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Altered Insulin/Insulin-Like Growth 
Factor Signaling in a Comorbid Rat 
model of Ischemia and β-Amyloid 
Toxicity
Zareen Amtul1, David J. Hill2,3, Edith J. Arany4 & David F. Cechetto1

Ischemic stroke and diabetes are vascular risk factors for the development of impaired memory such as 
dementia and/or Alzheimer’s disease. Clinical studies have demonstrated that minor striatal ischemic 
lesions in combination with β-amyloid (Aβ) load are critical in generating cognitive deficits. These 
cognitive deficits are likely to be associated with impaired insulin signaling. In this study, we examined 
the histological presence of insulin-like growth factor-I (IGF-1) and insulin receptor substrate (IRS-1)  
in anatomically distinct brain circuits compared with morphological brain damage in a co-morbid 
rat model of striatal ischemia (ET1) and Aβ toxicity. The results demonstrated a rapid increase in the 
presence of IGF-1 and IRS-1 immunoreactive cells in Aβ + ET1 rats, mainly in the ipsilateral striatum 
and distant regions with synaptic links to the striatal lesion. These regions included subcortical white 
matter, motor cortex, thalamus, dentate gyrus, septohippocampal nucleus, periventricular region and 
horizontal diagonal band of Broca in the basal forebrain. The alteration in IGF-1 and IRS-1 presence 
induced by ET1 or Aβ rats alone was not severe enough to affect the entire brain circuit. Understanding 
the causal or etiologic interaction between insulin and IGF signaling and co-morbidity after ischemia 
and Aβ toxicity will help design more effective therapeutics.

Vascular cognitive impairment (VCI) refers to cognitive impairment that is associated with, or caused by, vascu-
lar factors1,2. In the elderly VCI risk factors occur in the presence of high levels of amyloid. Clinical studies have 
demonstrated that minor striatal ischemic lesions are very critical in generating cognitive deficits in combination 
with β-amyloid (Aβ) load3.

Clinical investigations have clearly established an interaction between Alzheimer’s disease (AD) and 
ischemia3. In this regard, we have shown using the present co-morbid striatal ischemia and Aβ toxicity rat model, 
the presence of high levels of endogenous amyloid, amyloid precursor protein (APP), microgliosis, astrocytosis 
and increased ischemia size in cortical, striatal and hippocampal regions that eventually led to cognitive defi-
cits4–6. We have also provided mechanistic insight into the correlation between hippocampal pathogenesis, pro-
genitor cells and cognitive impairment6 in co-morbid neuropathologies.

The clinical literature presents a compelling argument for impaired insulin signaling in the vulnerable brains, 
such as those developing Alzheimer’s type pathologies7,8 or ischemia. Diabetes is considered to be one of the risk 
factors for senile dementia of the Alzheimer’s type9,10. There is a growing interest in understanding the status 
and function of insulin signaling in AD brain, especially since defects in insulin, insulin receptor (IR), insulin 
receptor substrate (IRS-1)11 and, increased insulin-like growth factor-I (IGF-1) levels in astrocytes12,13 as well 
as decreased IGF-1/IGF-II levels14 have been reported in AD. Impaired insulin signaling is also thought to be a 
factor contributing to neuronal degeneration in AD by impairing the cellular clearance of neurotoxic oligomeric 
Aβ11, promoting amyloid generation and eventually Aβ plaque burden14,15. AD has also been hypothesized as a 
brain specific ‘type 3’ diabetes14,16. IRS-1 interacts with many proteins involved in neurodegenerative pathways17. 
Similarly, IGF-1 signaling mediated through PI3-kinase/Akt is a key pathway for neuronal survival and growth, 
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and has been demonstrated to be involved in the survival of neurons in ischemic brain and spinal cord injury 
models and in several types of neuronal insults18–23. Moreover, behavioral outcomes after traumatic brain injury 
have been improved by IGF-1 administration24.

Although studies in patients clearly indicate impaired insulin signaling in both AD and stroke, there has 
been little investigation of insulin or IGF signaling as a consequence of striatal ischemia and Aβ toxicity, as well 
as the etiologic link between ischemia and AD. Thus, it is critical to investigate insulin signaling in the brain of 
comorbid animal models of vascular risk factor such as ischemia in the presence of elevated levels of brain amy-
loid (adult onset sporadic AD model). It will further help to examine important clinical conditions of co-existing 
morbidities related to VCI and to accurately replicate the metabolic and cellular conditions of the human diseases 
where these conditions coexist in the elderly.

Hence, in the present investigation we examined changes in the expression of IGF-1 and IRS-1 in the com-
bined model of cerebral ischemia and Aβ toxicity. In particular, this study focused on the potential synergism that 
may account for the clinical findings to possibly assist in an early diagnosis of the brain at risk for AD.

Results
The Aβ + ET1-treated rat model was shown by us5,6,25 to exhibit several hallmark features indicative of a degener-
ating brain including, but not limited to, the significantly increased number of OX6 (Fig. 1A), amyloid (Fig. 1B)5 
and fluorojade B (Fig. 1C)5 positive degenerating cells compared to the sham rats. In the current investigation, 
increased IGF-1 and IRS-1 staining was mostly prominent in the striatum, thalamus, cortex, subcortical white 
matter, hippocampus and septohippocampus of ET1 and Aβ + ET1 rats. Aβ toxicity showed an effect on IGF-1 
and IRS-1 presence, it was significantly altered in various brain regions such as dentate gyrus and septohippocam-
pal nucleus as mentioned below. Moreover, an increased number of Aβ-stained cells in ET1 rats compared to the 
Aβ + ET1 rats (Fig. 1B) that from morphology and distribution pattern appear to be neurons, hints towards the 
relatively higher neuronal loss in Aβ + ET1 rats, as determined by FJB staining.

Striatum and thalamus.  The majority of the IGF-1 or IRS-1 positive cells found in the caudate putamen 
(Fig. 1D,H,I) and thalamus (Fig. 1E,J,K) from morphology and distribution look like neurons. Neurons have 
already been reported to express IRS-126,27. These cells were mostly concentrated in the ipsilateral dorso-medial 
striatum and ventral posteromedial (VPM) and ventral posterolateral (VPL) nuclei of ET1 and Aβ + ET1 rats. 
In the caudate putamen Aβ + ET1 rats demonstrated significantly more numbers of IGF-1 (p = 0.002) and IRS-1 
(p = 0.0007) positive cells compared to the Aβ rats. In the thalamus of ET1 and Aβ + ET1 rats, IGF-1 and IRS-1 
positive neurons appeared to have deficient dendritic and axonal branching than the sham rats (Fig. 1C).

Cortex and subcortical white matter.  Assessment of the motor cortex revealed a borderline increase in 
the leakage of IgG as well as the presence of IGF-1 and IRS-1positive cells in the vicinity of the site of injections 
in Aβ + ET1 rats when compared to the ET1 (IGF-1 p = 0.048, IRS-1p = 0.059) and Aβ (IGF-1 p = 0.059, IRS-
1p = 0.001) rats (Fig. 2A,C,D). IRS-1 positive cells were also evident in the ventral cerebral cortex of all 3 experi-
mental groups at the level of the insular cortex. Subcortical white matter, which is essentially devoid of neuronal 
cell bodies, was seen filled with astrocytic cells in Aβ, ET1 and Aβ + ET1 rats (Fig. 2B). The Aβ + ET1 interven-
tions resulted in a general increase in both IGF-1 and IRS-1 stained cells compared to ET1 (IGF-1 p = 0.055) 
and significantly more than Aβ (IGF-1 p = 0.005, IRS-1p = 0.005) rats (Fig. 2B,E,F) that from morphology and 
appearance look like astrocytes (Fig. 2B). Astrocytes are also reported to express significantly higher levels of 
IRS-128. Moreover, Aβ and Aβ + ET1 rats also demonstrated a bilateral (contralateral not shown) increase in the 
number of astrocytes compared to unilateral increase in ET1 rats.

Hippocampus and septohippocampus.  The number of IGF-1 and IRS-1 positive cells which appeared 
in the ipsilateral dentate gyrus of Aβ + ET1 rats were substantially more compared to ET1 (IGF-1 p = 0.05, 
IRS-1 p = 0.05) and significantly more than Aβ (IRS-1 p = 0.004) rats (Fig. 3A,C,D). Aβ + ET1 rats also showed 
increased IGF-1 and IRS-1 staining in the contralateral (not shown) dentate gyrus. The septohippocampus 
demonstrated a significantly increased number of IGF-1 and IRS-1 positive cells in Aβ and Aβ + ET1 rats com-
pared to sham (IGF-1 p = 0.01, IRS-1 p = 0.05) and ET1 (IGF-1 p = 0.001, IRS-1 p = 0.05) brains, respectively 
(Fig. 3B,E,F). Interestingly, the IGF-1 positive cells were observed in the vicinity of microvessels, whereas IRS-1 
antibody showed deposition of Aβ-like fragments around microvessels in cells that from appearance look like 
neurons and astrocytes.

Periventricles and basal forebrain.  Additional brain areas observed to have pathological changes includ-
ing periventricular regions either superior to the anterior ipsilateral caudate putamen or in areas close to the 
anterior horns of both lateral ventricles with significantly more IGF-1 (p = 0.001) and IRS-1 (p = 0.001) cells in 
Aβ + ET1 rats compared to Aβ rats (Fig. 4A,C,D), respectively. This also included ventricle enlargement in Aβ, 
ET1 and Aβ + ET1 rat brains three weeks after the surgery, strengthening our previous findings6. IGF-1 and IRS-1 
staining also prominently increased in the contralateral periventricular region (not shown) of Aβ and Aβ + ET1 
rats. The horizontal diagonal band (HDB) of Broca in the basal forebrain demonstrated an increased tendency of 
IGF-1 and IRS-1 positive cells in ET1 and Aβ + ET1 rats compared to sham and Aβ brains (Fig. 4B,E,F); however, 
it was not statistically significant.

Discussion
Previously we have described various important pathological alterations in co-morbid models of Aβ toxicity 
and ischemia in both non-transgenic rats and transgenic mice5,6,25. In the present study we have undertaken a 
more detailed analysis of the insulin and IGF-1 signaling pathway to dissociate the synergistic or additive con-
nection between the early pathological events of dementia, such as high levels of Aβ and neuroinflammation, 
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and the small focal ischemia. Here we showed that Aβ toxicity and ischemia provoked substantial region-specific 
increases in the abundance of cells staining for IGF-1 and IRS-1 that encompassed the majority of the ipsilateral 
hemisphere. This is the first study to demonstrate an overall upregulation in IGF-1 and IRS-1 presence after 
co-morbid occurrence of Aβ toxicity and striatal infarct.

Focal cortical ischemia has been shown to evoke inflammatory responses in the perilesional areas. In the 
present study, although the striatum and thalamus were the predominant damaged regions in ET1 and Aβ + ET1 
rats, histological alterations were also noticed in distant regions29 with synaptic links to the striatal and thalamic 
lesions, such as subcortical white matter, motor cortex, septohippocampal nucleus, dentate gyrus, periventricular 
regions and HDB. Conversely, the regional injury induced by ET1 or Aβ toxicity alone was not severe enough to 
significantly affect the entire brain circuit as reported by us recently5.

An increase in the number of IGF-1 or IRS-1 immunoreactive cells in the cortex again implies the potential 
critical importance of this region in the cascade of events for the interactions between ischemia and Aβ toxic-
ity5. Importantly, due to the massive neurodegeneration in the associative cortices, AD was formerly referred to 
as cortical dementia30. The presence of IGF-1 and IRS-1 positive cells around the temporal horns of the lateral 

Figure 1.  Striatum and thalamus: Low resolution images at bregma levels +0.48 mm show cerebral injury 
in the striatal lesion core of ET1 and Aβ + ET1 rats. (A) The dotted rectangles indicate the region of the 
high magnification images in B,C,D and E. High resolution immunostaining indicates staining for striatal 
expression of APP fragments including β-amyloid (B) and FJB degeneration (C) as well as IGF-1 and IRS-1 
in the ipsilateral striatum (D) and thalamus (E) of sham, Aβ, ET1 and Aβ+ET1 rats Plots show quantitative 
assessment of β-amyloid (F), FJB (G), IGF-1 and IRS-1 staining in the striatum (H and I) and thalamus (J and 
K) of sham, Aβ, ET1 and Aβ+ET1 rats, respectively. (B,C,F and G are courtesy from5).
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Figure 2.  Cortex and subcortical white matter: High resolution immunostaining indicates staining for IGF-1 
and IRS-1 in the ipsilateral cortex (A) and subcortical white matter (B) of sham, Aβ, ET1 and Aβ+ET1 rats. 
Plots show quantitative assessment of IGF-1 and IRS-1 staining in the cortex (C and D) and subcortical white 
matter (E and F) of sham, Aβ, ET1 and Aβ + ET1 rats.

Figure 3.  Hippocampus and septohippocampus: High resolution immunostaining indicates staining for IGF-1 
and IRS-1 in the ipsilateral dentate gyrus of hippocampus (A) and the septohippocampus (B) of sham, Aβ, ET1 
and Aβ + ET1 rats. Plots show quantitative assessment of IGF-1 and IRS-1 staining in the dentate gyrus (C and 
D) and septohippocampus (E and F) of sham, Aβ, ET1 and Aβ + ET1 rats, *p < 0.05, **p < 0.01.
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ventricles, which are close to the paralimbic region, arguably suggests a role for insulin signaling in cognitive 
performance in Aβ + ET1 rats. This region is particularly vulnerable during the prodromal stages of dementia31. 
Furthermore, an investigation of surface map changes in the temporal horns of AD patients correlated regional 
enlargement of lateral ventricles to the progression of disease32. Similarly, AD pathology in HDB, relative to rest 
of the brain, might imply a greater vulnerability of the neurons in the HDB to plaque pathogenesis, possibly due 
to the impaired neurogenesis in the nearby olfactory piriform. The neurogenic potential (though not as robust 
as in hippocampus and the subventricular zone) of layer II of the piriform cortex in neuronal differentiation of 
newborn cells of adult rats has been well characterized33.

Intriguingly, like Aβ + ET1 rats, lowered sensory cortico-cortical and the thalamo-cortical potential has 
also been reported in the diabetic rat brain34. Perhaps, direct connections of the thalamus to the hippocampus 
(through the fornix) might explain the increased number of IGF-1 and IRS-1 positive cells in the dentate gyri of 
Aβ, ET1 and Aβ + ET1 rats. Few or reduced processes identified in IGF-1- or IRS-1-positive neurons in the thal-
amus agrees with the observation of reduced number of dendrites in the diabetic rat brain34.

An acute increase in IGF-1 post-surgery could reflect possibly either a reparative or protective response by 
the damaged neuronal cells35–37 or an increased accumulation/synthesis of IGF-I or enhanced input of IGF-I 
from peripheral resources (reactive glial cells) - to enhance their availability to the injured region38. It has been 
reported that neurons may become IGF-I resistant in regions going through an inflammatory process due to the 
actions of pro-inflammatory cytokines such as tumor necrosis factor (TNF) α.TNFα interferes with insulin/IGF-I 
receptor coupling to attenuate insulin/IGF-I signaling17 as well as by inducing IRS-1 phosphorylation39, possibly 
via reducing c-Jun N-terminal kinase (JNK) activation40, which may increase the levels of IGF-138. This might be 
the case in Aβ + ET1 rats, which exhibit significantly higher inflammation5,6. Knockdown studies of IGF-1R/IR 
signaling in Caenorhabditis elegans demonstrating reduction in aggregation-mediated Aβ1–42 toxicity41 not only 
provides a direct relationship between IGF-1R/IR signaling and Aβ toxicity but could also explain the increased 
Aβ production5 and FJB positive cellular degeneration5 in our Aβ + ET1 rats5,6 with the concurrent increase in 
IGF-1 and IRS-1 expression in the present study.

Computed tomography scans and magnetic resonance imaging have commonly identified lesions in subcorti-
cal white matter of demented and elderly patients, as hypertensive territories42,43; however, astrocytic IGF-I (and 
IRS-1) expression in subcortical white matter might be protective as IGF-I-related peptides, when expressed by 
astrocytes, may reduce immune-mediated myelin injury during lesion progression and recovery44, and recovery 
from insults such as hypoxia–ischemia (reviewed in45. This also provides an explanation for the restoration of 
the blood-brain barrier in the ET1 rats observed by us recently46–48. Likewise, IRS-1 deficits have been shown to 
contribute to insulin resistance in animal models and diabetic patients49.

Figure 4.  Periventricles and basal forebrain: High resolution immunostaining indicates staining for IGF-1 and 
IRS-1 in the ipsilateral periventricles (A) and horizontal diagonal band (HDB) of Broca in basal forebrain (B) 
of sham, Aβ, ET1 and Aβ + ET1 rats. Plots show quantitative assessment of IGF-1 and IRS-1 staining in the 
periventricles (C and D) and HDB (E and F) of sham, Aβ, ET1 and Aβ + ET1 rats.
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Our research may be relevant to the linkage between insulin signaling and inflammatory processes in a vulnerable 
brain. The present study addressed the regional differences in the IGF-1 and IRS-1 expression in response to ischemia 
and high amyloid toxicity, enabling us to recognize the brain regions that are not only sensitive to insulin signaling but 
can also be considered important to VCI prevention. This approach may eventually lead to the future clinical strat-
egies to interrupt the mechanisms mediating the effects of vascular risk factors on cognitive decline7,50. Further, an 
investigation into the IRS-1 residues that are phosphorylated by the co-morbid injury might be an interesting future 
investigation implying its activation or inhibition to bind to the receptor to subsequently down or upregulate the insu-
lin signaling. As, serine phosphorylation of IRS-1 has been reported as an important feature in AD brain resulting in 
the failure of IRS-1 to transmit insulin receptor signals to the downstream signaling machinery51.

Materials and Methods
Animal, treatment and tissue preparation.  All animal protocols were carried out according to the 
guidelines of the Animal Care and Use Committee of Western University (approval ID: 2008-113) and NIH. All 
animal protocols were approved by Animal Care and Use Committee of Western University. Male Wistar rats 
(Charles River, Montreal QC, Canada, 250 to 310 gm) were anesthetized using sodium pentobarbital (60 mg/kg, 
i.p, Ceva, Sante Animale). The animals were positioned in a stereotaxic apparatus (David Kopf) with the incisor 
bar below the interaural line, set at 3.3 mm. Body temperatures were maintained at 37 °C. To insert the cannula (30 
gauge), small burr holes were drilled in the parietal bone. Four groups of animals were studied (n = 4–7 for each 
group). To model striatal ischemia (ET1 group) a single injection of 6 pmol endothelin-1 (ET1; Sigma-Aldrich, 
Oakville, ON) per 3 µL (dissolved in saline) was made into the right striatum as described5,6 through the cannula 
(anterior/posterior + 0.5 mm, medial/lateral -3.0 mm relative to bregma, and dorsoventral –5.0 mm below dura). 
The rat model of β-amyloid toxicity (Aβ group) was produced by intracerebroventricular (ICV) non-aggregated 
Aβ25-35 injections as described by us elsewhere5,6,25. Briefly, Aβ25-35 peptide (Bachem, Torrance, California) at 
50 nmol/10 µL dissolved in saline was injected into the lateral ventricles bilaterally (anterior/posterior: –0.8 mm, 
mediolateral: ±1.4 mm relative to bregma, and dorsoventral: −4.0 mm below dura). The toxic fragment, Aβ25-35, 
has been shown in AD brains52,53, and in in vivo and in vitro investigations52 to elicit neuronal degeneration, neu-
roinflammation with reactive astrocytosis and functional impairments (reviewed in Kaminsky et al.54). An addi-
tional benefit of using Aβ25-35 is to induce modest pathological alterations that can be combined with a minor 
ischemia model to study the interactions. For rats receiving both bilateral intracerebroventricular (ICV) Aβ25-35 
injections and unilateral striatal ET1 injections (Aβ + ET1 group), the Aβ25-35 peptide injection into the lateral 
ventricles was followed by the ET1 injection into the striatum. The sham-treated rats (Sham group) received all 
the surgical steps without injections of Aβ25-35, or ET1. It has been proven in the earlier studies that control rats 
receiving reverse scrambled peptide Aβ 35-25 do not show any pathology, either alone or when combined with 
endothelin-155. The Paxinos and Watson atlas was used to determine all stereotaxic coordinates56. Following ET1 
or Aβ25-35 injections, the syringe was left in situ for 3 minutes before being removed slowly. After suturing the 
wound all rats received subcutaneous injection of 30 µg/kg buprenorphine and an intramuscular injection of 20 μl 
(50 mg/ml stock) enrofloxacin antibiotic (Baytril, Bayer Inc., Canada), and were subsequently allowed to recover 
from surgery. Three weeks after surgery animals were euthanized with 160 mg/kg of pentobarbital by i.p. injection 
and transaortically perfused with 4% paraformaldehyde (pH 7.4). The brains were removed, post-fixed in 4% 
paraformaldehyde for 24 h, and cryoprotected by immersion in 30% sucrose for 36 hours at 4 °C.

Histology.  Immunohistochemistry was performed on serial, coronal cryo-sections of the entire brain, 40 µm 
in thickness (using a sliding microtome, Tissue-Tek Cryo3, USA), with primary antibodies against major histo-
compatibility complex class II antigen produced by microglia (OX-6, BD Pharmingen, 554926, 1:1000), amyloid 
precursor protein (APP), Aβ and its 17–24 fragment (4G8, Signet, Covance, Emeryville, CA, USA, 9220-10) and 
FluoroJade B (FJB; Chemicon Int., 0.0004%) to examine the cellular degeneration, IGF-1 (Santa Cruz, Sc-9013, 
1:500) or IRS-1 (Upstate Cell Signaling Solution, 06-248, 1:500) and secondary antibodies horse anti-mouse 
(BA-2000) and goat anti-rabbit (BA-1000) as described elsewhere6,57. In all cases, secondary antibodies, serum 
and ABC reagent were from the Vectastain Elite ABC Kit (Vector Laboratories, Inc., Burlingame, CA, USA). 
Fluorochrome FJB staining is described elsewhere5.

Analyses.  All data analyses were performed blinded and with adequate allocation concealment. Light micros-
copy was used to carry out the histological analyses of brain sections. Images were taken with a Leica Digital 
Camera (DC 300, Leica Microsystems Ltd., Heerbrugg, Switzerland) attached to a Leitz Diaplan Microscope. 
Digitized images acquired using 10× objective were saved as TIFF files with an identical level of sharpness and 
contrast using the IM50 software. Six randomly chosen fields on region of interest on 6 non-neighboring sections 
were studied from each brain, taken from the anterior to posterior levels (1.7 to −3.14 mm from the bregma or 
altogether 4.84 mm) with intervals of 240 µm each. Cellular densities on each of the six slices (expressed as the 
number of stained cell tops per mm in the optical field) were calculated as the arithmetic mean number of cells 
divided by the total area of the region analyzed in the ipsilateral hemispheres of each animal. The results were 
displayed as the numbers of stained cells per mm2 of each region analyzed.

Statistical Analyses.  All values were presented as mean ± standard error of the mean (S.E.M.). Number of 
IGF-1 and IRS-1 labeled cells, were analyzed using parametric unpaired ttest that assumes equal distribution and 
one-way ANOVA followed by post hoc Dunnett tests using GraphPad Prisim version 5.0 for Windows (La Jolla 
California USA). The significance level was p ≤ 0.05.
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