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Abstract: Brain decoding is to predict the external stimulus information from the collected brain
response activities, and visual information is one of the most important sources of external stimulus
information. Decoding functional magnetic resonance imaging (fMRI) based on visual stimulation is
helpful in understanding the working mechanism of the brain visual function regions. Traditional
brain decoding algorithms cannot accurately extract stimuli features from fMRI. To address these
shortcomings, this paper proposed a brain decoding algorithm based on a graph convolution network
(GCN). Firstly, 11 regions of interest (ROI) were selected according to the human brain visual function
regions, which can avoid the noise interference of the non-visual regions of the human brain; then, a
deep three-dimensional convolution neural network was specially designed to extract the features of
these 11 regions; next, the GCN was used to extract the functional correlation features between the
different human brain visual regions. Furthermore, to avoid the problem of gradient disappearance
when there were too many layers of graph convolutional neural network, the residual connections
were adopted in our algorithm, which helped to integrate different levels of features in order to
improve the accuracy of the proposed GCN. The proposed algorithm was tested on the public dataset,
and the recognition accuracy reached 98.67%. Compared with the other state-of-the-art algorithms,
the proposed algorithm performed the best.

Keywords: brain decoding; convolutional neural network; graph convolution; functional magnetic
resonance image

1. Introduction

As the center of the nervous system, the brain is the most complex and powerful tissue
of the human organs [1]; it controls people’s consciousness, processes external stimulation
information, and controls advanced activities such as thinking, emotion, and movement [2].

Brain decoding is one of the hotspots in the research of the neuroscience field and
involves computational models that describe the correspondence between brain activity
patterns and external stimuli and predict external stimulus information from the observed
brain response activity [3]. Thus, the main goal of neural decoding is to take a discriminative
approach to understanding the measured activity that carries the information produced
by different stimuli, and in this study, “activity” refers to the stimulation of human visual
areas, as manifested by the formation of functional magnetic resonance imaging.

When humans see different types of images, they produce different stimuli in the
visual functional area, and this difference will eventually be reflected in the fMRI images [4].
The purpose of the proposed algorithm is to predict which type of image the subject’s eye
is watching by decoding the corresponding subject’s fMRI, which is of great significance
for people in understanding the working mechanism of the brain visual function regions.

With the rapid development of neuroscience and technology, the methods of brain
decoding are emerging [5–12]. Many scholars have proposed studies on how the human
brain interacts with the outside world. Some of these studies were based on deep learning
methods. For example, Hiroshi Ban et al. constructed a deep learning (DL) network
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that can reconstruct the stimulus image seen by the subject by analyzing the functional
magnetic resonance imaging; this reconstructed image had a high similarity to the stimulus
image [12]. Horikawa and Kamitani [4] demonstrated that the features obtained by the
convolutional neural network (CNN) model at each level were highly correlated with the
neural activity of the visual cortex, and they trained a deep CNN model to obtain feature
maps of the stimulus image, and then, a regression model was used to match the feature
maps with the fMRI to determine what stimulus image the subject saw. Zhao et al. [13]
designed a deep 3D-CNN framework for accurately classifying functional brain networks
reconstructed from sparse representations of whole-brain fMRI signals. The results of
experiments conducted on the Human Connectome Project fMRI dataset demonstrate that
this 3D CNN is able to perform functional network classification and recognition tasks
effectively. Li et al. proposed C3d-LSTM [14], which combines a series of 3D CNNs to
extract the spatial features from 3D fMRI image sequences and then puts the obtained
feature maps into a long short-term memory network (LSTM) to decode the time-varying
information. Wang et al. [15] constructed graphs based on functional connectivity and
presented a connectivity-based graph convolution network (cGCN) architecture for fMRI
decoding. Such an approach can accurately extract spatial features from connectomic
neighborhoods, whose performance was better than that of the CNN. Xiaoxiao Li et al. [16]
proposed a graph neural network framework to analyze functional magnetic resonance
images and discover neurological biomarkers. They used two independent fMRI datasets:
an Autism Spectrum Disorder (ASD) fMRI dataset and data from the Human Connectome
Project (HCP) dataset.

Notably, with regard to the visual brain decoding using fMRI, in 2017 Wen et al. [17]
completed the semantic classification of fMRI visual stimulus images by pre-training the
AlexNet model to train the mapping of the brain voxel responses to the last layer of features
of the network and then passing the predicted voxel features to the softmax classification
layer. In 2018, Wen et al. [18] mapped voxel responses to ResNet and to the middle layer
features of ResNet by assessing the category selectivity of each voxel in the visual cortex;
comparing the cortical representational similarity by assessing the category selectivity of
each voxel in the visual cortex; comparing cortical representational similarities and their
semantic relationships; and achieving the prediction of fMRI visual information. In 2019,
Qiao et al. [19] proposed a method for fMRI data classification and decoding based on
the bidirectional recurrent neural network (BRNN), inspired by the bidirectional flow of
information processed by the visual system of the human brain, with the forward and
backward BRNN modules having bottom-up and top-down characteristics, respectively.
The method treats selected voxels in each visual region (V1, V2, V3, V4, and LO) as nodes
in the spatial sequence and feeds them into the BRNN module for classification. In 2020,
Huang et al. [20] constructed a category decoding model based on the long short-term
memory (LSTM) network. The experimental results show that the decoding accuracy of
multitemporal visual response signals is significantly higher than that of single-time or
short-time visual response signals, and the multitemporal visual response signals induced
by natural images contain more semantic category information.

The above DL algorithms have decoded brain fMRI data and achieved good results.
However, there are still some shortcomings: (1) the fMRI has time-serial 4D data, and
several volume images are acquired over a period of time, which means that the DL
algorithms should focus on both spatial and temporal features of the brain activities that
need to be analyzed and decoded. (2) The network layers of the graph convolutional
network (GCN) cannot be too deep. The GCN can investigate the topological structure
of the brain functional areas and then predict the cognitive state of the brain [21], but the
optimal number of layers of the GCN is related to the sparsity of the neighbor matrix; when
the number of layers is too deep, over-smoothing will occur [22].

Our work is inspired by the cascading processing properties of biological visual
pathways. The human brain has evolved and learned over a long period of time to become
the most effective biological intelligence system; however, the intelligence of computer
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vision still needs to be improved. Currently deep networks suffer from low robustness
and lack of interpretability and constructing more brain-like deep network models is the
key to the current artificial intelligence field. Our study tries to use biological vision
mechanisms to build deep network computational models to accomplish a brain visual
stimuli decoding task.

The novelties of the proposed method are:

(1) We do not design a graph convolutional neural network for the whole fMRI image but
only for those functional areas that are responsive to visual stimuli for processing and
analysis, which eliminates the non-visual stimuli areas by using template images and
reduces the amount of data processing and avoids the interference of other irrelevant
areas to the decoding process.

(2) Through extensive experiments, we find the optimal functional connectivity matrix
between each visual functional area of the brain, and this matrix , combined with the
multidimensional features of each node obtained from the 3D convolutional neural
network by using Formula (1), can well describe the decoding process of visual stimuli
to achieve a good classification performance.

2. Materials and Methods

The overall architecture of the proposed algorithm is shown in Figure 1. Firstly, we
selected eleven ROIs from the human brain visual regions according to the guidance of
neurologists (details in Section 2.1). Then, we used a 3D CNN with multiple channels to
extract spatial and temporal fMRI features from the eleven ROIs, respectively (details in
Section 2.2). Next, we regarded the eleven ROIs as the graph nodes and the functional
connections between the ROIs as the graph edges so that we could build a brain network,
and we used the GCN to analyze and decode the brain network and predicted what the
subjects were watching (details in Section 2.3). In this paper, we use a combination of the
3D convolutional neural network and the graph convolutional neural network to achieve
the decoding of functional MR images of visual stimuli, in which we use the 3D CNN to
obtain the high-dimensional image features of each visual brain functional area; we use
GCN to obtain the relationship between each functional area and combine the results of the
3D CNN and the GCN at the mathematical level through Equation (1). The two networks
work together fuse the functional MR image features into the topological information of
the visual functional areas to accurately decode the visual information.
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Figure 1. Overall architecture of the proposed algorithm.

2.1. Region of Interest

Our work aimed at decoding the fMRI stimulus from vision; therefore, we mainly
focused on the visual functional regions of the human brain. Our work was based on the
assumption that the human brain visual system is a multi-layer transmission perception
system from the concrete to the abstract. The visual system first obtains some concrete
features from the external visual stimulus and then obtains more abstract features from
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these concrete features, by which the human brain can accurately understand the images
seen by the subject’s eyes.

The visual function of the human brain is divided into the primary visual region, the
intermediate visual function region, and the advanced visual function region. From primary
to advanced, the visual features are more and more abstract and contain more and more
semantic image information. Among the visual functional partitions of the human brain,
the V1 and V2 regions are mainly responsible for encoding simple image information, such
as local orientation and spatial frequency [23]. The V3 region is mainly responsible for the
transmission of visual information [24]. The V4 region mainly processes higher-level visual
features such as contour, gradient, and semantic information, which plays an important
role in object shape information processing, color perception, and object recognition [25].
Furthermore, some studies found that the lateral occipital complex (LOC), the fusiform
face area (FFA), and the parahippocampal place area (PPA) had significant responses to
advanced visual stimuli such as objects, faces, or scenes [4].To sum up, the main brain
response areas to visual stimuli include V1, V2, V3, V4, LOC, FFA, and PPA [1,12,26]. The
proposed algorithm took these brain regions as the ROIs and extracted features from these
regions. Among them, V1, V2, and V3 were divided into V1d and V1v; V2d and V2v;
and V3d and V3v, which were called the low-level visual cortex. The LOC, FFA, and PPA
were combined together and named as the higher visual cortex (HVC). Therefore, there are
eleven ROIs (V1d, V1v, V2d, V2v, V3d, V3v, V4, LOC, FFA, PPA, and HVC) in the proposed
algorithm, which are mainly analyzed and decoded, as shown in Figure 2.
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Figure 2. The eleven ROIs of the proposed algorithm, including V1d, V1v, V2d, V2v, V3d, V3v, V4,
LOC, FFA, and PPA.

To accurately segment the eleven ROIs in the fMRI images, we asked neurologists to
manually label them and saved the labeling results as template image files. The voxel value
of the eleven ROIs in the template image was 1, while the voxel value of other regions
was 0.

2.2. 3D CNN with Multiple Channels

fMRI data are four-dimensional, and the commonly used the 2D CNN cannot process
it. Therefore, this paper used the 3D CNN with multiple channels to extract its features. The
resolution of the fMRI dataset used in this algorithm was 64 × 64 × 50 × 3, which meant
that the resolution of the two-dimensional slice was 64 × 64, and each volume included
50 slices, and the fMRI scan included 3 volumes.

There were eleven ROIs in the proposed algorithm; so, we used eleven 3D CNNs to
extract the features of the eleven regions, respectively. The structures of these eleven 3D
CNNs were the same, as is shown in Figure 3. The first layer was the input layer, and
the size of the input volume of the fMRI data was 64 × 64 × 50, which represented the
spatial information, and the number of channels was 3, which represented the temporal
information. There were 9 layers in the main network structure, including 6 convolution
layers (C1, C2, C3, C4, C5, and C6) and 3 pooling layers (S1, S2, and S3). Each convolution
layer was followed by a batch normalization layer (BN) and an activation function layer
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(ReLU function), and the convolution kernel size was 3 × 5 × 5 (C1, C2, C3, C4, and C5)
and 3 × 3 × 3 (C6), and the convolutional step size was 1 × 1 × 1. The pooling layer used
the maximum pool, and the size of the pool core was 3 × 3 × 3, and the pooling step size
was 2 × 2 × 2.
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The size of each dimension of the feature map obtained after the convolution and
pooling operations is calculated as C = I+2P−D×(K−1)−1

S + 1, where C denotes the size of
each dimension of the output feature map; I denotes the size of each dimension of the input
data; and P denotes the number of filled pixel values at the edges of each dimension of
the input. There is no filling in this equation; so, the value of P is 0; D denotes the spacing
between elements in the convolution kernel or pooling kernel (the default is 1); K denotes
the size of the convolution kernel or pooling kernel; and S denotes the step size, and the
calculation results are rounded down.

In the 3D CNN, we use a cascade convolution of small convolution kernels followed
by a pooling layer for every two convolutional layers because this method can deepen
the network depth; cascade convolution can extend the perceptual field, and the feature
extraction ability of a cascade convolution of multiple small convolution kernels is the
same as that of a single large convolution kernel convolution (the size of the perceptual
field is the same). For example, using two 3 × 3 convolutional kernels instead of one
5 × 5 convolutional kernel can reduce the number of parameters and computations, thus
increasing the training speed and processing speed of the network. In addition, the cascaded
convolution of small convolutional kernels has more nonlinear activation layers, which
increases the discriminative power and thus can improve the effectiveness of the network.

The number of channels outputted by each convolution layer was 16, 16, 32, 64, 64,
and 8, respectively. The output of one 3D CNN was a 1 × 8 vector, and each ROI was
processed by one 3D CNN; therefore, we could obtain the 11 × 8 feature matrix while we
combined all the eleven 3D CNN outputs. Next, this 11 × 8 feature matrix was used as one
of the inputs to the GCN.

2.3. GCN

Based on graph spectrum domain analysis, the proposed GCN’s interlayer propagation
rules are shown in Formula (1):

H(l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(l)W(l)
)

(1)

where σ() represented the activation function ReLU; Ã = A + IN , D̃ii = ∑j Ãij, and A
represented the adjacency matrix; IN represented the identity matrix; W(l) represented the
parameter matrix that needs to be trained; and H(l) and H(l+1) represented the outputs of
layer l and l + 1 of the proposed GCN, respectively.

The network structure of the proposed GCN is shown in Figure 4, and the inputs
to the GCN were one 11 × 8 feature matrix and one 11 × 11 adjacency matrix. The
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feature matrix was obtained by the 3D CNN with multiple channels in Section 2.2, and the
adjacency matrix was defined according to the functional correlation between the eleven
ROIs. The whole network was composed of five convolution blocks. Each convolution
block successively included a dropout layer (dropout value = 0.5), a graph convolution
layer, a BN layer, and an activation function layer (ReLU function).
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The dropout layer can effectively prevent overfitting, and the graph convolution
layer makes accurate predictions by matrix multiplication of the input feature matrix,
the adjacency matrix, and the parameters for training, so that the feature vectors of each
region are linked to each other for fusion. Batch normalization allows the 3D fMRI data
distribution to be converted to a normal distribution with mean 0 and variance 1, thus
allowing the input of the activation function to fall in the sensitive regions and have the
ability to avoid the problem of gradient disappearance. The problem of over-smoothing
occurs when the number of layers in a convolutional neural network increases, i.e., the
eigenvalues of each node converge to the same value. Therefore, we introduce the residual
connection used in the convolutional neural network, which can effectively deepen the
depth of the graph convolutional neural network. The final output is classified in the fully
connected layer so as to predict the class of the object in the picture seen by the subject
based on the fMRI image data.

The proposed algorithm used the adjacency matrix to reflect the functional correlation
between the eleven ROIs. V1, V2, and V3 mainly process the low-level visual features,
while V4, LOC, FFA, PPA, and HVC mainly process the medium- and high-level visual
features. Therefore, the proposed algorithm divided the eleven ROIs into two groups:
V1d, V1v, V2d, V2v, V3d, and V3v, which were called low-level visual regions, and V4,
LOC, FFA, PPA, and HVC, which were called medium- and high-level visual regions. We
used a Pearson correlation coefficient between ROIs as the functional correlations, and we
supposed that the functional correlations from the same group were stronger; therefore,
we added larger weights to the coefficients if the ROIs were from the same groups; the
adjacency matrix was defined as Formula (2) and is shown in Figure 5.

ai,j = ω × P(ri, rj)

ω =


3 if ri and rj were in the same groups

1 if ri and rj were not in the same groups
0 if i = j

(2)
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coefficient between ROIs.

P(ri, rj) indicated the Pearson correlation coefficient between ri and rj, and ω indicated
the weights.

To further verify the validity of the value of ω in Formula (2), we made the value of
ω equal to 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and tested the accuracy of the brain decoding by the
network model in Figure 1, and the results were 81.25%, 84.66%, 93.21%, 98.67%, 97.11%,
and 96.89%, respectively. Therefore, we set ω = 3.

We tried two other definitions of the adjacency matrix, such as setting a random
11 × 11 adjacency matrix or calculating the Pearson correlation coefficient between each
two ROIs as the elements of the adjacency matrix. The experimental results showed that
the prediction accuracy values of these two options were only 35.2% and 46%, respectively,
which was far lower than the prediction accuracy of the adjacency matrix defined in
Figure 5. We believe that the reasons for the result are that: (1) the random adjacency matrix
cannot accurately reflect the correlation between the brain functional regions, which may
cause some interference; (2) the Pearson correlation coefficient was used to calculate the
linear correlation between the values of the voxels in the ROIs, but the stronger visual
stimulus does not necessarily correspond to the higher voxel values.

According to the experimental results, we found that when the number of layers in
the GCN increases it will cause gradient disappearance. Therefore, the number of layers in
the traditional GCN is generally 2 or 3, and the deeper the number of layers, the worse the
performance. To address this problem, we used the residual connection [27] in the proposed
GCN, which can effectively deepen the depth of the network. Residual connections have
many types of structures, and in this paper, we discuss three types, as shown in Figure 6.
Using the same dataset in the same experimental environment, this paper tested these
three residual connection methods. The accuracy of type A was 91.55%, that of type B was
98.67%, and that of type C was 93.66%; so, the residual connection mode of type B was
finally selected.

2.4. Dataset

In the experiment, we used the dataset from reference [4], which can be obtained from
https://openneuro.org/datasets/ds001246/versions/1.2.1 (accessed on 10 October 2022).
Each scanning session consisted of functional (EPI) and anatomical (inplane T2) data. The
functional EPI images covered the entire brain (TR, 3000 ms; TE, 30 ms; flip angle, 80◦; voxel
size, 3 × 3 × 3 mm; FOV, 192 × 192 mm; number of slices, 50; slice gap, 0 mm) and inplane
T2-weighted anatomical images were acquired with the same slices used for the EPI (TR,
7020 ms; TE, 69 ms; flip angle, 160◦; voxel size, 0.75 × 0.75 × 3.0 mm; FOV, 192 × 192 mm).
The dataset also includes a T1-weighted anatomical reference image for each subject (TR,
2250 ms; TE, 3.06 ms; TI, 900 ms; flip angle, 9◦; voxel size, 1.0 × 1.0 × 1.0 mm; FOV,
256 × 256 mm).

https://openneuro.org/datasets/ds001246/versions/1.2.1
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Figure 6. Three types of residual connections.

The data were collected by 5 healthy subjects (1 female and 4 males, aged between
23 and 38) with normal vision or vision corrected to normal, and all the subjects had
experience and training in the fMRI experiment. Each subject conducted 24 rounds of
separate collection; each round lasted for 8 min and 54 s, of which 39 s were in a resting
state. There were 55 stimulation blocks in each run, including 50 blocks with different
images and 5 randomly interspersed blocks. The whole-brain scan took 3 s at a time, and
the duration of each block was 9 s.

The stimulus images used in the experiment were collected from the online image
database ImageNet [28]. In this paper, 10 categories of images were used as visual stimulus
sources to obtain fMRI images. These ten categories were ostrich, hummingbird, battleplane,
backpack, frog, watermelon, hot air balloon, light bulb, coffee cup, and horse, as shown in
Figure 7. A total of 522 images from five subjects were collected from the ten categories, as
shown in Table 1. There were some differences in the fMRI signals among different subjects
which may have influenced the training of the proposed model; therefore, we normalized
the image voxel values of the 5 fMRI sequences from different subjects to make the voxel
values in the same range. We used different combinations of the training set, validation
set, and test set to complete the 5 test trials, and in each trial, we randomly selected images
from the three subjects as the training dataset, images from one subject as the validation
dataset, and images from one subject as the test dataset. The training parameters of the
proposed algorithm were set as shown in Table 2.

Table 1. The number of images in each category.

Item Number of Images Label

ostrich 57 1
frog 51 2

hummingbird 48 3
backpack 54 4

horse 52 5
coffee cup 57 6
battleplane 47 7

hot air balloon 48 8
light bulb 56 9

watermelon 52 10

total 522
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Table 2. The training parameters of the proposed algorithm.

Training Parameters Setting Values

Epoch 200
Learn rate 0.01

Weight decay 0.001
Batch size 16

Dropout rate 0.5
Optimizer Adam

3. Experimental Results

The software and hardware experimental environment in this paper is shown in
Table 3. We programmed the codes in Python3.7, and the neural network was built using
PyTorch deep learning framework, which was accelerated by CUDA and cuDNN.

Table 3. Experimental environment of software and hardware.

Item Configuration

Operation system Ubuntu 16.04
CPU Intel(R) Xeon(R) E5-1650 v3 @ 3.50GHz

Memory 128G
GPU TITAN RTX

Video memory 24G
Hard disk 4TB
Software Python3.7; Pytorch1.4.0; CUDA 10.0.130; CUDNN 765
Compiler Pycharm

The computing cost of the proposed method is 0.2 s for each fMRI scan.
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3.1. Quantitative Evaluation Metric and Network Training

In the experiments, we used precision, recall, F-score, and accuracy as the quantitative
evaluation metrics.

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F − Score =
(

1 + β2
)
× precision × recall

(β2 × precision) + recall
(5)

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

where TP represented the true positive rate, FP represented the false positive rate, TN
represented the true negative rate, FN represented the false negative rate, and β = 1.

The training parameters of the proposed algorithm were set as shown in Table 2,
and the loss value during the training is shown in Figure 8. In the beginning, the loss
value decreased rapidly, and with the increase in the number of iterations, the loss value
became stable.
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3.2. Hyperparameters

In this paper, the 3D CNN and the GCN were trained together, and the loss function
of the proposed algorithm was the cross-entropy function.

H(p, q) = −∑x p(x) log q(x) (7)

where p(x) represented the real value, and Q(x) represented the predicted value; the
optimizer used in this paper was the adaptive moment estimation (Adam). Moreover,
there were some important parameters to be selected for the proposed algorithm, such as
the number of network layers of the 3D CNN, the number of elements of the feature vector
obtained by the 3D CNN, and the number of network layers of the GCN.

(1) the number of network layers of the 3D CNN

The number of network layers of the 3D CNN can affect the depth of the network, and
we tested six layers (3 convolutions, 3 pooling), seven layers (4 convolutions, 3 pooling),
eight layers (5 convolutions, 3 pooling), nine layers (6 convolutions, 3 pooling), ten layers
(6 convolutions, 4 pooling), and eleven layers (7 convolutions, 4 pooling) under the same
experimental environment. The results are shown in Figure 9. With the increase of the
number of layers of the 3D CNN, the accuracy increased gradually, but after reaching
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9 layers, the change of accuracy did not grow; that is to say, increasing the number of
network layers had little effect on the improvement of the accuracy. At the same time,
considering that too many network layers can lead to too many network parameters, higher
computational complexity, and lower processing speed, the proposed algorithm therefore
set the number of layers to 9.
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(2) the number of elements of the feature vector

The output of the proposed 3D CNN was a feature matrix, which was composed of
eleven feature vectors. Therefore, the number of elements of the feature vector was also
an important parameter for the performance of the proposed algorithm. We tested the
values from 2 to 12, and the experimental result is shown in Figure 10. When the number of
elements of the feature vector was less than four, the accuracy increased with the increase
of the number of elements. When the number was between 4 and 8, there was only a small
change in accuracy. When the number was between 9 and 12, the accuracy became worse.
Finally, we set the number of elements of the feature vector as 8; so, the size of the feature
vector was 1 × 8, and the output of the 3D CNN was 11 × 8.
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(3) the number of network layers of GCN r

Similarly, we also tested the number of layers of the GCN, and the results are shown in
Figure 11. The GCN with five layers achieved the highest accuracy; although the accuracy
of six layers, seven layers, and eight layers gradually increased, it was still not better than
that of five layers. Furthermore, as the layers of the GCN became deeper, the number of
parameters also became more and caused more burden for the hardware. Therefore, we set
the number of network layers of the GCN as five.
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3.3. Comparison with Other State-of-the-Art Algorithms

To verify the effectiveness of the proposed algorithm, we tested the trained model on
the testing dataset and comprehensively evaluated and analyzed the proposed algorithm
by calculating the precision, recall, F-score, and accuracy of each class. At the same
time, we compared the proposed algorithm with several other classical deep learning
algorithms, including AlexNet-decoding [17], ResNet-decoding [18], BRNN-decoding [19],
and LSTM-decoding [20]. All the other networks for comparison were re-trained using the
same dataset.

4. Discussion

In the present study, we proposed a brain fMRI decoding algorithm based on deep
learning methods. With the aim of increasing the accuracy of the decoding results, we
extracted the feature matrix using eleven 3D CNNs from the ROIs, delineated the functional
connections between the visual brain functional regions, and used residual connections to
deepen the proposed GCN. According to the experimental results, the proposed algorithm
obtained a good performance.

In the proposed method, we combined the CNN and the GCN, where the role of the
CNN was to extract the abstract features of the functional MRI image and describe them in
the form of an 8 × 1 feature vector, and the role of the GCN was to analyze the extracted
features and brain functional network structure to decode and classify visual fMRI stimuli.
Similar combinations of the CNN and the GCN can also be found in the references [29].

Compared with other state-of-the-art algorithms, from Tables 4–7, we can conclude
that the proposed algorithm achieved the best performance in the quantitative evaluation
metrics of precision, F-score, and accuracy, and the C3d-LSTM had the best performance
in recall. Specifically, in each category, the proposed algorithm performed best in the
hummingbird, battleplane, frog, and watermelon, and the C3d-LSTM performed best in
hot air balloon, light bulb, coffee cup, and horse. From Table 7, in terms of accuracy, the
proposed algorithm, the C3d-LSTM, and the CGCN performed well, and the performances
of ResNet and the 3D CNN were not good. Therefore, according to all the evaluation
metrics, the proposed algorithm outperformed the other four state-of-the-art algorithms.

There is another class of functional MRI decoding algorithms for graph convolu-
tional neural networks; these are based on node-embedding algorithms [30] that map the
high-dimensional nodes of the graph to the low-dimensional space and then perform clas-
sifications, such as NetMF, RandNE, Node2Vec, and Walklets. These algorithms construct
a graph and consider each subject as a node on the graph and achieve the decoding of
functional MRI by classifying each node, which can also achieve good results.
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Table 4. Comparison of experimental results (precision, %).

Methods
Average
Perfor-
mance

Ostrich Hummingbird Battleplane Backpack Frog Watermelon Hot Air
Balloon

Light
Bulb

Coffee
Cup Horse

AlexNet-
decoding

[17]
82.84 95.51 72.49 100 94.25 61.15 67.21 46.07 67.03 93.32 93.31

ResNet-
decoding

[18]
93.50 100 85.79 89.21 100 100 84.57 88.25 83.83 100 100

BRNN-
decoding

[19]
86.72 100 79 78.27 100 93.19 75.94 60.74 89.89 100 88.45

LSTM-
decoding

[20]
92.05 100 92.31 90.15 100 87.41 84.92 78.53 80.95 100 100

CNN-
decoding

[4]
88.57 100 70 83.33 72.72 72.72 77.78 84.61 90.91 63.63 100

Ours 93.33 100 90 100 100 100 83.30 73.30 100 100 100

Table 5. Comparison of experimental results (recall, %).

Methods
Average
Perfor-
mance

Ostrich Hummingbird Battleplane Backpack Frog Watermelon Hot Air
Balloon

Light
Bulb

Coffee
Cup Horse

AlexNet-
decoding

[17]
75.98 95.06 100 50.07 94.40 100 52.77 56.58 40.22 77.85 93.28

ResNet-
decoding

[18]
93.12 100 93.03 80.92 100 93.58 84.36 78.32 100 100 100

BRNN-
decoding

[19]
86.34 100 85.12 70.41 100 85.91 79.51 67.44 80.19 89.00 100

LSTM-
decoding

[20]
91.23 100 92.51 90.38 100 93.53 84.20 77.96 80.54 95.03 100

CNN-
decoding

[4]
90.27 89.78 97.78 83.33 80 100 83.63 84.61 83.33 77.78 81.82

Ours 93.33 100 100 91.7 100 100 90.9 84.60 75 100 100

Table 6. Comparison of experimental results (F-Score, %).

Methods
Average
Perfor-
mance

Ostrich Hummingbird Battleplane Backpack Frog Watermelon Hot Air
Balloon

Light
Bulb

Coffee
Cup Horse

AlexNet-
decoding

[17]
77.75 75.66 45.73 30.37 63.87 55.23 50.52 37.25 57.2 66.60 95.93

ResNet-
decoding

[18]
93.64 100 89.48 84.85 100 96.32 84.45 83.10 91.14 100 100

BRNN-
decoding

[19]
86.12 100 81.98 73.78 100 89.26 77.48 63.63 84.38 94.50 93.76

LSTM-
decoding

[20]
91.37 100 92.67 90.31 100 90.38 84.45 77.99 80.35 97.94 100

CNN-
decoding

[4]
89.48 90 83.33 90 76.19 86.67 83.33 90.91 73.68 90 70

Ours 93.30 100 94.70 95.70 100 100 86.90 78.60 85.70 100 100
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Table 7. Comparison of experimental results (accuracy, %).

Methods Total Accuracy

AlexNet-decoding [17] 82.37%
ResNet-decoding [18] 96.60%
BRNN-decoding [19] 97.10%
LSTM-decoding [20] 93.50%
CNN-decoding [4] 91.25%

Ours 98.67%

The input channel to the 3D CNN is set to three because each block of the original
fMRI data has three fMRI scans, which means that during the fMRI data acquisition each
whole-brain scan takes 3 s at a time, and the duration of each block is 9 s. Moreover, to
verify whether increasing the number of channels would improve the accuracy of the
visual decoding, we added an experiment using an interpolation algorithm between the
original 3 channels to obtain 5 and 7 channels of data, respectively, but the experimental
results showed that increasing the number of channels did not improve the accuracy of the
classification but instead slightly diminished it.

Inspired by references [31,32], the GCN of the algorithm in this paper is constructed
by means of the weight matrix in Figure 5, where the individual values give the connection
weights between the 11 regions. The reasons for this setting are (1) the degree of correlation
between the brain functional areas for visual processing varies, and stronger correlation
implies smaller spatial distances or similar functions between the brain functional areas;
(2) the processing of visual signals in the human brain is hierarchical, i.e., the v1, v2, v3,
and v4 brain functional areas mainly process more elementary visual information, while
the LOC, FFA, and PPA brain functional areas, on the other hand, mainly process more
advanced visual information, which motivates us to assign stronger weight values to brain
functional areas of the same hierarchy. Such a setting brings an increase in visual decoding
and classification accuracy. The other two choices are setting the weights randomly or
setting the weights according to the Pearson correlation; the experimental results showed
that the highest accuracy was achieved by a setting in accordance with Figure 5.

The performance of the 3D CNN algorithm was the worst in the experimental results.
The main reason was that the 3D CNN network input was the fMRI image data of the
whole brain, while the visual functional regions only covered a small part of the brain. The
information of the other non-visual function regions in the fMRI image was not helpful
for the final prediction but may have caused interference. The second reason was that
the whole network of the 3D CNN was composed of two convolution layers, a pooling
layer and a full connection layer. The number of network layers was too few to extract
the useful features. ResNet had a deeper network structure, with a total of 18 layers,
including 17 convolution layers and a full connection layer, and the features of each layer
were fused through residual connections. Therefore, ResNet can extract richer features and
achieve better results than the 3D CNN. However, ResNet also inputted fMRI images of the
whole brain and did not make use of the temporal information contained in the fMRI data.
The C3d-LSTM extracted the spatial features in the fMRI images through a series of 3D
CNNs and then inputted them into the LSTM to extract the temporal features. However,
the C3d-LSTM did not take advantage of the functional correlations between the ROIs.
The proposed algorithm combined all the advantages of the above algorithms. Firstly,
eleven brain visual function regions were selected as the ROIs to eliminate the information
interference of the other regions, and then, the 3D CNN was used to extract the features
of the eleven ROIs. Furthermore, the fMRI images at multiple time points were inputted
at the same time to ensure that the temporal features could also be extracted. Finally, the
GCN was used to fuse these features based on the functional correlations between the ROIs,
and the number of layers of the GCN was increased by using the residual connection.

All the five algorithms performed best for ostrich, backpack, and horse because these
types of images were quite different from the other types and had obvious characteristics.
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Therefore, when the subjects watched these types of images, the brain’s response to visual
stimuli was quite different from that of the other kinds of images. For hummingbird, fighter,
watermelon, hot air balloon, and light bulb, the errors of the prediction were relatively
high; the main reason was that (1) the shape and appearance of the hummingbird and
battleplane were somewhat similar, which may cause a similar response from the brain
visual function regions; (2) some watermelons in the stimulus picture were cut off, while
some watermelons were not; and (3) the shape of watermelon, hot air balloon, and bulb
was oval, which may have led to misprediction among the three types. Therefore, when
the shape, color, and background of the object in the stimulus images were quite different,
the brain visual stimuli were different when the subjects watched the images, which may
have led to the significantly different fMRIs, and the accuracy of the proposed algorithm’s
prediction was higher. Conversely, if the subjects were watching two similar objects, the
accuracy was reduced [19,33,34].

To illustrate the role of the proposed GCN, we removed the GCN from the proposed
algorithm, and the features extracted by eleven 3D CNNs were directly inputted into the
fully connected layers for classification without GCN processing, and all the other parame-
ters were kept unchanged. Using the same training and testing dataset, the experimental
results illustrated that the use of the GCN effectively improved the accuracy of the network,
which increased from 86.62% to 98.67%. The main reasons were as follows: (1) the GCN
multiplied the feature matrix (obtained from the 3D CNN) with the adjacency matrix
(defined by visual functional connections) and added appropriate weights (the weights
were automatically learned after training) to make this feature information fuse well and
make full use of the characteristics of the functional correlations between the ROIs; (2) the
GCN can increase the depth of the whole network so that the network can extract richer
and deeper features.

To illustrate the role of the residual connections in the proposed GCN, we built another
graph convolution network without residual connections, which was named the GCN-
noRC. We compared the proposed GCN with the GCN-noRC using the same experimental
environment and the same dataset and found that the accuracy of the proposed GCN was
98.67% and that of the GCN-noRC was 85.21%, which indicated that residual connections
can alleviate the phenomenon of gradient disappearance and effectively improve the
accuracy of the graph convolution network.

The limitations of the proposed algorithm are mainly reflected in the following three
aspects: (1) the sample size is limited, and the same patients belong to the training and test
set, which may weaken the generalizability; in the next step, we will collect more data from
more subjects. (2) The number of classification types for brain decoding is only ten, and
we will enlarge it in the future. (3) The lengths of the dataset are only three for each fMRI
block, which restricts the accuracy of the classification, and the proposed algorithm cannot
be compared with other datasets with different block lengths.

Regarding future work, we will make the proposed algorithm have better transfer-
ability, i.e., the data collected between different groups of subjects, and among different
sites using distinct scanning sequences, can be applied to the model proposed in this paper,
which is inspired by reference [35] that uses transfer learning to build GCNs and investigate
the transferability of deep artificial neural networks in brain decoding.

5. Conclusions

Aiming at the challenges and shortcomings of brain decoding algorithms, we proposed
a brain decoding algorithm of fMRI based on a graph convolution neural network. The
main innovations of the proposed algorithm were (1) the extraction of the image features
of fMRI using the 3D CNN; (2) the construction of the GCN according to the functional
connections between the visual functional regions of the human brain; (3) the combination
of the CNN and the GCN to deepen the network. The experimental results showed that
the prediction accuracy of the proposed algorithm was 98.67% and outperformed the other
state-of-the-art algorithms.
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