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Abstract: As a substantial part of the brain tumor microenvironment (TME), glioma-associated
microglia/macrophages (GAMs) have an emerging role in tumor progression and in controlling
anti-tumor immune responses. We review challenges and improvements of cell models and highlight
the contribution of this highly plastic cell population to an immunosuppressive TME, besides their
well-known functional role regarding glioma cell invasion and angiogenesis. Finally, we summarize
first therapeutic interventions to target GAMs and their effect on the immunobiology of gliomas,
focusing on their interaction with T cells.
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1. Introduction

High-grade gliomas and especially glioblastoma (GBM) are some of the most aggressive tumors
in humans. Despite multimodal therapeutic interventions, the median survival of GBM patients is
still restricted to about 15 months [1]. One of the main reasons for the observed treatment resistance
and concomitant tumor recurrence is the invasive growth of GBM preventing a total tumor resection
as well as profound changes in the tumor microenvironment (TME) [2,3]. Like most extracranial
tumors, the TME of brain cancers consists of a substantial proportion of non-neoplastic cells. Hence,
the brain hosts some exclusively tissue-resident cell types, including neurons, astrocytes, and microglia
as well as a specific brain vasculature as part of the blood-brain barrier [4]. Upon inflammation,
such as autoimmune, neurodegenerative, and epileptic disorders as well as brain malignancies,
microglia cells are activated to restore the brain homeostasis [5]. This process is further supported
by bone marrow-derived macrophages (BMDMs) which also can infiltrate the brain. In malignant
gliomas, the mixture of activated brain-resident microglia and BMDMs can comprise up to one third
of the tumor mass [6] and collectively act to promote tumorigenesis (pro-tumorigenic) and to create
an immunosuppressive TME [7,8]. Accordingly, targeting these tumor-supportive cell types represents
a novel promising treatment approach to improve the survival of GBM patients [9].

In the following sections, we will describe the physiological functions of microglia and
macrophages, changes occurring in the TME, their impact on anti-tumor immune responses, and how
this can be exploited in a therapeutic setting.

2. Origin and Physiological Function of Microglia and Macrophages of the Central Nervous System

Microglia cells are crucial immune cells of the central nervous system (CNS) and serve
as tissue-resident macrophages of the brain [10]. They have a considerable influence on brain
development and the homeostasis of the neural environment by the phagocytosis of apoptotic cells
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and by supporting neurogenesis, synaptic refinement, and axonal growth [11–13]. Moreover, microglia
cells are involved in immune surveillance and are a substantial component of the first line of defense,
as described in more detail later [14].

Until recently, it was assumed that microglia cells originated from hematopoietic stem cells
of the bone marrow. Nowadays, it has become clear that microglia cells arise from hematopoietic
precursor cells of the yolk sac in the early embryogenesis between embryonic day E7.0 and E9.0 [11,15].
In contrast, brain-infiltrating BMDMs originate from hematopoietic stem cells [16,17]. According
to their localization, BMDMs can be subdivided into meningeal macrophages, choroid plexus
macrophages, perivascular macrophages, and dendritic cells [18,19]. Thus, microglia and BMDMs
represent two ontogenetically distinct myeloid cell populations with similar immune regulatory
features and the expression of several common markers, such as CD11b, CD68 (Figure 1), ionized
calcium-binding adapter molecule 1 (IBA1), CX3C chemokine receptor 1 (CX3CR1), and F4/80 (mouse
specific) [5,20–22].
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In gliomas, the infiltrating BMDM population intermingles with tissue-resident microglia.
As a consequence, they are virtually undistinguishable and exceedingly difficult to study independent
from one another [7]. Traditionally, microglia are defined as CD11b+/CD45low (or CD45int),
whereas the CD11b+/CD45high population accounts for other CNS macrophages [23]. However,
upon inflammation microglia can rapidly upregulate CD45 expression, resulting in an incorrect
classification as BMDMs [24]. Moreover, the discrimination between microglia and BMDMs relies
on the quantitative expression of surface markers as usually assessed by flow cytometry analysis,
and therefore is restricted to cell isolates. Recently, the transmembrane protein 119 (TMEM119) was
reported as a novel microglia-specific marker to reliably discriminate CNS-resident microglia from
BMDMs in both humans and mice [20,25]. However, further studies are needed to verify these findings.

3. Microglia Models for Functional Studies

While peripheral macrophages can be easily isolated from blood samples, the purification of
brain-resident microglia/macrophages for subsequent functional studies is still much more challenging.
Microglia—especially in the context of brain malignancies—are still under-investigated, primarily
due to the lack of robust in vitro and in vivo models. For decades, the most common approach to
separate human microglia from other CNS cells, such as astrocytes, oligodendrocytes, and neurons,
has been based on their strong adherence to plastic vessels [26–28]. However, the low yields limit their
usage for functional studies. To overcome this limitation the first immortalized murine (BV-2) and
human (HMO6) microglia cell lines were generated by retroviral transfection of the Myc oncogene in
the 1990s [29]. Later on, the commonly used human microglia cell line CHME was transformed with
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a lentiviral vector expressing the SV40 large T antigen [30,31]. Although the majority of knowledge
about microglia biology is provided by such cell models [32], comparative analysis of primary versus
BV-2 microglia raised doubts regarding the unrestricted usability of such a model system [33,34].
The authors demonstrated that primary brain-derived microglia cells differ from the immortalized BV-2
microglia cell line in their pathogen-derived lipopolysaccharides (LPS)-induced cytokine, chemokine,
and NO expression [34]. More recently, Das et al. performed transcriptome sequencing and observed
a microglial gene expression signature including the expression of several transcription factors and
epigenetic regulators in primary microglia rather than in BV-2 microglia cells [33]. Further technical
progress in this regard was the sorting of microglia/macrophages with the help of magnetic CD11b
microbeads, which substantially enhanced the yield and purity of isolated microglia/macrophages for
functional studies [35,36].

Another promising approach is the in vitro generation of microglia from embryonic stem cells
by using a modified five-step method. This includes (1) isolation and expansion; (2) generation of
embryonic bodies by hanging drop cultures; (3) selection and expansion of nestin-positive cells;
(4) induction of differentiation through distinct medium and matrix conditions, and finally (5)
expansion of the resulting microglia cells [37]. However, due to ethical restrictions a transfer of this
knowledge to human microglia might still be difficult. Instead of that a possibility to circumvent the
shortcoming of this approach could be the use of human-induced pluripotent stem cells (hiPSC) [38].

Finally, murine lineage tracing models have been employed to distinguish between tissue-resident
microglia and BMDMs and to study the fate of these cells in their natural environment [3,24]. The most
prominent model in this regard is a CX3CR1GFP knock-in mouse [39]. Moreover, head-protected
irradiation (HPI) was used to prevent the migration of peripheral immune cells (for example, BMDMs)
into the brain, and thus to solely focus on brain-resident microglia in functional studies [40,41].
Results obtained by this method suggested that intratumoral myeloid cells are mainly composed
of tissue-resident microglia, rather than peripheral macrophages [24]. However, such sophisticated
models are expensive and not applicable to study human microglia. To circumvent this shortcoming,
in vivo/ex vivo organotypic brain slices recapitulating the human in vivo situation and thus enabling
scientists to study myeloid cells in their complex environment are increasingly used [42]. For instance,
this methodology has been employed using clodronate-filled liposomes to specifically deplete the
microglia/macrophage population, and thus to study their influence on tumor cell invasion and
the immune microenvironment [43]. Altogether, organotypic brain slices hold promise for studying
changes in the myeloid compartment caused by varying mutational loads as well as epigenetic and
transcriptional changes of glioma cells in a patient-specific human setting.

4. Activation and Polarization of Resting Microglia and Macrophages

Naïve so-called resting microglia cells are extremely sessile and constantly screen their
microenvironment with their highly motile pseudopodial extensions [44–47]. Various pathological
events in the CNS such as injuries, viral and bacterial infections, or tissue damage lead to the
activation of tissue-resident microglia cells [13]. Upon this type of activation, microglia respond
with the expression of co-stimulatory molecules (CD40, CD80, and CD86) and high expression
levels of major histocompatibility complex (MHC) II molecules [48–53], and can thereby serve
as antigen-presenting cells [54]. Thus, microglia can act as a direct link between the innate and
adaptive immune system. Moreover, they express the pro-inflammatory tumor necrosis factor
(TNF)-α [55], which facilitates the infiltration of macrophages from the periphery [52,56]. Subsequently,
the whole myeloid cell population together causes an acute inflammatory response [57,58]. In detail,
microglia/macrophages primarily recognize immunogenic antigens, such as LPS via several immune
pattern recognition receptors, including toll-like receptors (TLRs), nucleotide-binding oligomerization
domain-(NOD)-like receptors, and scavenger receptors (SRs), followed by pathogen clearance through
phagocytosis [45–47]. LPS stimulation also leads to nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)1 signaling,
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resulting in the expression of pro-inflammatory cytokines, such as interleukin (IL)-1α, -1β, -6,
-12, -23, and chemokines, such as CC-chemokine ligand (CCL)2–5 and CCL8–11 [52,59]. Under
these circumstances, microglia/macrophages also express redox molecules (NADPH oxidase,
phagocytic oxidase), SRs, and produce high levels of inducible nitric oxide synthase (iNOS) for
nitric oxide production. This metabolic state has often been described as a characteristic feature
of the pro-inflammatory, M1-like activated microglia/macrophage phenotype [52,60]. Importantly,
microglia/macrophage activation is a highly dynamic process. The induction of an inflammatory
response by M1-like microglia/macrophages is tightly regulated through a subsequent polarity
transition to an anti-inflammatory M2-like phenotype. This results in the downregulation of immune
responses, prevents tissue damaging, and supports healing processes by the secretion of a series of
anti-inflammatory and immune-regulating factors [61,62]. Besides general microglia/macrophage
markers (CD68, CD11b, IBA1), M2-polarized microglia/macrophages are characterized by the
co-expression of several markers such as CD163, CD204, and CD206 [63]. Mantovani et al. introduced
three different M2 subtypes (M2a, M2b, M2c) which evolve upon different environmental signals
and exert distinct functions [64]. While M2a and M2b microglia/macrophages are both involved in
immune regulatory functions, the M2c phenotype instead contributes to an attenuation of inflammatory
responses and tissue remodeling, and when occurring in neoplastic conditions considerably promotes
tumor growth [64]. In more detail, M2a polarization is mainly caused by stimulation through T helper
cell (TH)-derived IL-4 and IL-13 [65]. Binding of the IL-4 receptor (IL-4R) activates the transcription
factor STAT6 which induces the expression of an anti-inflammatory cytokine/chemokine signature,
including transforming growth factor (TGF)-β, IL-2 receptor α (IL-2RA), and CCL15, -17, -22, and
-24 [59,66,67]. Simultaneously, IL-4R signaling leads to a silencing of the M1-characteristic NF-κB
signaling [52]. In comparison to M2a microglia/macrophages, the M2b subtype is triggered by immune
complexes, TLRs, or IL-1R antagonists [64]. Downstream signaling of these receptors induces the
secretion of IL-1, IL-6, IL-10, CCL1, and TNF-α, which mediates immune regulation through TH2 and
regulatory T cell (Treg) activation.

Finally, the activation to the M2c phenotype is triggered by the exposure to anti-inflammatory
cytokines secreted for instance by tumor cells, such as IL-10, TGF-β, and glucocorticoids. This M2c
phenotype is often referred to as acquired deactivated microglia/macrophages and seems to be the
predominant phenotype in the context of brain malignancies (Figure 2) [49,64,68–70].

As a response to IL-10, the transcription factor STAT3 is phosphorylated and induces the transcription
of TGF-β, found in inflammatory zone 1 (FIZZ1), and peroxisome proliferator-activated receptor
(PPAR)-γ as well as an autocrine stimulation, leading to an anti-inflammatory microenvironment [52].
Moreover, the M2c phenotype facilitates ECM deposition and tissue remodeling by the expression of
versican, antitrypsin, and pentraxin 3 [71,72].

It is noteworthy that the distinction between pro-inflammatory M1-polarized and anti-inflammatory
M2-polarized GAMs is difficult to study due to the lack of unique markers to assess their activation
phenotype in the continuous process of GAM polarization. Nevertheless, M1-polarized GAMs have
often been associated with the expression of CD40, CD74, and MHC II, whereas the expression of
CD163, CD204, CD206, arginase 1 (ARG1), FIZZ1, and phosphorylated STAT3 (pSTAT3) has been
attributed to more M2-polarized GAMs [52]. In gliomas, the analysis of GAMs revealed a predominant
population of CD163+ and CD204+ anti-inflammatory M2 GAMs in association with higher tumor
grade and a worse patient survival [73]. Moreover, Komohara et al. demonstrated that glioma
cell-derived factors, such as TGF-β and macrophage colony-stimulating factor (M-CSF; alternative
name colony-stimulating factor 1 (CSF-1)), promote the upregulation of several M2 markers (CD163
and CD204), and thereby actively contribute to the M2-like GAM polarization [73].
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pro-tumorigenic M2-like phenotype. In the presence of glioma cells, GAMs express the IL-10 
receptor and the cytokine itself. Therefore, the pro-tumorigenic M2-like phenotype can be sustained 
by autocrine IL-10 signaling. To study M2-like polarized GAMs, a combination of 
microglia/macrophage markers in general (green: CD11b, CD68, IBA1, and CX3CR1) and more 
M2-like specific markers (pink: CD163, CD204, CD206, and STAT3) are employed. Moreover, GAMs 
are endowed with a M2-associated secretome facilitating extracellular matrix (ECM) degradation 
(yellow: versican, antitrypsin, pentraxin 3, and several matrix metalloproteinases (MMPs)), and 
angiogenesis (red: VEGF, bFGF, IL-6, and IL-1β). Through the secretion of TGF-β, IL-6, IL-1β, EGF, 
STI-1, and IL-10 (violet), GAMs actively promote glioma cell proliferation, facilitate their invasion 
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Figure 2. Contribution of glioma-associated microglia/macrophages (GAMs) to a pro-tumorigenic
tumor microenvironment (TME). Glioma-associated microglia/macrophages (GAMs) are recruited to
the tumor lesion by several glioma cell-derived factors (pink: CCL2, CX3CL1, SDF-1, CSF-1, GM-CSF,
GDNF, EGF), resulting in a polarization towards an anti-inflammatory and pro-tumorigenic M2-like
phenotype. In the presence of glioma cells, GAMs express the IL-10 receptor and the cytokine itself.
Therefore, the pro-tumorigenic M2-like phenotype can be sustained by autocrine IL-10 signaling.
To study M2-like polarized GAMs, a combination of microglia/macrophage markers in general (green:
CD11b, CD68, IBA1, and CX3CR1) and more M2-like specific markers (pink: CD163, CD204, CD206,
and STAT3) are employed. Moreover, GAMs are endowed with a M2-associated secretome facilitating
extracellular matrix (ECM) degradation (yellow: versican, antitrypsin, pentraxin 3, and several matrix
metalloproteinases (MMPs)), and angiogenesis (red: VEGF, bFGF, IL-6, and IL-1β). Through the
secretion of TGF-β, IL-6, IL-1β, EGF, STI-1, and IL-10 (violet), GAMs actively promote glioma cell
proliferation, facilitate their invasion and migration, and impair immune cell functions.

In summary, depending on the respective stimuli, the activation of microglia/macrophages
is either directed towards the classical, pro-inflammatory more M1-like phenotype or towards the
alternatively activated, anti-inflammatory more M2-like phenotype [53]. Although recent data suggest
an even more complex situation [74], the M1/M2 paradigm is a rationalized model representing
the two opposing roles of microglia/macrophages and provides a useful framework for further
characterization, even in the context of brain malignancies [75]. Commonly used markers to
experimentally distinguish between BMDMs and tissue-resident microglia as well as between the
different polarization states are summarized in Table 1. In the following section, the comprehensive
influence of tumor cells on the polarization of GAMs and its consequences for immune responses and
tumor growth will be discussed in more detail.
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Table 1. Glioma-associated microglia/macrophage markers.

Marker Microglia BMDMs M1-Like M2-Like Species Reference

CD68 X x human/murine [7,76]
IBA1 X x human/murine [77]

CD11b X x human/murine [78,79]
F4/80 X x murine [80]

CX3CR1+/CCR2− X human/murine [81,82]
CX3CR1−/CCR2+ x human/murine [81,82]
CD11b+/CD45low X human/murine [7,23]
CD11b+/CD45high x human/murine [7,23]

MHC IIhigh x human/murine [83,84]
CD80high/CD86high x human/murine [84,85]
CD80low/CD86low x human/murine [84,85]

CD74 x human [86]
NF-κB/STAT1 x human/murine [52,56]

iNOS/NO x human/murine [52,60]
TMEM119 X human [20,25]

pSTAT3 x human/murine [73,87]
CD163 x human/murine [63,73,88]
CD204 x human/murine [89]
CD206 x human/murine [65]
FIZZ1 (human)/murine [6,52,90]
ARG1 murine [6,52,90]

BMDMs = bone marrow-derived macrophages.

5. Microglia/Macrophages—Glioma Cell Crosstalk

GAMs intimately interact and co-evolve with malignant tumor cells rather than being
only a bystander. After the active tumor cell-mediated recruitment and polarization into the
pro-tumorigenic M2-like phenotype, GAMs substantially contribute to tumor growth, tumor cell
migration, and invasion. Moreover, GAMs facilitate the destruction of the ECM, foster neoangiogenesis,
and contribute massively to an immunosuppressive microenvironment [7].

5.1. Glioma Cells Actively Recruit GAMs and Induce a M2-Like Polarization

One of the most important chemoattractants known to recruit GAMs is the monocyte chemoattractant
protein (MCP)-1 (alternative name: C-C motif ligand 2 (CCL2)), which is secreted by astrocytoma
and glioblastoma cells in vitro and in vivo [88,91]. In vitro chemoattraction could successfully be
inhibited by an MCP-1-neutralizing antibody [91]. In vivo mouse experiments demonstrated that
glioma cell-derived MCP-1 increases GAM infiltration [92]. Moreover, the extent of MCP-1 expression
is associated with glioma grade [93], and promotes neoangiogenesis, tumor cell proliferation, and
invasion [88] as well as the infiltration of Tregs [94]. However, other reports claim that GAM infiltration
depends on the expression of MCP-3 rather than MCP-1 [95]. In a murine astrocytoma model, it could
further be shown that the secretion of the stroma-derived factor (SDF)-1 (alternative name: CXC
motif chemokine (CXCL)12) by glioma cells specifically promotes the intratumoral accumulation of
GAMs in normoxic rather than hypoxic tumor areas [96]. Glioma cells also release M-CSF (CSF-1),
which markedly promotes GAM motility and converts microglia into the pro-tumorigenic M2-like
phenotype [97]. In addition, Sielska et al. demonstrated that the cytokine granulocyte-macrophage
colony-stimulating factor (GM-CSF) is also secreted by glioma cells and induces GAM invasion
in vitro [98]. They further showed in an organotypical brain slice model, in which GM-CSF knockdown
in GL261 glioma cells reduced the GAM-dependent invasion. Moreover, depleting GM-CSF in a murine
astrocytoma model also resulted in a reduced infiltration of IBA1+ GAMs [98].

Furthermore, the epidermal growth factor (EGF) has been identified as a paracrine motility factor
directing microglia to the lesion site [99]. The inhibition of EGF receptor (EGFR)/mitogen-activated
protein kinase (MAPK) signaling in microglia reduces the production of the pro-inflammatory
cytokines IL-1β and TNF-α, as shown in an in vivo rodent model [100]. Accordingly, Qu et al.
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demonstrated that LPS mediates EGFR phosphorylation and thereby activates the extracellular-signal
regulated kinase (ERK) signaling cascade in microglia cells. ERK inhibition by U0126 significantly
attenuated the LPS- and EGF-induced migration of microglia in a BV-2 culture model. Based on
these findings, the authors suggested further studies to verify the inhibition of ERK as an additional
therapeutic approach to target microglia in GBM [101].

In summary, recruitment and subsequent M2 polarization of GAMs has been shown to be
mediated by multiple glioma cell-derived chemoattractants such as MCP-1 (CCL2), SDF-1 (CXCL12),
M-CSF (CSF-1), GM-CSF, and EGF (Figure 3). Thus, the inhibition of these ligands or the corresponding
receptors should be considered as future therapeutic targets.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 21 

 

the extracellular-signal regulated kinase (ERK) signaling cascade in microglia cells. ERK inhibition 
by U0126 significantly attenuated the LPS- and EGF-induced migration of microglia in a BV-2 
culture model. Based on these findings, the authors suggested further studies to verify the inhibition 
of ERK as an additional therapeutic approach to target microglia in GBM [101]. 

In summary, recruitment and subsequent M2 polarization of GAMs has been shown to be 
mediated by multiple glioma cell-derived chemoattractants such as MCP-1 (CCL2), SDF-1 
(CXCL12), M-CSF (CSF-1), GM-CSF, and EGF (Figure 3). Thus, the inhibition of these ligands or the 
corresponding receptors should be considered as future therapeutic targets. 

 
Figure 3. Recruitment of glioma-associated microglia/macrophages (GAMs) by glioma cells through 
the secretion of soluble factors, such as CCL2 (violet), SDF-1 (pink), CSF-1 (blue), GM-CSF (green), 
and EGF (red) 

5.2. GAMs Promote Glioma Cell Invasion and Tumor Growth 

In 2002, Bettinger et al. observed a threefold increased migration of glioma cells when exposed 
to microglia isolated from murine brains [102]. The authors hypothesized that this effect was 
mediated by the release of microglia-derived chemoattractants into the medium [102]. Meanwhile, 
several GAM-derived factors such as TGF-β, stress-inducible protein (STI)-1, IL-6, IL-1β, and EGF 
have been identified as promoters of glioma cell invasion [7]. 

Among these, the TGF-β superfamily members 1-3 have been extensively studied and 
characterized as immunosuppressive cytokines, which are upregulated in glioma tissues and 
secreted by glioma cells [103–105]. In particular, GAM-derived TGF-β2 induces the expression of 
MMP-2, an enzyme which promotes ECM deposition and thus facilitates the invasive properties of 
glioma cells in vitro [106]. Additionally, MMP-2 expression is significantly associated with 
aggressiveness of astrocytoma and an unfavorable prognosis of GBM patients [107]. Furthermore, 
the expression of membrane type 1-matrix metalloproteinase 1 (MT1-MMP), which is necessary to 
activate pro-MMP-2, increases with glioma grade [108]. Hence, the antibody-targeted inhibition of 
MT1-MMP impaired glioma growth [109]. 

The co-chaperone STI-1 is another GAM-derived chemoattractant driving glioma cell 
proliferation and migration in vitro. In addition, it has been shown that the expression of STI-1 by 
GAMs increases with tumor grade, while the STI-1 expression level in circulating blood monocytes 
remains unchanged [110]. 

As mentioned earlier, CSF-1 (M-CSF) secreted by glioma cells facilitates recruitment and 
M2-like activation of GAMs [97]. Additionally, in a transgenic mouse model, De et al. demonstrated 
that CSF-1 overexpression increases the density of GAMs in high-grade gliomas [111]. 

Further, there is an ongoing discussion about the role of EGF as a promoter of tumor cell 
invasion and a modulator of microglial motility [99]. For instance, an increased concentration of 
secreted EGF was detected neither in GAM-derived supernatants nor in protein lysates [112]. 

Figure 3. Recruitment of glioma-associated microglia/macrophages (GAMs) by glioma cells through
the secretion of soluble factors, such as CCL2 (violet), SDF-1 (pink), CSF-1 (blue), GM-CSF (green),
and EGF (red).

5.2. GAMs Promote Glioma Cell Invasion and Tumor Growth

In 2002, Bettinger et al. observed a threefold increased migration of glioma cells when exposed to
microglia isolated from murine brains [102]. The authors hypothesized that this effect was mediated
by the release of microglia-derived chemoattractants into the medium [102]. Meanwhile, several
GAM-derived factors such as TGF-β, stress-inducible protein (STI)-1, IL-6, IL-1β, and EGF have been
identified as promoters of glioma cell invasion [7].

Among these, the TGF-β superfamily members 1-3 have been extensively studied and
characterized as immunosuppressive cytokines, which are upregulated in glioma tissues and secreted
by glioma cells [103–105]. In particular, GAM-derived TGF-β2 induces the expression of MMP-2,
an enzyme which promotes ECM deposition and thus facilitates the invasive properties of glioma
cells in vitro [106]. Additionally, MMP-2 expression is significantly associated with aggressiveness
of astrocytoma and an unfavorable prognosis of GBM patients [107]. Furthermore, the expression of
membrane type 1-matrix metalloproteinase 1 (MT1-MMP), which is necessary to activate pro-MMP-2,
increases with glioma grade [108]. Hence, the antibody-targeted inhibition of MT1-MMP impaired
glioma growth [109].

The co-chaperone STI-1 is another GAM-derived chemoattractant driving glioma cell proliferation
and migration in vitro. In addition, it has been shown that the expression of STI-1 by GAMs increases with
tumor grade, while the STI-1 expression level in circulating blood monocytes remains unchanged [110].

As mentioned earlier, CSF-1 (M-CSF) secreted by glioma cells facilitates recruitment and M2-like
activation of GAMs [97]. Additionally, in a transgenic mouse model, De et al. demonstrated that CSF-1
overexpression increases the density of GAMs in high-grade gliomas [111].

Further, there is an ongoing discussion about the role of EGF as a promoter of tumor cell invasion
and a modulator of microglial motility [99]. For instance, an increased concentration of secreted EGF
was detected neither in GAM-derived supernatants nor in protein lysates [112]. However, it has been
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shown that microglia cells also express the membrane-spanning EGF precursor [112] which might
also be capable of activating EGFR signaling in glioblastoma cells in a contact-dependent manner.
This is of particular importance because EGFR is overexpressed or amplified in about 60% of primary
glioblastoma and characteristic for a highly aggressive phenotype [113,114].

5.3. GAMs Affect Neoangiogenesis by Destructing the Extracellular Matrix

Several studies revealed that GAMs facilitate the vascularization of brain tumors by secreting high
levels of pro-angiogenic factors such as vascular endothelial growth factor (VEGF) [115]. Accordingly,
VEGF receptor (VEGFR) blockage by the administration of Sunitinib (Sutent®) combined with the
VEGF inhibitor Bevacizumab (Avastin®) resulted in a reduction of myeloid infiltrates, decreased tumor
vascularity, and prolonged survival in a GBM mouse model [116].

Like VEGF, IL-6 facilitates tumor vascularization and promotes tumor growth [117]. IL-6
expression is mainly induced by the activation of the receptor for advanced glycation end products
(RAGE) [118]. Correspondingly, RAGE knockout in murine microglia resulted in a reduced IL-6 (and
also VEGF) expression and abrogated angiogenesis. However, after an injection of macrophages from
healthy donor mice without RAGE knockout, a normalized tumor vasculature was restored [119].
Further evidence for a contribution of GAMs to neoangiogenesis came from GAM (CD11b+) depletion
experiments, leading to a strongly decreased vessel density and a reduced tumor volume after
depletion [115]. Interestingly, a selective depletion of microglia cells (using bone-marrow chimeras
in combination with HPI) led to comparable results, indicating that resident microglia rather than
peripheral macrophages promote the vascularization of brain tumors [115].

By employing time lapse in vivo microscopy in a murine glioma model, Bayerl et al. identified
four major GAM populations based on parameters such as cell shape, cell volume, cell velocity, and
track displacement: the ‘resting’, ‘phagocytic’, ‘interacting’, and ‘mobile’ phenotype [45]. Interestingly,
GAMs accumulating in the perivascular niche showed the highest motility and thus most likely reflect
the mobile phenotype. This further suggests an increased interaction of GAMs with endothelial cells
and pericytes [45]. However, to elucidate the functional properties of these different GAM phenotypes,
and thus to study their influence on other cell types within the TME, the identification of specific
markers or marker combinations is warranted.

5.4. GAMs Contribute to an Immunosuppressive TME

M2-polarized GAMs exert their immunosuppressive functions by soluble factors as well as by
direct cell-cell interactions. First the focus is on the effect of GAM-secreted cytokines on different
immune cell types and then the influence of direct cell-cell contact of GAMs and other immune cells
will be discussed.

In glioma tissues, only low amounts of the M1-associated pro-inflammatory cytokines IFN-γ,
TNF-α, IL-2, and IL-12 were detected [88,120], while high amounts of M2-associated anti-inflammatory
cytokines such as TGF-β, IL-6, and IL-10were found in these tumors, indicating an immunosuppressive
TME [88,120]. Further investigations identified GAMs as well as glioma cells as the main source of
these cytokines [121,122]. Interestingly, in vitro microglia monocultures only secreted low amounts of
TGF-β. However, co-culture with glioma cells led to an increased TGF-β secretion [123]. The resulting
TGF-β signaling has been shown to induce the downregulation of MHC II molecules as well as the
co-stimulatory molecules CD80 (B7-1) and CD86 (B7-2) in GAMs, leading to a reduced phagocytic
activity [124–126]. In contrast, the expression of B7 molecules as well as MHC II increased in isolated
GAMs in the absence of tumor cells [127]. The assumption that more M1-like microglia/macrophages
contribute to a less immunosuppressive TME is supported by the observation of a positive correlation
between the expression of MHC II and B7 molecules on GAMs and the amount of tumor-infiltrating
lymphocytes (TILs), as assessed in a rodent glioma model [127].

Similar to TGF-β, IL-10 also attracts a lot of interest for its contribution to an immunosuppressive
TME through the inhibition of antigen-presenting cells, T cell proliferation, and through the
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induction of Tregs [128–130]. Furthermore, increased IL-10 expression levels are associated with
glioma malignancy [131]. GAMs are regarded as the main source of IL-10 in human GBM [121].
The transcription of IL-10 in GAMs is mainly based on STAT3 signaling, which has been shown
to be enhanced in tumor-derived GAMs as compared to normal microglia/macrophages [126,129].
In line with these observations, STAT3 blockage in GAMs led to a decreased secretion of IL-10 [129]
and a variety of other inflammatory molecules, such as IL-4, IL-6, IL-11, and IL-23, as well as the
growth factors EGF, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF), and
fibroblast growth factor (FGF), which might contribute to the formation of an immunosuppressive
TME [132]. Moreover, activated pSTAT3 expression has been shown to be associated with an increased
tumor grade and a worse survival of glioma patients, whereby no expression was detected in
normal brain and low-grade astrocytoma [87,133–135], suggesting pSTAT3 as a negative prognostic
factor [87]. In addition, GAMs isolated from freshly resected GBM specimens revealed increased
pSTAT3 levels [126]. Furthermore, it has been demonstrated that glioma cell-derived conditioned
medium is able to increase STAT3 activity in microglia cells, leading to increased secretion of the
anti-inflammatory M2-like cytokines IL-6 and IL-10 [129]. A siRNA-mediated STAT3 inhibition
reversed this M2-like cytokine expression profile. Additionally, inactivation of STAT3 in intracranial
GL261 tumors by siRNA resulted in GAM activation and tumor growth inhibition [129]. Taken
together, these results suggest STAT3 targeting as a promising treatment approach, which will be
further elaborated upon later on [136–138].

As introduced before, not only GAM-secreted cytokines but also direct cell-cell interactions of
GAMs with other cell types exert immunosuppressive properties. For example, it has been described
that almost all GAMs express the membrane-bound Fas ligand (FasL) [139]. Considering the fact
that apoptotic T cells are characterized by the expression of the Fas receptor, GAMs are supposed
to drive apoptosis of activated T cells through Fas-FasL interaction, and thereby further enhance
an immunosuppressive TME [140,141]. Consistently, the inhibition of FasL in gliomas resulted in
a threefold increased infiltration of TILs, highlighting a potential role of GAMs for immune evasion [139].

Providing evidence for a direct interaction with Tregs, studies on autoimmune encephalomyelitis
demonstrated that M2-like polarized microglia (MHC II+/CD40dim/CD86dim/IL-10+) were able to
induce antigen-specific Tregs in vitro (CD4+/forkhead box P3 (FOXP3+)) [142]. These Tregs inhibited
the proliferation of effector T cells, underlining the regulatory role of microglia even for adaptive
immune responses. Further studies are needed to unravel a similar T cell-microglia crosstalk in the
context of brain malignancies.

6. Targeting GAMs to Reinforce the Anti-Tumor Immunity

Preclinical studies targeting M2-polarized and thus immunosuppressive GAMs revealed
promising results [143–146]. Therefore, it has been assumed that immunotherapeutic interventions
might benefit from additional GAM-directed treatments to improve the prognosis of glioma
patients [9]. Possible approaches aiming either at blocking chemoattractant receptors/ligands to
reduce GAM recruitment and invasion, or fostering depletion or re-polarization of pro-tumorigenic,
anti-inflammatory M2-like GAMs to enrich the pro-tumorigenic M1-like GAMs will be discussed in
the following. Table 2 summarizes therapeutic drugs targeting microglia.

As mentioned earlier in this review, the colony-stimulating factor 1 receptor (CSF-1R) ligand CSF-1
(M-CSF) is secreted by glioma cells and facilitates the recruitment and M2 polarization of GAMs [97].
Thus, CSF-1R antagonists receive increasing attention as novel therapeutic targets [147]. In a preclinical
model, the blockage of CSF-1R signaling in glioma-bearing mice by using the anti-CSF-1R antibody
Pexidartinib (PLX3397) resulted in a significantly reduced tumor infiltration of GAMs [112]. They also
observed a decreasing tumor volume and significantly increased survival times of treated mice [112].
However, the administration of PLX3397 within a phase II clinical trial to recurrent GBM patients
as a single agent therapy did not show efficacy [148]. Future studies are warranted to explore if
a combination with other types of treatments such as immunotherapies will be able to improve
treatment effects.
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The application of another CSF-R1 inhibitor BLZ945 in glioma-bearing mice as a single agent solely
revealed a decreased expression of M2 markers rather than depleting pro-tumorigenic GAMs [97].
As a possible explanation, another group recently demonstrated in a murine model that CSF-R1
tolerance occurring after BLZ945 administration might be driven by the elevated activity of insulin-like
growth factor (IGF)-1)/phosphatidylinositol 3-kinase (PI3K) signaling [149]. To avoid this type of
treatment resistance, BLZ945 was administered in combination with either IGF-1 or PI3K antagonists,
leading to a markedly reduced tumor progression and improved survival [3,149].

Besides IGF-1/PI3K signaling, several glioma cell-derived factors, such as GM-CSF and IFN-γ,
seem to protect GAMs from CSF-1R inhibitor-mediated depletion and thereby mediate therapy
resistance [97].

Similarly, Pradel et al. showed that after the administration of Emactuzumab (RG7155), another
therapeutic anti-CSF-1R antibody, glioma cell-derived IL-4 was able to rescue GAM viability and thus
counteracted CSF-1R treatment [150]. Furthermore, RG7155-resistant GAMs turned out to be endowed
with a substantially increased expression of the M2 marker CD206. This led to the assumption that
CD206hi GAMs represent an RG7155-resistant GAM population [150]. Accordingly, it could be shown
that patients with a high IL-4 expression most likely do not benefit from CSF-1R-targeting agents [150].
Nevertheless, CSF-R1 blocking strongly reduced the amount of F4/80+ microglia/macrophages and
was accompanied by an increased CD8+/CD4+ T cell ratio [151], which again mandates a combinatorial
treatment together with a T cell-based therapy. Along this line of reasoning, RG7155 treatment has now
been combined with an immune checkpoint inhibitor therapy directed against programmed cell death
1 ligand 1 (PD-L1; Atezolizumab, MPDL3280A) in a recently started phase I study (NCT02323191).

Another approach to target GAMs is the pharmacological inhibition of the SDF-1 receptor
(CXCR4) by synthetic peptides, such as AMD3100, peptide R, E5, T140, or LY2510924 [152–156].
As mentioned before, SDF-1 (CXCL12) is a well-known glioma cell-derived factor essential for GAM
recruitment [96,157,158]. Thus, receptor blockage aims at reducing GAM recruitment. Currently, two
clinical trials (NCT01977677, NCT01339039) are ongoing evaluating the potential and applicability of
the SDF-1 inhibitor Plerixafor (AMD3100, Mozobil®, #05379530, Sanofi Genzyme, Cambridge, MA,
USA) in gliomas [144,159]. Plerixafor was shown to inhibit SDF-mediated chemotaxis of myeloid cells
in vitro and has already been approved for the therapy of multiple myeloma and lymphoma [160].
In a preclinical study using U-87 MG intracranial xenografts, CXCR4 receptor blocking through peptide
R promotes polarization towards M1-like GAMs and additionally impairs metabolic activity and the
proliferation of glioma cells in vitro [144,145].

Besides chemokine receptors, chemoattractants such as CCL2 (MCP-1) can also be blocked
and hence employed as therapeutic targets. CCL2 increases the infiltration of GAMs and the CCL2
expression is related to the World Health Organization (WHO) grade of gliomas [92]. With Minocycline
(an antibiotic), Telmisartan (an anti-hypertensive drug), and Zoledronic (a bisphosphonate), three
non-cytotoxic drugs are known to decrease CCL2 synthesis and thus target pathologically activated
monocytes, macrophages, dendritic cells, and microglia cells. All three drugs have already been
approved, though only for other applications. Since they are highly brain-penetrant, they will be tested
in a clinical trial for the treatment of primary glioblastoma patients [161].

Another approach aims to reverse the tumor-promoting effect of GAMs by skewing them back
to a pro-inflammatory M1-like phenotype. Apart from the already mentioned CSF-1R blockage,
an additional key target in this regard is the transcription factor STAT3. Currently, the STAT3 inhibitor
WP1066 is under investigation in a phase I clinical trial in patients with recurrent glioma or melanoma
brain metastasis (NCT01904123). WP1066 prevents the phosphorylation of STAT3 and thus significantly
inhibits cell survival and proliferation, as well as VEGF production, as shown in vitro and in vivo
using a renal cell carcinoma xenograft model [162]. As already mentioned, STAT3 inhibition activates
anti-tumorigenic M1-like GAMs, resulting in glioma growth inhibition, and revealing the induction
of glioma cell apoptosis [129,138,163]. It remains to be seen if these promising results obtained from
preclinical studies can be confirmed in clinical trials.
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Table 2. Therapeutic drugs to target microglia.

Drug Name Target/Function Suggested Mode of Action Study Phase Tumor Types Identifier References

PLX3397 (Pexidartinib) CSF-1R inhibitor Reduced GAM infiltration preclinical GBM N/A [112,164]

PLX3397 (Pexidartinib) CSF-1R inhibitor GAM elimination II and I/IIb rGBM, pGBM NCT01349036,
NCT01790503 [148]

BLZ945 CSF-1R inhibitor Inhibition of GAM proliferation, blocking of tumor
progression, enhancement of CD8+ T cell infiltration preclinical GBM N/A [97,165]

RG7155 (Emactuzumab) CSF-1R inhibitor Alters macrophage polarization and blocks
glioma progression preclinical GBM N/A [97,150]

RG7155 (Emactuzumab) CSF-1R inhibitor CSF-R1 inhibition I GBM NCT02323191 [3,149]

Plerixafor (AMD3100) CXCR4 antagonist Reduced GAM recruitment by inhibition of chemotaxis I/II HGG NCT01977677,
NCT01339039 [144,159,166]

Peptide R CXCR4 antagonist M1-like polarization preclinical GBM N/A [144,145]

MTZ regimen CCL2 inhibitor Reduced GAM recruitment by inhibition of chemotaxis preclinical GBM N/A [161]

WP1066 STAT3 inhibitor M1-like polarization through STAT3 blocking I GBM, glioma NCT01904123 [137,138,163]

CCL2 = CC chemokine ligand 2; CSF-1R = colony-stimulating factor 1 receptor; CXCR4 = CXC motif chemokine receptor 4 (=SDF-1); GAM = glioma-associated microglia/macrophages;
GBM = glioblastoma; HGG = high-grade glioma; MTZ regimen = trimodal non-cytotoxic drugs (minocycline (M), Telmisartan (T), Zoledronic (Z)); pGBM = primary glioblastoma;
rGBM = recurrent glioblastoma; STAT3 = signal transducer and activator of transcription 3.
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7. Conclusions

While many efforts have been undertaken concerning the origin, morphological, and functional
heterogeneity of microglia/macrophages, rather limited insights have been gained into the complex
interaction and dynamics between GAMs and other cells of the TME. Nevertheless, to successfully
target GAMs and thus to improve patient survival, a deeper knowledge is needed regarding the
plasticity of this cell population. While the vast majority of preclinical analysis focuses on the crosstalk
of GAMs and malignant tumor cells, the interaction of GAMs with other immune cells is still poorly
understood. However, to successfully target the immunosuppressive M2-like GAM population in
a clinical setting, it seems to be indispensable to better understand the highly complex interplay of
GAMs and other immune cell types of the innate as well as the adaptive immune system.
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