) protein complexes, synthetic lethality, dosage lethality, genetic interac-
tions, etc,14. Such multilayer networks (comprising multiple networks) can be interdependent when different 
network layers interact with each other to form a network of networks (NON) architecture38. For instance, the 
interaction between TRN and PPI networks forms an interdependent NON (Fig. 1). Alternatively, multilayer 
networks can be multiplex with different networks, which encode distinct types of interactions between the same 
molecular species such as the different types of PPI interactions.

Until recently, network science has focused largely on the study of individual biological networks. Even some 
of the studies that worked with multiple networks aggregated or integrated the different networks and did not 
consider a multilayer approach39–42. This could partly be attributed to the fact that multilayer networks have 
gained popularity only in recent years, especially in statistical physics38. Now, extensive work has been done to 
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study robustness properties of multilayer networks43–53. Counter-intuitively, interdependent networks are more 
fragile to random failure than independent individual networks43. Real interdependent networks mitigate this 
vulnerability by means of specific intra- and interlayer degree–degree correlation or coupling46,51. For a given 
TRN–PPI interdependent (or multiplex) network (Fig. 1A), degree–degree coupling ( CD ) is quantified as the 
correlation between the connectivity of a protein in the PPI network, K, and the connectivity of its corresponding 
gene in the TRN, either in-degree ( kin , number of regulations incident on a gene from upstream transcription 
factors), out-degree ( kout , number of downstream genes regulated by a transcription factor), or total degree 
( k = kin + kout ). In this case, CD can be negative, positive, or zero. Particularly, positive CD makes the multiplex 
robust to attack (Fig. 1A)54,55. With positive CD , hub nodes are likely to be hub nodes in all the network layers 
(Fig. 1A, top). For negative CD , hub nodes in one layer are dependent on spokes in the other network layer. For 
zero CD , hubs and spokes are randomly dependent on each other across network layers (Fig. 1B, bottom). Here, 
we investigate CD across species and assess whether it is positive, negative, or uncoupled, and if there exists a 
global trend across various species.

Edge overlap or redundancy between network layers also mitigates vulnerability in interdependent networks56. 
Two genes in the TRN network have an interaction between them if one is the transcription factor for the other. 
While in PPI networks, interaction between two proteins depicts physical or functional interaction between these 
proteins. We define multiplex redundancy as similarity in interactions between the TRN and PPI networks. We 
quantify redundancy ( CR ) by counting the number of common interactions simultaneously in both the TRN 
and PPI networks. If TRN and PPI networks are represented as graphs, then CR can be measured by counting 
the number of edges which are simultaneously present in both the graphs (Fig. 1B and “Methods”). Higher 
redundancy makes the multiplex more robust to attack (Fig. 1B).
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Figure 1.   Degree–degree coupling and redundancy as potential modulators of robustness in molecular 
multiplexes. Degree–degree coupling ( CD ) and redundancy coupling ( CR ) can assume any value in the multiplex 
of TRN (yellow layer) and PPI (green layer) networks across species. (A) (Right, Top) For CD > 0 , highly 
connected genes in TRN (red spheres) are more likely to produce hubs or highly connected proteins in PPI (red 
spheres), while sparsely connected genes in TRN (blue spheres) are highly likely to produce spokes or sparsely 
connected proteins in PPI (blue spheres). (Right, Bottom) For CD = 0 , TRN and PPI will be uncoupled in 
the multiplex, and the association between genes and proteins would be randomized. Here, highly connected 
genes produce spoke proteins and vice-versa sparsely connected genes produce hub proteins. (Left) Based on 
theoretical studies, CD is expected to be positively correlated with robustness. Robustness is quantified by area 
under the attack curve for the Mutually Connected Giant Component (MCGC) (“Methods”). (B) (Left, Top) 
For CR > 0 , there will be non-zero number of edges which are simultaneously present in both TRN and PPI 
(edges marked green). (Left, Bottom) For CR = 0 , TRN and PPI will not have common edges (no green edges). 
(Right) Based on theoretical studies, CR is expected to be positively correlated with robustness. Black directed 
edges represent regulation of downstream genes by transcription factors in TRN. Black undirected edges 
represent protein–protein interactions in PPI. Dashed edges represent correspondence between a gene and its 
corresponding protein.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1168  | https://doi.org/10.1038/s41598-020-80745-9

www.nature.com/scientificreports/

We study the multilayer network of TRN and PPI networks in nine different species, namely H. pylori, M. 
tuberculosis, E. coli, S. cerevisiae, C. elegans, D. melanogaster, A. thaliana, M. musculus and H. sapiens, spanning 
two domains of life (bacteria and eukaryotes). We collected TRN networks from nine different sources, and 16 
different PPI networks from five different sources (see “Methods” and Supplementary Table S1). Two of the PPI 
sources are publicly curated databases–BioGRID14 and HINT57. Interlayer connectivity is defined by one-to-one 
correspondence between a gene and its corresponding protein. Therefore, this multilayer network can be reduced 
to an equivalent multiplex network43. Henceforth, we call the TRN–PPI multilayer network a TRN–PPI multi-
plex. Based on quality control, five (S. cerevisiae, C. elegans, D. melanogaster, M. musculus and H. sapiens) of the 
nine species were used for further analysis; multiplexes with visually continuous percolation curves represent-
ing second-order like behavior were studied. Here, we show that for species TRN–PPI multiplexes, positive CD 
increases robustness to targeted attack on the genes and proteins. Further, increasing CR also increases robustness. 
We find a trade-off between robustness and independence. Independent multiplexes with no degree–degree 
coupling and redundancy are highly vulnerable, while positively degree–degree coupled and highly redundant 
multiplexes are highly robust. We show that this trade-off exists for different species individually. Multiplex 
coupling is also correlated with the distribution of functionally important genes and proteins such as essential, 
disease and pathogen-interacting genes and proteins. These functionally important genes are selectively situated 
in redundant and essential parts of the multiplex and, consequently, are vulnerable. Interlayer degree–degree 
coupling and redundancy offer design mechanisms for tuning robustness in molecular multiplex networks.

Results
TRN–PPI multiplex is non‑randomly coupled across species.  We study coupling between TRN and 
PPI networks using two multiplex properties—degree–degree coupling ( CD ) and redundancy coupling ( CR ). 
CD is quantified by Pearson’s or Spearman’s rank correlation between PPI degree, K, and TRN out-degree, kout 
(Fig. 2A–D, “Methods”). We quantify CR by counting the total number of interactions present simultaneously 
in both TRN and PPI networks (Fig. 1B, “Methods”). We find that CD is significantly positive across different 
eukaryotes (Fig. 2A–D and Supplementary Figure S1); CD values are statistically significant as evident from the 
p-values (two-tailed z-test using Fisher’s z-transformation for α = 0.05 ) and z-scores for comparison against 
the null model (Fig. 2A–D and Supplementary Figures S19 and S20). CR is also non-randomly positive across 
different eukaryotes (Fig. 2E–H and Supplementary Figure S2). Node-specific (for each gene–protein pair in the 
multiplex) CR values are more long-tailed compared to a randomly shuffled null model. Shuffled null model is 
generated by randomly shuffling labels on genes in TRN, while keeping protein labels fixed in PPI. 

Multiplex degree–degree and redundancy couplings modulate robustness.  We study the rela-
tionship between multiplex degree–degree ( CD ) and redundancy ( CR ) couplings and robustness (R) across species 
and for individual species. We use a previously reported formalism to study topological robustness of the TRN–
PPI multiplex under targeted attack on its nodes43,58 (“Methods”). Robustness is related to the size of the mutu-
ally connected giant component (MCGC). MCGC is defined as the largest connected component between both 
layers of the multiplex (“Methods”). Buldyrev et al.43 and Kleinberg et al.58 track the size of MCGC under attack 
to quantify robustness. We specifically focus on targeted attack. Under targeted attack, at each step of the attack, 
gene–protein pairs are removed in decreasing order of multiplex degree, Kmult(i) = max(K(i), kout(i))

58, where 
Kmult(i) is the multiplex degree for gene–protein pair i, K(i) is the degree of protein i in the PPI network and 
kout(i) is the out-degree of gene i in the TRN network (“Methods”). Absolute robustness is then measured by 
tracking the relative size of MCGC (MCGC divided by number of gene–protein pairs in the multiplex) as we suc-
cessively remove gene–protein pairs from the multiplex. Figure 3 and Supplementary Figure S3 show the relative 
size of MCGC as a function of the fraction of gene–protein pairs removed during targeted attack for all the spe-
cies. We call the curve for MCGC the “attack curve”. Absolute robustness is quantified by area under the attack 
curve (we will call this area RobustArea) (“Methods”). Large RobustArea implies large robustness for a given 
multiplex, and vice versa small RobustArea means low robustness. Cohen’s d59 is used to quantify effect size for 
robustness by comparing RobustArea for a given multiplex against an appropriate null model (“Methods”). This 
quantity is used as an estimate of robustness (R) in this work. We use a Zero-Coupling-Zero-Redundancy null 
model (see Supplementary methods). Under this null model, we generate multiplexes with CD and CR fixed to 
zero.

Attack curves for different eukaryotic species are shown in Fig. 3. Visually, we see that organismal RobustArea 
values are larger than the null model on average (except for yeast with HINT PPI network). This is quantified 
in Fig. 4A, where CD and R are positively correlated across different eukaryotic species with Spearman’s correla-
tion coefficient of 0.68 (p-value = 0.044, two-tailed z-test using Fisher’s z-transformation for α = 0.05 ), and CR 
and R are positively correlated across different eukaryotic species with Spearman’s correlation coefficient of 0.72 
(p-value = 0.037, two-tailed z-test using Fisher’s z-transformation for α = 0.05 ). We also quantify the depend-
ence of R on CD and CR for individual species (Fig. 4B,C). For each species, we sample a subset of the TRN–PPI 
multiplex such that the sampled multiplex has specific values of CD and CR (see Supplementary Methods). This 
sampling is repeated 1000 times. Attack curves and RobustArea are then computed for the sampled multiplexes. 
Therefore, for a given combination of CD and CR , we get a distribution of RobustArea, and R can be calculated. For 
each species, we explore CD and CR values over a grid (Fig. 4B). Changing both CD and CR increases R (Fig. 4B and 
Supplementary Figure S6). For all the species, multiplexes with the highest CD and CR values exhibit maximum R 
(Fig. 4B and Supplementary Figure S6). Further, for a fixed value of CR , R increases with CD . Similarly, for fixed 
CD , R also increases with CR . The effect of CR is stronger than CD , which is evident for the human multiplex, 
where R is high for high CR irrespective of CD . The independent effect of CD and CR on R is shown in Fig. 4C.
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Across species, we find that CD , CR and R are positively correlated with the number of gene–proteins in the 
multiplex (Supplementary Figure S4). To assess whether across species correlation between CD ( CR ) and R is 
simply an artifact of the difference between the sizes of the multiplexes or not, we sample two subsets of differ-
ent sizes for yeast, fly and human (Supplementary Figures S16–S18). For each of these species, we find that the 
larger sized subset has a larger robustness while keeping CR and CD fixed (Supplementary Figure S16). However, 
despite this dependence of R on multiplex size, dependence on CD and CR can still be assessed by comparing the 
two subsets (Supplementary Figures S17 and S18). This suggests that the correlations with R seen in Fig. 4A,C are 
indeed because of CD and CR in addition to the dependence on the number of gene–protein pairs in the multiplex.

We also considered a configuration null model–Multiplex-Configuration (see Supplementary Methods)– to 
assess multiplex robustness. Briefly, under this null model, gene and protein degrees in TRN and PPI, respectively, 
are fixed, while edges are randomly shuffled. Additionally, the one-to-one correspondence between genes in TRN 
and proteins in PPI is fixed as well. Multiplex-Configuration preserves CD , while randomly shuffling CR . With 
the Multiplex-Configuration model, robustness of species multiplex is less pronounced compared to the Zero-
Coupling-Zero-Redundancy model (see Supplementary Figures S21 and S22); two of the multiplexes (C. elegans 
HINT and yeast HINT) are even less robust than the null model. However, these results do not contradict our pre-
vious conclusions regarding TRN–PPI multiplexes. Zero-Coupling-Zero-Redundancy and Multiplex-Configuration 
null models answer different questions. The former investigates, given the TRN and PPI networks, whether the 
one-to-one correspondence between genes in TRN and proteins in PPI creates non-random coupling between 
the two network layers. Whereas, the latter null model quantifies the impact of TRN and PPI network structures 

Figure 2.   TRN–PPI multiplex is coupled across species. Scatter plot for degree (K) of proteins in the PPI 
network versus out-degree ( kout ) of genes in the TRN for eukaryotes, (A) yeast, (B) fly, (C) mouse and (D) 
human. Both K and kout values have been log-transformed after adding 1. The PPI networks are from the 
BioGRID database (“Methods”). Linear interpolated fits between K and kout are also shown (green line) with 
95% confidence region shaded in gray. Degree–degree coupling ( CD ) values and corresponding p-values (two-
tailed z-test using Fisher’s z-transformation for α = 0.05 ) are also shown. Distribution of redundancy ( CR ) for 
gene–protein pairs for species multiplex and the randomly shuffled null model for eukaryotes, (E) yeast, (F) 
fly, (G) mouse and (H) human. For each gene–protein pair, CR is quantified by the number of redundant edges 
incident on that gene–protein pair. Shuffled null model is generated by randomly shuffling labels on genes in 
TRN, while keeping protein labels fixed in PPI. Jensen Shannon divergence (JSD) between distributions of CR in 
organismal and shuffled multiplexes is also given in (E–H).
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Figure 3.   Multiplex attack curves for eukaryotes. Relative size of the mutually connected giant component 
(MCGC) is plotted as a function of the fraction of gene–protein pairs attacked and removed from the multiplex 
(“Methods”). Attack curves are shown for five species using PPI networks from either BioGRID or HINT 
databases (“Methods”); database for a given panel are annotated next to the species name. Along with the attack 
curves for the species (red), attack curves for the Zero-Coupling–Zero-Redundancy (Supplementary Methods) 
null model are also shown (gray). Under this null model, multiplexes have no degree–degree coupling and no 
redundancy. On average, species attack curves are more robust than the null model. Robustness is quantified by 
area under the curve. Attack on the multiplex (organism or null) is repeated 1000 times.
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on redundancy coupling. In this work, we specifically focus on the coupling between TRN and PPI created by 
the one-to-one correspondence between their nodes, and not on the impact of individual network structures.

Essential genes and proteins are essential for multiplex robustness.  We collected essential 
and non-essential genes for three species (yeast, fly and human) from the Online GEne Essentiality (OGEE) 
database60,61. To gauge importance of essential genes for the multiplex, we selectively attack essential genes and 
proteins in decreasing order of multiplex degree. Partial attack curves are generated by successively attacking 
essential genes in decreasing order of multiplex degree. The attack process is halted once all the genes in the 
set of essential genes have been removed (“Methods”). RobustArea is quantified by computing area under such 
partial attack curves. R is calculated by comparison against three random null models–Random Degree Preserv-
ing (RanDP), Random Degree Preserving-Redundancy Zero (RanDP-RZ) and Random Degree Preserving-no 

Figure 4.   Degree–degree and redundancy couplings modulate multiplex robustness. (A) Robustness to targeted 
attack (R) (right) is positively correlated with degree–degree coupling ( CD ) (left) across species with Spearman’s 
rank correlation coefficient of 0.6803 (p-value = 0.04372). Robustness to targeted attack (R) (right) is also 
positively correlated with redundancy coupling ( CR ) (center) across species with Spearman’s rank correlation 
coefficient of 0.7167 (p-value = 0.03687). CR is computed as a z-score against the null model (“Methods”) (B) We 
sample a subset of gene–protein pairs from the species multiplexes (sizes for the subsets are: S. cerevisiae-1000, 
D. melanogaster-2000, M. musculus-300, H. sapiens-500) with specific CD and CR values. We repeat the sampling 
100 times. We explore CD and CR over a grid. For each point over the 2D grid, the heatmap shows the robustness 
(R) value. R is computed by comparing RobustArea of any point over the grid against the lower-left point of 
the grid (with CD = 0, CR = 0). For each point over the grid, for each of the sampled subsets, targeted attack is 
performed. Mean R values are shown here. Lower and upper 95% confidence interval (CI) values are shown 
in Supplementary Figure S5. Cout

D
 : degree–degree coupling between kout and K, Cin

D
 : degree–degree coupling 

between kin and K. (C) (Left) Dependence of robustness on degree–degree coupling while redundancy is fixed. 
For each species curve, R is calculated by comparison against the sampled multiplex with CD = 0 . (Right) 
Dependence of robustness on redundancy coupling while degree–degree coupling is fixed to the value in the full 
multiplex. For each species curve, R is calculated by comparison against the sampled multiplex with CR = 0 . In 
all the panels, error bars show 95% CIs. In panel (B), BioGRID PPI networks are used; results with HINT PPI 
networks are shown in Supplementary Figure S6B. For panel C (left), CR is set equal to the number of redundant 
edges in the multiplex.
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CDCDCD (RanDP-noCD ). Steps to generate random subsets from these models are given in Supplementary Methods. 
Briefly, RanDP generates subsets by matching network degrees in the random subsets to essential gene–pro-
tein pairs in the multiplex. RanDP-RZ further ensures that CR is zero in the sampled subsets. Both RanDP and 
RanDP-RZ preserve CD . On the other hand, RanDP-noCD matches degree distributions rather than individual 
gene or protein degrees; this does not preserve CD . RanDP-noCD perfectly matches all the degree distributions to 
essential genes and proteins (Supplementary Figures S38–S40). However, RanDP (Supplementary Figures S32–
S34) and RanDP-RZ (Supplementary Figures S35–S37) do not perfectly match all the degree distributions.

For all the null models, essential genes and proteins are more vulnerable than random genes and proteins 
for yeast and human multiplexes (Fig. 5A, Supplementary Figures S41 and S42). Fly essential genes are more 
vulnerable only against the RanDP-RZ model (Fig. 5A). Vulnerability of essential genes in a species multiplex is 
greater than dictated by either TRN or PPI networks. We establish this by performing targeted attack on TRN 
and PPI networks and comparing against attack on the multiplex (Supplementary Figures S23–S31). For the 
human multiplex, essential genes are topologically important in PPI and TRN networks as well (Supplementary 
Figures S23–S28). In the fly multiplex, essential genes are more and less vulnerable than random genes and pro-
teins in TRN and PPI, respectively (Supplementary Figures S23–S28). Essential genes and proteins in the yeast 
multiplex are equally/less and more vulnerable than random genes and proteins in TRN and PPI, respectively 
(Supplementary Figures S23–S28). However, comparing TRN and PPI attack curves against null model attack 
curves for the multiplex shows that attack on the multiplex is more lethal than attack on the individual networks 
(Supplementary Figures S29–S31). Moreover, yeast and human essential genes are situated in highly topologi-
cally important parts of the multiplex, which is evident by higher vulnerability compared to random genes and 
proteins (Supplementary Figures S29–S31). Fly essential genes and proteins appear topologically more important 
than random genes and proteins only against the RanDP-RZ null model (Supplementary Figures S29–S31). Col-
lectively, these results show that essential genes and proteins are topologically essential in species multiplex, and 
this importance is not trivially dependent on the indepdendent relevance in TRN and PPI.

In the human multiplex, higher CR of essential genes compared to random genes co-occurs with lower R 
(Fig. 5A, Supplementary Figures S41 and S42). This suggests that redundancy might play a role in the topologi-
cal importance of essential genes. We also study the impact of CR on robustness by sampling subsets of genes 
and proteins (size 100) in the human multiplex (Supplementary Figure S15). As the redundancy of the sampled 
genes and proteins increases, robustness decreases against a random set of genes. Thus, redundancy might control 
selective placement of a subset of genes and proteins in important parts of the multiplex. For yeast and fly, such 
correlation between CR and R is only seen against the RanDP-RZ model (Fig. 5A). This implies that CR might 
not be the only property controlling topological importance of essential genes.

We conclude that attacking essential genes breaks the multiplex faster than attacking a random set of genes, 
which shows that essential genes and proteins are situated in a highly important part of the multiplex.

Pathogen‑ and disease‑related genes and proteins are situated in essential parts of the hu-
man multiplex.  Pathogen.  We collected human-pathogen protein–protein interaction data for 13 differ-
ent pathogens. Data for 12 of these 13 pathogens was collected from a publicly available database, HPIDB 3.062,63. 
This is a curated database which currently contains 69,787 unique protein interactions between 66 host and 668 
pathogen species. We studied interactions for 12 different human pathogens from HPIDB 3.0 (Fig. 5B). Besides 
these 12 pathogens, we also included human-pathogen protein interactions for various human coronaviruses 
(HCoVs). We collected a list of 119 human proteins which interact with various HCoVs64. Therefore, in total we 
have 13 pathogens in our analysis.

Similar to essential genes, we assess topological relevance of pathogen-related genes and proteins using 
RanDP, RanDP-RZ and RanDP-noCD null models. For all the pathogens, except Zika, targeted attack on the 
pathogen-related genes and proteins makes the multiplex highly vulnerable against all the null models (Fig. 5B 
and Supplementary Figures S41 and S42). As with essential genes, we also gauged the topological relevance of 
pathogen-related genes and proteins in TRN and PPI independently. Pathogen-related genes are highly vulnerable 
to attack and topologically essential in PPI (Supplementary Figures S26–S28). In TRN, majority of the pathogens 
exhibit a similar behavior (Supplementary Figures S23–S25). Similar to essential genes, pathogen-related genes 
are more vulnerable in the multiplex than in TRN or PPI independently (Supplementary Figures S29–S31).

For all the pathogens with high vulnerability to targeted attack, this vulnerability co-occurs with higher CR 
for the pathogen-related genes and proteins compared to a random set of genes (Fig. 5B and Supplementary 
Figures S41 and S42). Further, given our simulations (Supplementary Figure S15), this suggests that higher redun-
dancy makes the pathogen-related genes and proteins highly important for the human multiplex. R and CR for 
pathogen-related genes and proteins are negatively correlated with Spearman’s rank correlation of − 0.82 (p-value 
= 2.025× 10

−6 , two-tailed z-test using Fisher’s z-transformation for α = 0.05 ), − 0.87 (p-value = 1.873× 10
−6 , 

two-tailed z-test using Fisher’s z-transformation for α = 0.05 ) and − 0.86 (p-value = 1.898× 10
−6 , two-tailed 

z-test using Fisher’s z-transformation for α = 0.05 ) against RanDP, RanDP-RZ and RanDP-noCD null models, 
respectively (Supplementary Figures S7–S9). Even after controlling for the different number of pathogen-related 
gene–protein pairs for different pathogens, R and CR are negatively correlated with Spearman’s rank correlation of 
− 0.71 (p-value = 6.706× 10

−5 , two-tailed z-test using Fisher’s z-transformation for α = 0.05 ), − 0.85 (p-value = 
1.905× 10

−6 , two-tailed z-test using Fisher’s z-transformation for α = 0.05 ) and − 0.85 (p-value = 1.908× 10
−6 , 

two-tailed z-test using Fisher’s z-transformation for α = 0.05 ) against RanDP, RanDP-RZ and RanDP-noCD null 
models, respectively (Supplementary Figures S7–S9). In agreement with this conclusion, pathogen-related genes 
and proteins are significantly enriched in the human multiplex (Supplementary Figure S13).
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Disease.  We collected disease-related genes from a publicly available database, DisGeNET65–67. The current 
version (v6.0) contains gene-disease associations between 17,549 genes and 24,166 diseases, disorders, traits, 
and clinical or abnormal human phenotypes. We collected disease-gene associations for diseases which have at 
least 100 genes (with the HINT PPI network) in the human multiplex considered in this work. After this filter-
ing, we retain 24 diseases in our analysis (Fig. 5C).

We assess topological relevance of disease-related genes and proteins using RanDP, RanDP-RZ and RanDP-
noCD null models. For most of the diseases, targeted attack on the disease-related genes and proteins makes 
the multiplex highly vulnerable against all the null models (Fig. 5C and Supplementary Figures S41 and S42). 
We also gauged the topological relevance of disease-related genes and proteins in TRN and PPI independently. 
Disease-related genes are highly vulnerable to attack and topologically essential in PPI (Supplementary Fig-
ures S26–S28). In TRN, a majority of the diseases exhibit a similar behavior (Supplementary Figures S23–S25). 
Similar to essential and pathogen-related genes, disease-related genes are more vulnerable in the multiplex than 
in TRN or PPI independently (Supplementary Figures S29–S31).

For all the diseases with high vulnerability to targeted attack, this vulnerability co-occurs with higher CR 
for the disease-related genes and proteins compared to a random set of genes (Fig. 5C and Supplementary 
Figures S41 and S42). Further, given our simulations (Supplementary Figure S15), this suggests that higher 
redundancy makes the disease-related genes and proteins highly important for the human multiplex. R and CR 
for disease-related genes are negatively correlated with Spearman’s rank correlation of − 0.30 (p-value = 0.03986, 
two-tailed z-test using Fisher’s z-transformation for α = 0.05 ), − 0.7129 (p-value = 6.898× 10

−8 , two-tailed z-test 
using Fisher’s z-transformation for α = 0.05 ) and − 0.608 (p-value = 7.29× 10

−6 , two-tailed z-test using Fisher’s 
z-transformation for α = 0.05 ) against RanDP, RanDP-RZ and RanDP-noCD null models, respectively (Supple-
mentary Figures S10–S12). Even after controlling for the different number of disease-related gene–proteins pairs 
for different diseases, R and CR are negatively correlated with Spearman’s rank correlation of − 0.35 (p-value = 
0.01475, two-tailed z-test using Fisher’s z-transformation for α = 0.05 ), − 0.68 (p-value = 3.131× 10

−7 , two-
tailed z-test using Fisher’s z-transformation for α = 0.05 ) and − 0.56 (p-value = 4.589× 10

−5 , two-tailed z-test 
using Fisher’s z-transformation for α = 0.05 ) against RanDP, RanDP-RZ and RanDP-noCD null models, respec-
tively (Supplementary Figures S10–S12). In agreement with this conclusion, disease-related genes and proteins 
are significantly enriched in the human multiplex (Supplementary Figure S13).

We also collected the set of genes that contain mutations which have been causally implicated in cancer from 
the Network of Cancer Genes (NCG) database68. NCG also includes information on whether a given cancer 
gene is an oncogene or a tumor suppressor gene (TSG). As before, we conduct robustness analysis on the set of 
oncogenes and TSG against the three null models. We find that targeted attack on oncogenes (or TSGs) makes 
the multiplex highly vulnerable (Fig. 5D and Supplementary Figures S41 and S42). These sets are more vulnerable 
in the multiplex than in TRN or PPI independently (Supplementary Figures S23–S31). Multiplex vulnerability 
co-occurs with higher CR for the set of oncogenes (or TSGs) (Fig. 5D and Supplementary Figures S41 and S42).

Discussion
Recently, robustness properties of different biological multiplex and multilayer networks have been studied. 
These include brain networks51,58, multiplex of PPI interactions58, and a TRN-metabolic multilayer network69. 
However, these studies have limitations, which are described next. Kleineberg et al.58 do not draw broader con-
clusions about the organization of PPI multiplex across different species. Further, the different layers encode 
different types of interactions between proteins. This framework does not capture interaction between different 
types of molecules. Their conclusions are based on a generative model of network growth. This makes the results 
contingent on the accuracy of the generative model. This generative model is based on geometric principles 
and does not incorporate biological motivations or mechanisms. Klosik et al.69 study robustness under ran-
dom failure of a TRN-metabolic multilayer network. The study only focuses on E. coli and there are no species 
wide comparisons. Moreover, they do not study the dependence of robustness on degree–degree coupling and 
redundancy. Another recent study focuses on the interdependent or multiplex network of TRN–PPI-metabolic 
networks in human70. Liu et al. 201970 show that this multiplex is more robust than an uncoupled or shuffled 
multiplex. They also showed that essential and cancer genes are preferentially arranged in essential parts of the 

Figure 5.   Functionally important genes and proteins are redundant and essential. (A) (Left) Essential genes 
and proteins have lower robustness (R) to targeted attack across species against RanDP-RZ null model. (Right) 
Lower R is accompanied by higher redundancy ( CR ) for essential genes and proteins against RanDP-RZ null 
model. Panels (B–D) show results for the human multiplex. (B) (Left) Pathogen-related genes and proteins have 
lower R to targeted attack across pathogens against RanDP-RZ null model. (Right) Lower R is accompanied 
by higher CR for pathogen genes and proteins against RanDP-RZ null model. (C) (Left) Disease-related genes 
and proteins have lower R to targeted attack across diseases against RanDP-RZ null model. (Right) Lower R is 
accompanied by higher CR for disease genes and proteins against RanDP-RZ null model. (D) (Left) Oncogenes 
(tumor suppressor genes (TSGs)) and proteins have lower R to targeted attack against RanDP-RZ null model. 
(Right) Lower R is accompanied by higher CR for oncogenes (TSGs) and proteins against RanDP-RZ null model. 
In all the panels, database used for PPI networks is annotated on the y-axis (“Methods”). In all the panels, 
relative robustness (R) is measured against RanDP-RZ null model (“Methods”), and CR values are calculated 
as the difference in redundancy against RanDP-RZ null model. Results against RanDP and RanDP-noCD null 
models are shown in Supplementary Figures S42 and S41, respectively. Error bars show 95% CIs. For all the 
panels, CR is calculated as the mean difference in the number of redundant edges between the species’ multiplex 
and the null model.
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multiplex. However, they do not study the dependence of robustness on multiplex properties. Further, there is 
no cross-species analysis.

This study bridges the gap between theoretical developments and sub-cellular multilayer networks of molecu-
lar interactions. The central goal of our work is to investigate the organization and traits of molecular multiplexes. 
We focus our attention on the multiplex of TRN and PPI networks across five different eukaryotes. Our analysis 
spans five different TRN and 9 different PPI networks. We show that degree–degree coupling and redundancy 
are universal principles that shape robustness of the multiplex. Both are independent modulators of robustness. 
Though maximum robustness is achieved for a degree–degree coupling of 1 and a completely redundant multi-
plex, the observed species multiplexes have low absolute degree–degree coupling and redundancy. This suggests 
that robustness is not the only evolutionary pressure shaping the TRN–PPI multiplex. Independence might be a 
countering force to robustness. One possible explanation for low absolute degree–degree coupling, redundancy 
and hence robustness could be an inability to tune degree–degree coupling and redundancy independently. 
Redundancy and degree–degree coupling are positively correlated across species (Supplementary Figure S14). 
Multiplexes in nature might be tuning degree–degree coupling and redundancy in unison. Therefore, increasing 
robustness would increase redundancy as well. If redundancy were high, both TRN and PPI layers would be 
encoding similar interactions and the amount of unique information captured by the multiplex would be low71. 
Species multiplexes might have an upper bound on redundancy which could explain the low absolute values 
for robustness.

Robustness, independence and redundancy are only some of the pressures which might affect the structure 
of TRN–PPI multiplex across the domains of life. Other topological factors might possibly be involved. For 
instance, theoretical studies have established that controllability72 and navigability73 both depend on multi-
plex structure. Further, these results have been confirmed in macroscale networks72,73. For multiplex networks, 
with one-to-one correspondence between the nodes in the two layers, controllability decreases with increas-
ing degree–degree coupling72. This means that the TRN–PPI multiplex might become less controllable at high 
degree–degree coupling, and more genes and proteins will need to be controlled to steer the multiplex towards 
a desired state. Navigability is negatively affected by redundancy as well. As the number of overlapping edges, 
and hence redundancy, increases, navigability decreases73. Navigability is quantified by two different metrics; 
maximum entropy of trajectories explored by a random walker over the multiplex, and uniformity in the steady 
state probability distribution of node occupation under random walks over the multiplex. Maximum entropy 
decreases and probability distribution of node occupation becomes more heterogeneous with increasing edge 
overlap. At high redundancy or edge overlap, low maximum entropy will mean that a random walker can only 
explore a limited set of trajectories, and highly heterogeneous steady-state distributions will lead to unbiased 
occupancy among nodes. Therefore, controllability and navigability might exert countering pressures to robust-
ness in shaping the structure of the TRN–PPI multiplex. Disassortative mixing is another important property 
of molecular networks74. Individual network disassortativity might interact with multiplex coupling to create 
higher order effects, where degrees of neighbors in individual networks might be coupled in the multiplex. Such 
higher order coupling may have additional impact on robustness and other multiplex properties.

We have identified degree–degree coupling and redundancy as two modulators of TRN–PPI multiplex robust-
ness across five different eukaryotes. These modulators can potentially be tuned to control robustness in naturally 
existing TRN–PPI multiplexes. Further, we can even custom design synthetic TRN–PPI multiplexes to have 
desired robustness values. For instance, if robustness is the desired property for a set of genes, the multiplex could 
be rewired such that protein hubs are also highly regulated transcriptionally. On the other hand, if independence 
between TRN and PPI layers is the desired behavior, degree–degree coupling and redundancy can be reduced 
synthetically. In principle, similar ideas can be extended to multiplexes comprising different types of molecular 
species, for example, protein coding mRNA, miRNA and protein-binding mRNA. The results of this study can 
be easily extended to other molecular multiplexes and can inform the design of novel multiplexes with different 
molecular species to achieve a desired biological function.

Besides the global design principles for multiplex organization, we have also shown that functionally impor-
tant genes and proteins have a distinct distribution over the TRN–PPI multiplex. Essential, disease- and path-
ogen-related genes and proteins are preferentially situated in essential parts of the multiplex. This topological 
placement is dictated by redundancy. Attack on these functionally important genes quickly dismantles the mul-
tiplex. For diseases and pathogens, this suggests that these diseases and pathogens might have evolved with the 
human multiplex and preferentially interact with the vulnerable genes and proteins. Thus, multiplex framework 
can be useful in the study of disease evolution. Network analysis has previously been used for repurposing exist-
ing drugs75. We believe that our multiplex approach might help in better identification of drug targets, since a 
multiplex better captures the complexity of the underlying molecular networks. Therefore, multiplex framework 
might have application in network medicine.

One limitation of any network analysis of molecular interactions is incomplete data. This problem is further 
compounded due to partial overlap between the observed TRN and PPI networks. However, it has been shown 
previously that if the size of the incomplete network is above a certain threshold such that a giant component 
exists, incomplete networks are representative of the complete network76. This suggests that our analysis is repre-
sentative of the complete species multiplexes. Addition of more genes and proteins in the multiplex might change 
the specific values of CD , CR and R, however the general dependence between robustness and degree–degree 
coupling and redundancy will hold. Further, we have not incorporated information about isoform proteins in this 
study. However, it is straightforward to include such information. In the presence of isoforms, the correspond-
ence between TRN genes and PPI proteins will be one-to-many rather than one-to-one.

Quantifying structure and topology in complex biological networks has been actively researched within 
network biology. Design principles include the universality of scale-free networks1,77 (from metabolic networks 
across species28 and gene regulatory networks5,8,13,30,78,79, to power grids and the internet80), lethal deletions 
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in the hubs of yeast16, disassortative mixing in molecular networks74, and the existence of sub-modules and 
reoccurring network motifs9,12. Network biology has only recently investigated the influence of multilayered 
multiplex networks in comparison to single network layers in isolation51,58,69–71,81. This study contributes to the 
understanding of internetwork connectivity in layered molecular interaction networks. It is the first to compare 
TRN–PPI multiplexes across species. We discover global trends across species with degree–degree coupling and 
edge redundancy positively correlated with increased robustness. Robustness is explored in the context of the 
TRN–PPI multiplex and is proposed as one of the selective pressures by which evolution has shaped internetwork 
connectivity, degree–degree coupling and redundancy. The design principles presented here may be useful for 
the future design and understanding of multiplex networks and to improve efficacy for targeting specific gene 
subgroups, e.g. in disease. This research presents a multiplex framework for additional investigations of design 
principles in interlayered biological networks.

Methods
Data.  Networks.  We compiled network data for nine different species. These nine species span two domains 
of life, namely bacteria and eukaryotes. There are three bacteria—H. pylori, M. tuberculosis and E. coli—and six 
eukaryotes—S. cerevisiae, C. elegans, D. melanogaster, A. thaliana, M. musculus and H. sapiens. For the eukary-
otes, we collected three datasets—one TRN and two PPI networks. Among the bacteria, E. coli also has three 
datasets (one TRN and two independent PPI networks), while H. pylori and M. tuberculosis have one TRN and 
one PPI networks each. These datasets have been collected from diverse sources (see Supplementary Table S1). 
We use PPI data from multiple published sources—species-specific publications15,18,24, BioGRID database14 and 
HINT database57. Different experimental methods uncover different information about PPI networks26. There-
fore, we only use PPI networks inferred from Yeast two-hybrid (Y2H) experiments82. Y2H infers binary pro-
tein–protein interactions and is a prominent strategy for identifying protein–protein interactions83. BioGRID 
and HINT do not have data for H. pylori and M. tuberculosis. PPI networks for these bacteria were collected 
from individual publications, Häuser et al.15 and Wang et al.24 respectively. E. coli only exists in HINT. We in-
clude another published PPI network for E. coli18. A consolidated database of TRN networks across species does 
not exist. Therefore, we collected protein–DNA interactions from different publications. References for all the 
species are given in Supplementary Table S1. Available TRN and PPI networks are incomplete. Consequently, 
they only contain a fraction of the total number of possible genes and proteins in the genome and proteome, 
respectively. Further, TRN and PPI networks used in this study have different numbers of genes and proteins 
(see Supplementary Table S1, Supplementary Information Additional File 2). For a given species, we have only 
considered genes and proteins which are present in both TRN and PPI networks in our analysis.

The following characteristics of the TRN and PPI networks used in this study are included in Supplementary 
Table S1—Number of genes and proteins, % proteome coverage in the TRN–PPI multiplex (fraction of the total 
proteome covered in the multiplex), number of network edges (edges represent connections between genes and 
proteins in TRN and PPI networks respectively), average degrees (average K in PPI and average kin or kout in 
TRN) and size of the Largest Connected Component (LCC) (subset of genes/proteins in TRN/PPI where every 
gene/protein is reachable from every other gene/protein) are shown for all nine species.

Essential genes.  List of essential genes was collected for three species (yeast, fly and human) from the Online 
GEne Essentiality (OGEE) database60,61. The database has gene essentiality information on 48 species.

Pathogen‑related genes.  We collected human-pathogen protein–protein interaction data for 12 different path-
ogens from a publicly available database HPIDB 3.062,63. This curated database contains 69,787 unique pro-
tein interactions between 66 host and 668 pathogen species. Human-pathogen protein interactions for various 
human coronaviruses (HCoVs) were collected from a recently published paper64. In total, we analyzed patho-
gen-related gene–protein pairs for 13 pathogens.

Disease‑related genes.  We collected disease-related genes from a publicly available database DisGeNET65–67. 
The current version (v6.0) contains gene-disease associations between 17,549 genes and 24,166 diseases, dis-
orders, traits, and clinical or abnormal human phenotypes. We collected disease-gene associations for diseases 
which have at least 100 genes in the human multiplex considered in this work.

Oncogenes and tumor suppressor genes.  We collected the set of genes which contain mutations which have been 
causally implicated in cancer from the Network of Cancer Genes (NCG)68. NCG also includes information on 
whether a given cancer gene is an oncogene or TSG.

Multiplex formulation of transcriptional regulatory and protein–protein interaction net-
works.  TRN and PPI networks are modeled as interdependent networks (Fig. 1A). TRN layer encodes the 
transcriptional program for producing proteins from genes. The proteins translated from the TRN layer par-
ticipate in protein–protein interactions in the PPI layer. There is one-to-one correspondence between genes 
and proteins in the TRN and PPI network layers. This specific configuration of interdependent networks can be 
reduced to a multiplex network43, and we can apply the framework developed by Buldyrev et al.43.

We use graph theory to model and analyze TRN–PPI multiplex in this work. TRN and PPI networks are mod-
eled as graphs with nodes representing genes and proteins respectively (Fig. 1A). Connections between nodes 
are represented by edges. PPI edges are undirected. Edges in TRN have directionality—transcription factors have 
edges emanating from them, while downstream genes have incoming edges. The connectivity pattern of edges 
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is quantified by the concept of degree at each node. In PPI networks, degree (K) is the number of edges incident 
on a protein. For TRN, in-degree ( kin ) is the number of transcription factors upstream of a gene, and out-degree 
( kout ) is the number of genes downstream of a transcription factor.

Since TRN and PPI layers have different coverage of the genome and proteome (see Supplementary Table S1), 
all analysis was done with genes and proteins present in both TRN and PPI networks.

Quantifying multiplex coupling.  Degree–degree coupling.  We quantify degree–degree coupling ( CD ) 
using either Pearson’s correlation or Spearman’s rank correlation coefficient (Eq. 1).

where cor() is the sample Pearson’s correlation or Spearman’s rank correlation coefficient, kout is the TRN out-
degree and K is the PPI degree.

Redundancy coupling.  Redundancy coupling ( CR ) is quantified by the number of edges simultaneously present 
in TRN and PPI. Assume that G1 and G2 are graphs representing TRN and PPI networks respectively, and V1 
and V2 are the corresponding vertex sets. Let E(G1

) and E(G2
) be the edge sets for G1 and G2 respectively. The 

elements of the edge sets are vertex pairs. For instance, (V1
i ,V

1
j ) ∈ E(G1

) means that gene i is a transcription 
factor regulator for gene j, (V2

i ,V
2
j ) ∈ E(G2

) means that proteins i and j interact with each other. Interactions 
common between TRN and PPI can be mathematically represented by the number of common edges between 
G1 and G2 (Eq. 2).

where Edges12 is the number of edges common between G1 and G2 and e represents an edge either in G1 or G2 . 
In Fig. 2, we compute node-specific redundancy coupling. Here, CR for each gene–protein is equal to the number 
of redundant edges incident on that gene–protein pair. CR is either calculated as a z-score, which is computed as 
CR =

Edges12−mean(Edgesnull
12

)

sd(Edgesnull
12

)

 , where Edgesnull
12

 is the number of redundant edges in a null model, or CR = Edges12 
or CR = mean(Edges12)−mean(Edgesnull

12
) . The definition of CR used is specified in each figure’s caption.

Multiplex robustness.  Quantifying multiplex robustness.  We use MCGC to quantify multiplex 
robustness43. MCGC is the set of genes and proteins which are simultaneously connected in both the network 
layers—every gene/protein in MCGC is reachable from every other gene/protein in MCGC. MCGC is computed 
by finding the intersection between the largest connected components (LCCs) of the TRN and PPI network lay-
ers. To quantify response to targeted attack, we track the size of the largest MCGC at each step of the attack. We 
simulate attack on the multiplex via the following algorithm. 

1.	 Compute multiplex degree for all gene–protein pairs in the multiplex. Multiplex degree is defined as 
Kmult(i) = max(K(i), kout(i))

58, where Kmult(i) is the multiplex degree for gene–protein pair i, K(i) is the 
degree of protein i in the PPI network and kout(i) is the out-degree of gene i in the TRN network. Order 
multiplex degrees into a list of gene–protein pairs, D, arranged in decreasing order of multiplex degree.

2.	 At step L of the attack, remove the Lth gene–protein pair in D. Removing a gene (protein) from TRN (PPI) 
layer may lead to the failure of dependent proteins (genes) in the PPI (TRN) layer. This failure may progress 
recursively, affecting more nodes in the multiplex. This process is called a cascade of failures43.

3.	 After removing the attacked gene–protein pair and other failed dependent nodes at step L (cascade of 
failures), find the LCC in either TRN or PPI layer. At this stage, MCGC coincides with the LCC. Compute 
the size of MCGC. For computing size of MCGC, the TRN network is converted to an undirected version. 
Therefore, we calculate “weak” MCGC, where weak refers to the undirected nature of TRN.

4.	 Repeat steps 2 and 3 of this algorithm until MCGC breaks down.

This algorithm will generate a sequence of values, which give the trajectory of the MCGC as the multiplex is 
successively attacked. If we plot this trajectory as a function of the fraction of gene–protein pairs removed from 
the multiplex, robustness to attack can be assessed from either the area under the curve or the critical number of 
nodes removed for which the MCGC is fragmented46. We use area under the curve (RobustArea) as the measure 
for multiplex robustness. Thus, RobustArea is given as

where RobustArea ∈ (0, 1] is the area under the curve, f is the fraction of gene–protein pairs removed during the 
attack, and RMCGC​(f) is the size of MCGC relative to the total number of gene–protein pairs in the multiplex 
(n) after f fraction of gene–protein pairs have been removed from the multiplex. RobustArea quantifies absolute 
robustness. Relative robustness (R) is computed by comparing RobustArea against a null model. Cohen’s d is 
used to compute effect size of relative robustness (Eq. 4).

(1)CD = cor(kout ,K),

(2)Edges12 = |{e | e ∈ E(G1
), e ∈ E(G2

)}|,

(3)RobustArea =

∫

1

0

RMCGC(f ) df ,

(4)R =
mean(RobustAreaobs)−mean(RobustAreanull)

√

var(RobustAreaobs)+var(RobustAreanull)
2

,
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where R is the relative robustness, RobustAreaobs and RobustAreanull are the RobustArea values for the observed 
multiplex and null model respectively and mean() and var() are the mean and variance functions respectively. 
We have assumed that RobustAreaobs and RobustAreanull have the same number of samples.

Since the attack is stochastic, given multiple nodes can have the same multiplex degree, we repeat targeted 
attack multiple times. For the species multiplexes, we repeat the attack either 1000 or 100 times.

Robustness for partial attack curves.  For Fig. 5, we estimate robustness for a subset of functionally important 
gene–protein pairs and compare that against a random set of gene–protein pairs in the multiplex. Here, we 
explain the strategy to conduct such a comparison. Assume that S = {S1, S2, . . . , SM} is a collection of sets of 
gene–protein pairs in a multiplex. Here M is the total number of sets. Sets Si , i ∈ {1, 2, . . . ,M} , can be mutually 
exclusive or not. Let Mmin be the size of the smallest set in S. For an equitable comparison, we randomly sample 
(under an appropriate model) Mmin number of gene–protein pairs from all the subsets, except for the smallest 
subset. We sample each subset 100 times. For each sampled version of a subset Si ∈ S , we attack the gene–protein 
pairs in Si in decreasing order of multiplex degree for gene–protein pairs in that set, using the attack algorithm 
explained previously. We stop the attack once Mmin number of gene–protein pairs have been removed from the 
multiplex. We also perform a similar partial attack on a set of randomly selected gene–protein pairs (under an 
appropriate null model). The size of the random set is set equal to Mmin . Robustness can be calculated for each 
subset based on the obtained partial attack curves. Relative robustness for each subset is calculated by comparing 
RobustArea for that subset against the random set.

Data availability
All TRN and PPI networks are provided as an R programming language84 data object (“NetworkMultiplex.RData” 
in Supplementary Dataset). Data for all the pathogens and diseases are also provided as R programming language 
data objects in Supplementary Dataset. All the analysis was performed in the R programming language84. Custom 
scripts for reproducing Figs. 2, 3, 4, 5 are provided in Supplementary Dataset.
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