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a Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany 
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A B S T R A C T   

Humans are born into a social environment and from early on possess a range of abilities to detect and respond to 
social cues. In the past decade, there has been a rapidly increasing interest in investigating the neural responses 
underlying such early social processes under naturalistic conditions. However, the investigation of neural re-
sponses to continuous dynamic input poses the challenge of how to link neural responses back to continuous 
sensory input. In the present tutorial, we provide a step-by-step introduction to one approach to tackle this issue, 
namely the use of linear models to investigate neural tracking responses in electroencephalographic (EEG) data. 
While neural tracking has gained increasing popularity in adult cognitive neuroscience over the past decade, its 
application to infant EEG is still rare and comes with its own challenges. After introducing the concept of neural 
tracking, we discuss and compare the use of forward vs. backward models and individual vs. generic models 
using an example data set of infant EEG data. Each section comprises a theoretical introduction as well as a 
concrete example using MATLAB code. We argue that neural tracking provides a promising way to investigate 
early (social) processing in an ecologically valid setting.   

1. Introduction 

Humans live in a dynamic, ever-changing environment. They 
constantly receive input from numerous sensory channels, and in most 
cases effortlessly manage to combine these different input streams into 
one coherent percept of their surroundings. How the human brain 
manages to accomplish this feat has long been the subject of investiga-
tion, in both adult and developmental neuroscience. To investigate the 
mechanisms underlying the processing of naturalistic multisensory 
input, it is essential to move beyond traditional cognitive neuroscience 
experiments, in which participants are seated in front of a screen and are 
presented with well-controlled, often static and repetitive stimuli 
(Hamilton and Huth, 2020). 

While this is true for both, adult and developmental research, using a 
complex and dynamic environment is important in developmental 
research for another reason. Children, especially younger children, and 
children from special populations, often cannot follow experimental 
instructions as well as adults can. Hence, it becomes of paramount 
importance to design experiments that are engaging enough to capture 
the participant’s attention for a sufficient amount of time and provide 

motivation for the participant to engage with the experimental set-up. 
From an experimental point of view, however, using dynamic, non- 

repetitive experimental designs poses the challenge of how to align 
such highly variable input to the recorded brain data. One approach to 
do so is the use of linear models to investigate the neural tracking of 
continuous sensory input using electro- or magnetoencephalographic 
(EEG or MEG) data. For the present purpose, we will only focus on EEG 
data, since this method is most prominent in developmental cognitive 
neuroscience, but in principle, the same approach can be applied to MEG 
data or hemodynamic (e.g., NIRS; near-infrared spectroscopy) signals. 

The key idea here is essentially the one familiar to social scientists 
from regression, or more parsimoniously, the general linear model: A 
relatively simple mathematical model is used to relate continuous EEG 
traces to continuous environmental input. This relation can go in two 
directions: in encoding (or forward) models, stimulus features are used 
to “predict” the neural signal; in decoding (or backward) models, the 
neural signal is used to “reconstruct” the input signal (Abbott and 
Dayan, 2001; Naselaris et al., 2011). 

The use of encoding/decoding models has become increasingly 
popular over the past decade in adult cognitive neuroscience, especially 
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in the field of auditory neuroscience (Crosse et al., 2016). These models 
provide in principle two separable but analytically related measures of 
“neural tracking”: First, in analogy to the beta estimate in a simple 
regression, we might be interested in the change in predicted EEG 
voltage that a one-unit change in the predictor (e.g., change in lumi-
nance, or change in sound pressure level at a given time point, e.g. 100 
ms before) yields. In forward encoding models, however, we do this not 
only for one specific, arbitrary lag of stimulus and brain response at a 
time, but for a whole set of time-lagged or stacked “copies” of the 
stimulus. This yields a whole set of time-lagged beta estimates, jointly 
making up the so-called “temporal response function” or TRF. As we will 
see below, the TRF is often interpreted in close reference to established 
interpretations of the evoked brain response in classical, event-related 
designs (see also Simon et al. (2007)). Second, in some analogy to 
measures of goodness-of-fit in regression like R2, this temporal response 
function can be used, by simple convolution with the entire stimulus 
time series itself, to yield an entire predicted EEG time series. The cor-
relation of measured and model-predicted time series is then referred to 
as “predictive accuracy” (in a forward model, where the brain signal is 
being “predicted”) or “reconstructive accuracy” (in a backward model, 
where the stimulus is being “reconstructed”). 

Both, features of the temporal response function and the correlation- 
based accuracy are being interpreted as “neural tracking” or “strength of 
neural representation”, with prominent application in the field of 
attention research (for review, see e.g. Obleser and Kayser (2019)), 
psycholinguistics (e.g., Brodbeck et al. (2018), Broderick et al. (2018)) 
or ageing (e.g., Presacco et al. (2016), Tune et al. (2021)). 

While the application of these approaches to developmental neuro-
science seems highly promising, it comes with certain challenges. Data 
quality in young children is often worse compared to data acquired 
under optimal recording conditions in adults due to more motion arti-
facts and less time for optimal electrode preparation. Relatedly, data of 
sufficient quality may not be available for all electrodes, reducing the 
number of channels to be included in the analysis (see however Mon-
toya-Martinez et al. (2021) who demonstrate that reliable results can be 
obtained even with a reduced number of electrodes). In addition, less 
data is typically available, as young children often do not tolerate long 
recording sessions. These constraints raise the question, whether ap-
proaches that can successfully be used in adult research, are also 
applicable to recordings in infant populations. 

Over the past years, though, the feasibility of neural tracking for the 
analysis of developmental EEG data has been demonstrated in several 
cognitive domains. In 2018, Kalashnikova et al. (2018) successfully used 
neural tracking to analyze 7-months-olds neural responses to infant- vs. 
adult-directed speech and found stronger neural tracking for 
infant-directed speech. Furthermore, encoding models have been used 
to analyze brain responses of 7-months-olds watching an audiovisual 
cartoon movie (Jessen et al., 2019). While both of these studies used 
encoding models, there is also evidence for the feasibility of applying 
decoding models. In particular, Attaheri et al. (2021) used a decoding 
model to analyze the contribution of neural responses at different fre-
quencies in the neural tracking of nursery rhymes presented to infants 
between 4 and 11 months of age. 

Finally, neural tracking can not only be exploited to analyze infant 
EEG data but also for the analysis of neural data in older children. For 
instance, linear models have been used to analyze MEG (Destoky et al., 
2020) as well as EEG data (Di Liberto et al., 2018) in elementary school 
children with and without dyslexia to investigate development of 
literacy. 

Neural tracking therefore offers a promising opportunity for state-of- 
the-art, naturalistic developmental cognitive neuroscience. Yet, the 
successful application of this analysis technique hinges on a number of 
methodological considerations that may be unfamiliar to developmental 
neuroscientists more experienced in the classical event-based analysis of 
neurophysiological data. In the following, we will provide a step-by-step 
tutorial, outlining how neural tracking can successfully be used to 

analyze developmental EEG data. Using an example data set, for each 
step, we will first provide a theoretical description and motivation 
before demonstrating the practical application including relevant 
MATLAB code. We will focus specifically on issues relevant for devel-
opmental researchers; for a more general tutorial on the use of neural 
tracking and the specific application in clinical populations, see Crosse 
et al. (2021). 

2. Methods 

2.1. Example data set 

The data used as an example here are seven minutes of EEG data 
collected from a 7-month-old infant listening to a recording of his 
mother reading a children’s story. When comparing generic and indi-
vidual model computation (see below), data from nine additional 7- 
month-olds from the same experimental set-up will be used. All re-
cordings were conducted according to the Declaration of Helsinki, 
approved by the ethics committee at the University of Lübeck, and 
parents provided written informed consent. For recording, we used an 
elastic cap (BrainCap, Easycap GmbH), in which 27 AgAgCl-electrodes 
were mounted according to the modified international 10–20-system. 
Data were recorded at a sampling rate of 500 Hz using a BrainAmp 
amplifier and the BrainVision Recorder software (both Brain Products). 
The example data set and associated analysis code can be found here: 
https://osf.io/7h58x/. 

2.2. Software 

All analyses are conducted in MATLAB 2020a (The MathWorks, Inc., 
Natick, MA). We used the MATLAB toolbox Fieldtrip (Oostenveld et al., 
2011), the multivariate temporal response function (MTRF) toolbox 
version 2.3 (Crosse et al., 2016), as well as two custom-made scripts 
which demonstrate the encoding and decoding model approach, 
respectively. 

2.3. Preparation of neural and stimulus data 

2.3.1. Data preprocessing 
The aim of the preprocessing steps described here is to obtain a data 

set that contains as little artifacts as possible; hence, the optimal choice 
of preprocessing steps may vary between experimental designs. In the 
present case, data were referenced to the mean of all electrodes (average 
reference) and filtered using a 40 Hz lowpass and a 1 Hz highpass filter 
as preparation for data cleaning via independent component analysis 
(ICA). After that, data were segmented into 1-sec-epochs. To detect data 
segments contaminated by artifacts, the standard deviation was 
computed in a sliding window of 200 ms length. If the standard devia-
tion exceeded 100 μV in any epoch or at any electrode, the entire epoch 
was discarded from further analysis. After this step, 412 out of 550 
epochs remained in the dataset. On the remaining data, an independent 
component analysis (ICA) was computed, and components classified as 
artifactual based on visual inspection were removed. Note, however, 
that identifying ICA components as artifactual in infants is often chal-
lenging (Noreika et al., 2020) and therefore does not necessarily result in 
greatly improved data quality. Hence, depending on the data set, this 
step may also be omitted. 

Subsequently, a 1-Hz-highpass and 10-Hz-lowpass filter were applied 
in preparation for linear modelling. Highpass filtering of the EEG helps 
to attenuate low-frequency artifacts such as slow signal drifts due to 
sweating. We here chose a 10-Hz-lowpass cut-off since previous studies 
have shown that neural activity phase-locked to the speech envelope 
typically occurs below 10 Hz (see e.g. (Ding and Simon, 2013; Golumbic 
et al., 2013)) and that the inclusion of stimulus-irrelevant signals at 
higher frequencies negatively impacts prediction accuracy (Fiedler 
et al., 2019). Note that the cutoff frequencies of the high- and lowpass 
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filters may also be set to focus on specific frequency bands of interest. 
An additional 52 1-sec-epochs were removed because in addition to 

the sound signal of interest, a second sound signal was presented 
simultaneously which is not of interest for the present approach. In sum, 
a total of 360 1-sec-epochs were used for modelling. 

2.3.2. Stimulus signal preparation 
The preparation of the continuous stimulus signal to be used as a 

predictor in forward, and as predicted output in backward models de-
pends on the characteristics of the stimulus material and the features of 
interest (Fig. 1A). Such features could include any continuous measure, 
for example basic physical stimulus properties, such as luminance, 
amount of visual motion, or sound envelope, but also more complex 
measures such as physical distance between parent and infant or 
movement of the child. One property that is helpful in successfully 
modelling the neural response to a stimulus parameter is a certain 
variance in the stimulus signal, as too little variance typically leads to 
poor modelling performance. 

It is also possible to include more abstract stimulus features that are 
detached from the physical properties of a stimulus, such as higher-order 
linguistic representation (e.g., phonemic or semantic information) of 
speech inputs. Furthermore, one can also model non-continuous, binary 
stimulus properties, such as word onset in an auditory signal or the 
appearance of a face in a visual signal. To do so, time-periods in which 
the relevant feature occurred (i.e, word onset, face appearance) are 
marked by ones in a the stimulus input vector, while the remainder of 
the vector consists of zeros (for further details on this approach, see e.g. 
(Sassenhagen, 2019)). Finally, several of these measures can be used in 
combination to investigate, for example, their relative importance in 
predicting the ensuing neural response. 

For the present example, we focus on a single stimulus feature, the 
onset envelope of the recorded maternal speech that was extracted using 
the NSL toolbox (Ru, 2001). 

2.3.3. Alignment of neural and stimulus signal 
As the last preparatory step, we temporally aligned neural and 

stimulus data in one matrix. Note that it is important that all data need to 
be transformed (i.e., downsampled or interpolated) to the same fre-
quency. We removed periods for which no neural data was available (as 
epochs were removed during preprocessing due to artifacts) from the 
stimulus representation as well. To avoid problems due to data discon-
tinuity when concatenating all remaining epochs of temporally aligned 
neural and stimulus data, we inserted 1-sec worth of zeros in both the 
neural and stimulus representation whenever two discontinuous epochs 
were joined. Note that this approach represents only one possible so-
lution to handling artifact-contaminated periods in the EEG signal. An 

advantage of this approach is the robustness of TRF estimation in 
encoding models to even relatively high proportions of zero-replaced 
epochs (i.e. around 30–40% of modelled data). At the same time, it is 
important to realize that noisier data, that is, those that require more 
zero-padding, can lead to a small but counterintuitive increase in pre-
dictive performance in the final model evaluation. This is of particular 
concern when fitting models at the level of the individual participant as 
differences in data quality could then unduly obscure second-level 
comparisons. Generic models that combine data across participants, or 
the estimation of individuals models based on a higher number of 
shorter continuous periods may offer alternative solutions. However, it 
is generally advisable to pay close attention to the amount and quality of 
data that enters linear modelling across participants and/or experi-
mental conditions. 

The resultant data structure serves as input data to each of the two 
custom MATLAB scripts provided with this article. We rely on functions 
implemented in the mTRF toolbox for model fitting and evaluation 
(Crosse et al., 2016). While the toolbox offers additional functions to 
conveniently implement, for example, data segmentation, 
cross-validation or visualization, for didactic reasons, we supply 
step-by-step custom code for these purposes. We hope this approach will 
increase transparency and allow the reader to flexibly adapt the code to 
their own needs. In the description of our example analysis, we start at 
its very heart – the fitting of different linear models – to then work 
ourselves through the outer layers of the analysis that involve concepts 
such as regularization, cross-validation, and model evaluation. 

2.4. Encoding vs. decoding models 

As depicted in Fig. 1B, there are two complementary modelling ap-
proaches that estimate the mapping between a continuous stimulus and 
its ensuing continuous neural response. The two approaches differ in the 
direction in which the stimulus-response mapping function is modelled. 
Encoding (or forward) models, also termed temporal response functions 
(TRFs; Ding and Simon, 2012), describe how specific features of a pre-
sented stimulus map onto the following neural response. Put differently, 
this kind of model probes how well the neural responses can be pre-
dicted based on stimulus information. Temporal response functions are 
estimated independently per EEG channel and their beta weights allow 
for an intuitive, neurophysiological interpretation: they quantify how a 
neural response changes with each one-unit change in a given stimulus 
feature. In essence, a forward model describes how sensory information 
is encoded in neural activity. 

Encoding models are particularly useful if one is interested in 
comparing how strongly or with which temporal delay different stim-
ulus features are encoded across brain regions. An example for such a 

Fig. 1. A) Schematic representation of sensory and neural input. Any number of different continuous stimulus features can be used as input. B) Schematic overview 
of the encoding vs. decoding approach. As explained in more detail in the text, for an encoding approach the stimulus features are used to generate a predicted EEG 
response which is then compared to the actual EEG response. For a decoding approach, EEG responses are used to generate a prediction of the stimulus input, which is 
then compared to the actual input. 
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research question is the study conducted by Kalashnikova et al. (2018), 
who used encoding models to compare the processing of infant- vs. 
adult-directed speech, assessing how different features of speech impact 
cortical tracking. More generally, encoding models can be highly useful 
in the investigation of preverbal speech processing, as the varying 
contributions of different speech parameters to neural tracking can be 
investigated across development and brain areas. These approaches can 
be further extended into the clinical realm; do for instance children with 
delayed speech development show reduced neural tracking of specific 
speech components? A different application of encoding models could 
be the investigation of how different visual parameters contribute to 
early social learning; how is for instance biological motion tracked, 
either from video material but also during live interactions? 

The temporal unfolding of the estimated temporal response function 
is reminiscent of that of event-related potentials and relates to different 
processing stages (Lalor et al., 2006; Simon et al., 2007). By restricting 
the included time lags (expressing the delay in the stimulus-response 
relationship), it is thus possible to specifically focus on particular sen-
sory or cognitive processes. Additionally, given the univariate nature of 
the forward modelling approach, it is recommended to restrict the 
analysis to a selection of channels that broadly represent a brain region 
assumed to be engaged in the process of interest. 

Decoding (or backward) models represent an alternative approach to 
mapping between stimulus and neural response (see Fig. 1B). As the 
term backward model suggests, it maps between the two domains in the 
opposite direction. In going from the neural response back to the past 
stimulus, we ask how well a presented stimulus can be reconstructed or 
decoded based on the recorded ensuing neural response (Dayan and 
Abbott, 2001). 

A key difference to encoding models is that decoding models are 
multivariate. This means that the modelling procedure combines infor-
mation in the neural responses at different channels to jointly recon-
struct properties of the presented stimulus. This feature comes with both 
advantages and disadvantages. On the one hand, the inclusion of all 
channels makes a priori channel selection redundant and improves 
sensitivity and specificity by weighting channels based on their infor-
mativeness, thus effectively cancelling out noisy signals (Parra et al., 
2003; Parra et al., 2005). On the other hand, it complicates the inter-
pretation of model weights (Haufe et al., 2014). When inspecting 
decoding model weights per channel it can be tempting to interpret 

them the same way as forward model weights. Unfortunately, such a 
neurophysiological interpretation is not warranted as the magnitude of 
model weights does not directly speak to the degree of engagement in a 
particular process. However, Haufe et al. (2014) proposed a procedure 
that forward-transforms the decoder weights to facilitate their 
interpretation. 

In developmental neuroscience, decoding models may be particu-
larly useful for the comparison of neural tracking of input signals for 
which an infant may have differential preferences or may be differen-
tially attentive to. Can we for instance predict an infant’s choice in a 
preferential looking paradigm based on their prior neural activation? Or 
is an infant’s habituation to a certain type of input linked to the neural 
tracking of that input? 

Using our example dataset from one participant, in Box 1, we detail 
how both encoding and decoding models can be estimated using the 
mTRFtrain function from the mTRF toolbox. In the encoding model, we 
model how a single stimulus feature of interest, the onset envelope, 
maps onto the multi-channel EEG response. To facilitate interpretation 
of model weights, we z-score the EEG signal prior to linear modelling, 
keeping relative differences between individual channels intact. A 
similar normalization procedure should be applied to the stimulus rep-
resentation as well if more than one feature is modelled and in particular 
if the scales for different features vary strongly. We are using a relatively 
broad range of time lags of − 200–800 ms to inspect the temporal dy-
namics of the TRF. Note that depending on the specific research ques-
tion, a more restricted range of positive time lags can boost predictive 
accuracy by focusing on the signal and processing stages of interest. This 
may be particularly relevant when probing differences in the neural 
encoding at a particular processing stage between participant groups or 
experimental conditions. 

The function takes as input the estimated decoding (backward) 
model as well as the neural response matrix and outputs forward- 
transformed model weights and time lags. 

Estimating a multivariate decoding model is computationally more 
expensive than fitting the mass-univariate encoding model. For this 
purpose, we additionally down-sample both neural response and stim-
ulus representation from 500 to 64 Hz to speed up the computation. For 
the decoding model, we focus on a more restricted range of time lags 
from 0 to 800 ms to optimize reconstructive performance. Additionally, 
we demonstrate how backward model weights can be conveniently 

Box 1 
Model training and transformation. 

As described in the main text, there are two different kinds of models to map between stimulus features and neural responses. Luckily, using the 
mTRF toolbox (Crosse et al., 2016) both encoding (forward) models and decoding (backward) models can be conveniently estimated using 
regularized (ridge) regression by appropriately adapting the parameters of the following function: 

model = mTRFtrain(stim, resp, fs, Dir, tmin, tmax, lambda) 

As input to the function, the matrices containing stimulus features and neural responses should be organized in the same way with rows cor-
responding to observations and columns to variables. The number of observations needs to agree between stimulus and neural responses. In our 
example, this corresponds to a stimulus matrix of N samples x 1 as we include only one auditory feature, and a matrix of N samples x 27 channels 
for the neural response. Note that as part of cross-validation, we estimate a model based on multiple data segments (also called folds, see Box 2) 
by organizing them in cell arrays. 

To switch between the estimation of encoding and decoding models, we set the direction parameter ‘Dir’ to either 1 (forward) or –1 (backward). 
Based on the sampling rate (‘fs’, in Hertz) and range of time lags (‘tmin’ and ‘tmax’, in milliseconds), the function creates the design matrix with 
time-lagged replications of regressors. Note that for backward models the time lags given by tmin and tmax are automatically reversed. Lastly, 
the strength of regularization is controlled via the ‘lambda’ parameter. 

The function outputs a structure that includes the model weights (model.w), time lags at the provided sampling frequency (model.t). 

To allow for a neurophysiological interpretation of model coefficients, for decoding models, we further apply a forward transformation (Haufe 
et al., 2014) with the following function: 

fwd_model = mTRFtransform(bmodel, resp)  

S. Jessen et al.                                                                                                                                                                                                                                   



Developmental Cognitive Neuroscience 52 (2021) 101034

5

transformed into forward model weights using the function 
mTRFtransform. 

Independently of whether the stimulus-response function is esti-
mated in the forward or backward direction, to derive a measure of 
“neural tracking”– reflecting the degree to which neural responses are 
driven by the presented stimulus – model performance needs to be 
formally assessed. To this end, model training is complemented with 
model testing on held-out data to evaluate how well the model gener-
alizes to data not involved in training. In the following section, we will 
illustrate two different training and testing routines, and discuss how 
such approaches along with regularized regression help improve 
generalizability. 

2.5. Training and testing 

The purpose of model training is to optimize its ability to successfully 
generalize to new, unseen data rather than capturing the peculiarities of 
the training data, a phenomenon called overfitting. It is therefore 
advisable to use so-called cross-validation procedures that efficiently 
split the data into separate data sets reserved for training and testing, 
respectively (see Varoquaux et al. (2017) for review). In testing, the 
trained encoding models are convolved with a new stimulus segment to 
yield a predicted EEG response per channel, whereas the trained 
decoding model is convolved with a new segment of EEG data to 
reconstruct the presented stimulus. Model performance can then be 
quantified by different metrics. The two most commonly used metrics 
are the Pearson’s correlation of model predictions with the measured 
EEG signal (for encoding models) or the presented stimulus (for 
decoding models), as well as complementary error measures such as the 
mean squared error (MSE) or mean absolute error (MAE). As described 
above, the correlation-based accuracy with which an EEG signal can be 
predicted or a stimulus reconstructed represents a quantification of 
neural tracking strength. In essence, this measure reflects the degree to 
which neural responses are driven by a presented stimulus. 

2.5.1. Regularization 
Up to this point, we have only very generally referred to the fitting of 

linear models that map between presented stimulus and measured 
neural response. Yet, it is important to realize that our use case presents 
a particular challenge for regular regression techniques: due to the in-
clusion of different time lags, we are a modelling a comparably large 
number of regressors. Moreover, these regressors are potentially highly 
correlated as neighboring EEG channels pick up similar signals, and 
many stimulus regressors such as acoustic envelope exhibit significant 
autocorrelation. We therefore use a technique referred to as regularized 
regression to reliably estimate model coefficients and avoid problems 
such as overfitting (Crosse et al., 2016; Holdgraf et al., 2017). 

There are a number of different variants of regularized regression 
that could be used in such a case (Wong et al., 2018). Here, we apply 
ridge regression as a form of regularized regression particularly suited 
for models that involve large numbers of potentially correlated re-
gressors (Hoerl and Kennard, 1970). In essence, ridge regression con-
strains the magnitude of coefficients by applying a penalty term that 
effectively smooths the resulting response function (Hastie et al., 2009). 
The size of the applied penalty terms and thus the strength of regulari-
zation is controlled by the hyperparameter λ that can vary between 
0 and ∞. For λ = 0 the resultant coefficients would equal those of or-
dinary least squares (OLS) regression, whereas regularization strength 
increases with λ > 0. 

In practice, the optimal amount of regularization is empirically 
determined by iterative model training and testing for a given set of 
lambda values. In our example analyses, we compared model perfor-
mance across a logarithmically spaced grid of λ values ranging from 
10− 7 to 107. Alternatively, one may choose to customize the range of 
tested λ values based on the autocovariance structure of the regressors 
(see e.g., Biesmans et al. (2017), Fiedler et al. (2019)). 

2.5.2. Individual vs. generic model 
As part of our exemplary analysis, we demonstrate how model 

optimization can be performed either at the level of the individual 
participant, or alternatively across a larger sample of participants using 
a “generic” (or subject-independent) model. In each case, the data will 
be divided into training and test sets and model evaluation will be 
assessed using a procedure called cross-validation (see Fig. 2A and B). 

To illustrate how training and testing at the level of the individual 
participant can be applied to our example data set, we first need to 
consider how our data are organized after preprocessing. At this stage, 
the normalized multi-channel neural responses and temporally aligned 
stimulus information are stored as continuous recordings rather than 
individual trials. As a first step, we thus split the continuous data into 
two data segments, with 80% of the data reserved for training, and the 
remaining 20% set aside for final model testing. 

However, as described above, encoding and decoding models are fit 
using ridge regression which additionally requires the optimization of 
the hyperparameter λ. As is considered best practice, the optimization of 
this hyperparameter should be carried out using yet another set of in-
dependent training and validation data (Poldrack et al., 2020). To effi-
ciently use the available data, we apply a technique called k-fold 
cross-validation. To this end, we further split the training data into 4 
equal sized segments, referred to as folds. Within the cross-validation 
routine, training and validation sets are rotated until each fold has 
served as validation set while the remaining three folds are jointly used 
for training (see Fig. 2A). 

The overall idea is to optimize the hyperparameter by repeating the 
training and validation procedure for a number of pre-defined λ values. 
In the next step, we average model performance (i.e., Pearson’s r and 
MSE) per tested λ value across folds to identify the λ value that yields the 
best model performance. Finally, we apply this optimal λ parameter for 
model estimation using all training data and test it on the initially left- 
out test data segment. In our example analysis, model evaluation is 
carried out using the function mTRFevaluate or alternatively mTRFpredict 
that both return by default Pearson’s r and MSE as evaluation metrics 
(see Box 2). Lambda tuning curves, showing model performance as a 
function of regularization strength, are an important diagnostic visual 
tool (see Fig. 2C). 

While such a nested procedure in which the optimization of regula-
rization and final testing are carried out on independent data segments 
may be considered the gold standard for predictive analyses, it requires a 
relatively large amount of data due to repeated data splitting. In our 
example, training in the inner loop is based on roughly 4.5 min of data, 
whereas only about 90 s worth of data remain for validation and final 
model testing. Within the field of developmental neuroscience, this 
scenario is rather the norm than an exception as prolonged data 
recording in infants and children can be especially challenging. Never-
theless, it is advisable to a priori define an inclusion criterion for the 
minimum of clean data needed per participant and to avoid any extreme 
imbalances in amount and quality of data between experimental con-
ditions and participants. This is particularly important when fitting 
models at the level of the individual participant. Previous studies have, 
for example, used a criterion of at least 100 s of artifact-free EEG data 
per participant (Kalashnikova et al., 2018; Jessen et al., 2019). Alter-
natively, when only relatively small amounts of clean neurophysiolog-
ical data are available, assessing model performance across participants 
using a subject-independent generic model may be a helpful solution 
(for a comparison of both approaches see e.g. Jessen et al. (2019)). 

To implement training and testing with a generic model approach, 
we use the data from an additional nine infant participants of the same 
study. In contrast to the individual model approach, we do not split the 
data into training and testing at the level of the individual participant 
but across participants. In practice, we start out by training subject- 
specific models per λ value using all of the available data for a given 
participant. We then test model performance using a simpler leave-one- 
out cross-validation routine in which the same data splits are used for 
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optimization and final testing (see Fig. 2B). 
To this end, we create a generic model by averaging across the 

trained subject-specific models of all by one participant. The generic 
model is then convolved with the data of the left-out participant to 
generate and evaluate model predictions. Again, the next step is to 
identify the λ value that yields optimal model performance. Here, we can 
take one of two approaches: We can either choose the optimal λ value 
per individual participant, or as the mean of optimal λ values across 
participants. The former approach is advisable if the λ parameters 
yielding best performance differ strongly across participants. Then 
choosing the same hyperparameter for final model training and testing 
would most likely lead to suboptimal model fits for individual partici-
pants. In our analysis example, we chose to apply the same (average) λ 
value for final model training and testing of encoding models as the 
subject-specific optimal λ values strongly converged across participants. 
For the generic decoding model approach, on the other hand, we chose 
to pick the optimal lambda value per individual participant as the shape 
of the λ tuning curve varied strongly across participants. 

For most parts, we have effectively used the same training and 
testing routines for both the encoding and decoding model. However, 
when it comes to model evaluation, there is one key difference. For 
encoding models, it is up to the researcher to decide which channels 
should be included in assessing how well the trained model generalizes 

to new, unseen data. Because our example analysis focuses on the neural 
tracking of speech, we defined a 5-channel fronto-central region of in-
terest (ROI) to broadly cover brain regions known to be involved in 
auditory processing (cf. Jessen et al., 2019). Alternatively, in the 
absence of strong hypotheses about the spatial extent of involved brain 
regions, one may also choose to evaluate model performance more 
globally by averaging across channels the correlation coefficients 
derived from channel-specific model fitting and evaluation. 

In summary, the supplied example analysis code illustrates four 
different ways of estimating how strongly (the features of) a presented 
stimulus are tracked by fluctuations in cortical activity. How do these 
four methods fair in the analysis of our exemplary data set? As shown in 
Fig. 2D, we observed that the individual model approach, despite 
working with less data, leads to overall better model performance than 
the respective generic model approach. Among the two individual 
model approaches the decoding model (r = 0.21) outperforms the 
encoding model (r = 0.045). 

Lastly, questions pertaining to the many modelling choices and the 
variety of output metrics might remain for the data analyst. For 
example, how can the time lags in the model be picked in a principled 
way? How do I interpret the encoding model’s predictive (or, in case of 
decoding models, reconstructive) accuracy? A general guideline for both 
questions is that there are no useful general guidelines, as too much here 

Fig. 2. Comparison of individual vs. generic model. A) and B) present a schematic overview of the concept of individual (A) and generic (B) model generation. In 
brief, for an individual model, the data set of a given participant is subdivided into a training and a testing set (in our case 80% vs. 20%). The training data is again 
split into different parts (in our case 4) to perform the λ optimization. In contrast, for a generic model, data from n-1 participants is used for training while the nth 
dataset is used for testing. C) Optimization of λ parameter for the individual decoding model in our example analysis. Shown are two measures to assess the impact of 
choosing different λ parameters, ranging from 10− 7 to 107, namely the Pearson’s r and MSE. D) Model performance for individual (light green) and generic model 
(dark green) for encoding vs. decoding in our sample date set. As can be seen, for both, encoding and decoding, the individual model generated the better results. 
However, while for encoding, the difference between individual and generic model was small, the performance of the individual model was by a magnitude better 
compared to the generic model for the decoding model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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depends on the scientific problem at hand. Neither the choice of time 
lags in the regressor matrix, nor the magnitude of resulting betas (in the 
temporal response function), nor the resulting Pearson’s r (or corre-
sponding R2) values should ever be chosen or interpreted in and by 
themselves. To elaborate, the time lags we chose (in the present 
example, –200–800 ms) reflect the sensory process under study and in 
fact derive from the rich, classic event–related-potentials literature: 
positive lags, that is, a cascade of stereotypical brain responses that 
follow or ensue physical changes in the stimulus with a delay of several 
hundred milliseconds (up to 800 ms, in our model) are certainly most 
interesting, given what is known about adults’ and infants’ cerebral 
auditory processing. The choice to also include negative lags (i.e., 
–200–0 ms) can be understood as a “sanity check”, providing us essen-
tially with a TRF baseline measure: It is not sensible to expect the 
auditory brain to consistently, but a-causally precede changes in the 
stimulus with a stereotypical brain “response”, so the TRF segments 
resulting from these negative lags should be expected to be not statis-
tically different from noise, hovering around zero in the present scenario 
(see e.g. Fig. 3 in Jessen et al., 2019 or Fig. 4b in Tune et al., 2021). 

As for the interpretation of the model’s main output metric, the 
predictive (or reconstruction) accuracy, we suggest to refrain from 
interpreting the accuracy value (r) in absolute terms, for two reasons. 
The first reason is that many technical and ultimately not meaningful 
influences can affect the absolute or average level of predictive accuracy 
a data set will yield. The amounts of artifact-free data might vary across 
subjects, or the number of regressors and/or the range of time lags might 
vary between models and thus, in both instances, render resulting r 
values not directly comparable anymore. Second, the nature of an EEG 
encoding model is such that a biologically and technically noisy signal, 
determined by a multitude of known and unknown causes – the elec-
troencephalogram – in its entirety is being modelled as a function of a 
comparably small set of extraneous events (here, the envelope of a 
presented acoustic signal). It would thus be implausible to here for 

example expect r values in the .70 range (i.e., explained variance in the 
50% range), something that engineers in purely technical contexts or 
even social scientists would find desirable or even barely satisfying. 
Encoding/decoding models in EEG yielding r values in the > 0.10 range 
are thus not per se bad models, and we recommend to strive for fair 
model comparisons (e.g., by additionally employing information criteria 
like Akaike’s, AIC, or Bayes-Schwartz, BIC, information criteria that all 
aim to balance accounted variance by number of parameters and num-
ber of observations, when comparing models). 

3. Discussion 

In this tutorial, we have provided a practical guideline for develop-
mental researchers who want to apply linear modelling approaches to 
the analysis of EEG data from infant and young children in complex 
naturalistic designs. Using an example experiment from speech 
perception, we demonstrate the use of encoding and decoding models 
and compare different analysis choices, in particular the use of indi-
vidual vs. generic response functions, and the influence of hyper-
parameters Box 3. 

The biggest limitation in applying neural tracking to developmental 
data is posed – as for most developmental neurocognitive approaches – 
by limited amount of data and often-compromised data quality. For the 
example data from 7-month-old infants used in this tutorial, we were 
able to achieve a correlation of r = 0.21 for the individual model 
(Fig. 2D), for which the data set of each individual infant was subdivided 
and used for both, training and testing. Note, however, that correlation 
values were lower for the generic models, in which data from n–1 infants 
was used to compute a model for the nth infant. This pattern suggests 
that, even with limited data availability as is the case for infants, data 
from the same individual allows for better predictions compared to 
averaged data across other individuals (Varoquaux et al., 2017). 
Consequently, neural tracking not only allows for the investigation of 

Box 2 
Model evaluation. 

For training and testing of the individual model, we employ a nested cross-validation routine (see Fig. 2) in which data of an individual par-
ticipants are repeatedly split into training and testing data sets. Here, we illustrate how model estimation followed by prediction and evaluation 
based on left-out data. We use the decoding model as an example and assume that the data have already been split between the inner and outer 
loop of cross-validation. Within the inner loop, we repeat the following process per fold f and lambda parameter l: 

% strain and rtrain are cell arrays containing all but one data segment for training 

MODEL(f,l) = mTRFtrain(strain,rtrain,fs,direction,tmin,tmax,lambda); 

% apply the model by convolving it with the neural responses of left-out validation sets sval and rval to reconstruct the stimulus 

RECON{f,l} = mTRFpredict(sval,rval,MODEL(f,l)); 

% compare reconstruction to original stimulus 

[CV.r(f,l),CV.err(f,l)] = mTRFevaluate(sval, RECON{f,l}); 

In the code above, the function mTRFpredict convolves the estimated model with the recorded neural responses of a new data segment to 
reconstruct the presented stimulus. To evaluate how closely the reconstructed stimulus resembles the original stimulus, we make function 
mTRFevaluate. By default, this function calculates both Pearson’s r and the mean squared error (MSE) but can also be set to calculate Spear-
man’s correlation and mean absolute error (MAE). Note that the function mTRFpredict can also be used to carry out both prediction and 
evaluation with a single function call. 

Having iterated this procedure across all folds and lambda values, we next average the correlation coefficients across folds to determine the 
lambda value which yields the best model performance. Note that evaluating model performance based on Pearson’s r or the MSE often converge 
to the same optimal lambda parameter. 

[max_r, idx_max] = max(mean(CV.r)); 

lambda_opt = lambdas(idx_max); 

Finally, we can use this empirically determined optimal lambda value to analogously train and test the decoding model in the outer loop of cross- 
validation for final, independent model evaluation.  
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neural responses across groups but can also be used to address interin-
dividual differences (e.g., Tune et al., 2021). 

Furthermore, the optimal lambda parameter differed between indi-
vidual infants, which may be due to a larger variability in data. While 
this effect was not drastic for encoding models and we therefore opted 
for a common lambda parameter across participants, the influence was 
more pronounced for decoding models, for which we hence chose to rely 
on individual lambda parameters. Therefore, depending on the direc-
tionality of the model and the given data set, choosing individual 
lambda parameters to compensate for larger variance between in-
dividuals may be advisable. 

As we used a data set of only ten infants as an example for the present 
tutorial, we cannot rule out the possibility that the difficulties 
mentioned above (i.e., the necessity to use individual lambda parame-
ters, and the decrease in correlation when using generic models) may be 
specific to this particular data set. It may for instance be the case that ten 
individuals are not enough to compute a reliable generic model but that 
with a larger sample, better predictions may be possible. Hence, future 
studies using larger sample sizes should keep an open eye regarding 
these issues in their analysis choices. 

In general, while neural tracking as an analysis approach is affected 
by lower data quality and availability, at the same time, neural tracking 
may also allow for the design of more engaging experiments due to the 
possibility of using continuous stimulation rather than a highly repeti-
tive design as is common for classical ERP studies. This in turn may lead 
to a higher compliance in participants, and thereby the possibility to 
record data for a longer duration and with a higher signal-to-noise ratio. 

As outlined in the introduction, the en- and decoding approaches 
discussed here have the potential to provide a new avenue for the 
investigation of neural responses in developmental populations to 
naturalistic complex stimuli. While most prior studies using this 
approach have come from the auditory domain, investigating the neural 
tracking of ongoing speech signals, future studies should expand these 
approaches to a more wide-ranging representation of environmental 
input, including in particular visual but also other sensory input. 

Furthermore, a highly exciting application of en- and decoding 
models could be the analysis of neural response during live interactions 
between two participants (e.g., mother and infant). While a number of 
recent studies have focused on the interplay between adult and infant 
brain in interaction (for a recent review, see Wass et al. (2020)), neural 
tracking could provide a different approach by focusing primarily on the 
infant brain but using recordings of speech (and potentially other sen-
sory parameters of interest) during the interaction as input vectors and 
linking the sensory signal to ongoing brain activity. 

In sum, neural tracking provides a promising approach to the anal-
ysis of continuous developmental EEG data, thereby enabling the 
development of more engaging experimental designs as well as the 
analysis of neural responses under more naturalistic and dynamic 
conditions. 

Competing Interest Statement 

There are no competing interests. 

Acknowledgements 

This work was supported by funding of the German Research 
Foundation (DFG, grant-number JE 781/1-1 & 2) and the European 
Research Council (ERC, ERC-Cog-2014 No. 646696 AUDADAPT). 

References 

Abbott, D.F., Dayan, P., 2001. Theoretical Neuroscience: Computational and 
Mathematical Modeling of Neural Systems. MIT Press. 

Attaheri, A., Choisdealbha, A.N., Di Liberto, G.M., Rocha, S., Brusini, P., Mead, N., 
Olawole-Scott, H., Boutris, P., Gibbon, S., Williams, I., Grey, C., Flanagan, S., 
Goswami, U., 2021. Delta- and theta-band cortical tracking and phase-amplitude 
coupling to sung speech by infants. bioRxiv. https://doi.org/10.1101/ 
2020.10.12.329326. 

Biesmans, W., Das, N., Francart, T., Bertrand, A., 2017. Auditory-inspired speech 
envelope extraction methods for improved EEG-based auditory attention detection 
in a cocktail party scenario. IEEE Trans Neural Syst Rehabil Eng 25 (5), 402–412. 
https://doi.org/10.1109/TNSRE.2016.2571900. 

Brodbeck, C., Hong, L.E., Simon, J.Z., 2018. Rapid transformation from auditory to 
linguistic representations of continuous speech. e3975 Curr Biol 28 (24), 
3976–3983. https://doi.org/10.1016/j.cub.2018.10.042. 

Broderick, M.P., Anderson, A.J., Di Liberto, G.M., Crosse, M.J., Lalor, E.C., 2018. 
Electrophysiological correlates of semantic dissimilarity reflect the comprehension 
of natural, narrative speech. Curr. Biol. 28, 803–809. 

Crosse, M.J., Di Liberto, G.M., Bednar, A., Lalor, E.C., 2016. The multivariate temporal 
response function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to 
continuous stimuli. Front. Hum. Neurosci. 10, 604. 

Crosse, M.J., Zuk, N.J., Di Liberto, G.M., Nidiffer, A.R., Molholm, S., Lalor, E.C., 2021. 
Linear modeling of neurophysiological responses to naturalistic stimuli: 
methodological considerations for applied research. Psyarxiv https://doi.org/ 
https://psyarxiv.com/jbz2w/.  

Dayan, P., Abbott, L., 2001. Theoretical. Neuroscience: Computational and Mathematical 
Modeling of Neural Systems. MIT Press, Cambridge, MA.  

Destoky, F., Bertels, J., Niesen, M., Wens, V., Vander Ghinst, M., Leybaert, J., Lallier, M., 
Ince, R.A.A., Gross, J., De Tiege, X., Bourguignon, M., 2020. Cortical tracking of 
speech in noise accounts for reading strategies in children. PLoS Biol. 18 (8), 
e3000840 https://doi.org/10.1371/journal.pbio.3000840. 

Di Liberto, G.M., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.C., 
2018. Atypical cortical entrainment to speech in the right hemisphere underpins 
phonemic deficits in dyslexia. Neuroimage 175, 70–79. 

Ding, N., Simon, J.Z., 2012. Neural coding of continuous speech in auditory cortex 
during monaural and dichotic listening. J. Neurophysiol. 107 (1), 78–89. https:// 
doi.org/10.1152/jn.00297.2011. 

Ding, N., Simon, J.Z., 2013. Adaptive temporal encoding leads to a background- 
insensitive cortical representation of speech. J. Neurosci. 33, 5728–5735. 
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