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Abstract
Hypercoagulability and thrombosis remain a challenge in severe coronavirus disease 2019 (COVID-19) infections. Our aim is to
investigate the hemostatic profile of critically ill COVID-19 patients on therapeutic anticoagulant treatment.
Forty one patients were enrolled into the study. We recruited 11 consecutive, COVID-19, patients who received therapeutic

anticoagulant treatment on intensive care unit (ICU) admission. Disease severity indexes, biochemical, hematological and
haemostatic parameters, endogenous thrombin potential (ETP), plasminogen activator inhibitor-1 (PAI-1) activity and extrinsically
activated rotational thromboelastometry assay (EXTEM) were recorded on days 1, 3, 7. We also enrolled 9 ICU non-COVID-19, 21
non-ICU COVID-19 patients and 20 healthy blood donors as control populations.
Critically ill COVID-19 patients demonstrated a more hypercoagulable and hypofibrinolytic profile related to those with COVID-19

mild illness, based on EXTEM amplitude at 10min (A10), maximum clot firmness (MCF) and lysis index at 60min (LI60) variables (p=
0.020, 0.046 and 0.001, respectively). Similarly, a more hypercoagulable state was detected in COVID-19 ICU patients related to
non-COVID-19 ICU patients based on A10 and MCF parameters (p=0.03 and 0.04, respectively). On the contrary, ETP and EXTEM
(clotting time) CT values were similar between patients with severe and mild form of the COVID-19 infection, probably due to
anticoagulant treatment given.
Critically ill COVID-19 patients showed a hypercoagulable profile despite the therapeutic anticoagulant doses given. Due to the

small sample size and the study design, the prognostic role of the hypercoagulability in this clinical setting remains unknown and
further research is required in order to be assessed.

Abbreviations: A10 = clot strength at 10 minutes, A20 = clot strength at 20 minutes, A30 = clot strength at 30 minutes, ao = a
angle, APACHE = Acute Physiology and Chronic Health Evaluation, ARDS = acute respiratory distress syndrome, AUC = curve
included area under the curve, CFT = clot formation time, COVID-19 = coronavirus disease 2019, CRP = C-reactive protein, CT =
clotting time, DIC = disseminated intravascular coagulopathy, ETP = endogenous thrombin potential, EXTEM = extrinsically
activated rotational thromboelastometry assay, ICU = intensive care unit, LI60 = lysis index at 60 minutes, MCF = maximal clot
firmness, ML = maximal lysis, PAI-1 = plasminogen activator inhibitor-1, ROTEM = rotational thromboelastometry, TEG =
thromboelastography, TEM = thromboelastometry, TG = thrombin generation, VMs = viscoelastic methods.
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1. Introduction

Recent observations suggest that respiratory failure in coronavi-
rus disease 2019 (COVID-19) infections is not caused by the
development of the acute respiratory distress syndrome (ARDS)
alone,[1] but that microvascular thrombotic processes may
contribute, also.[2] One of the most significant poor prognostic
signs in those patients is the development of coagulopathy.[3,4]

The level of D-dimer has been identified as a promising
prognostic marker for survival of the disease and an early
predictor of severe clinical presentations of COVID-19.[3,5,6]

Based on the experience from published literature on septic
coagulopathy, monitoring PT, D dimer, platelet count and
fibrinogen has been suggested as helpful in determining prognosis
in COVID-19 patients requiring hospital admission.[7–9]

In this context, the International Society of Thrombosis and
Haemostasis (ISTH) recommends measuring D-dimers, pro-
thrombin time and platelet count (decreasing order of impor-
tance) in all patients who present with COVID-19 infection,[10] in
order to help in stratifying those who may need admission and
close monitoring or not. Moreover the recommended manage-
ment of COVID-19 coagulopathy is based on the only currently
available evidence that markedly increased D-dimer is associated
with highmortality in COVID-19 patients and that coagulopathy
is associated with multi-organ failure in septic patients. In sepsis,
the disturbance between components of the coagulation and
fibrinolytic system, leads to a variable clinical picture, tilting from
initial hypercoagulability towards a subsequent hypocoagulable
disease state, depending on the phase of septic coagulopathy.
Bleeding complications are rare in severe COVID-19 patients,
suggesting that DIC is not a common complication of COVID-
19, while pulmonary micro-thrombosis seems to be partially
related with the pathophysiological mechanism of COVID-19
related ARDS.[2] Assessment of coagulation status in these
patients is complex. The ability of conventional global coagula-
tion tests to reflect in vivo hypo- or hypercoagulability accurately
is questioned[11] as these assays reflect only a part of the
coagulation system. Viscoelastic methods (VMs), like thromboe-
lastography (TEG)androtational thromboelastometry (ROTEM),
are point-of-care tests, which evaluate whole-clot formation and
dissolution.[12] A critical issue to be addressed is whether the use
of viscoelastic tests performed on whole blood could contribute to
both better explore hypercoagulability and predict thrombotic
events in critically ill COVID-19 patients.[13–16]

Our aim is to evaluate the potential role of ROTEM and other
specific assays in the assessment of haemostatic profile and their
association with anticoagulant therapy and disease severity in
critically ill COVID-19 patients.

2. Methods

The study population consisted of 11 consecutive patients tested
positive for COVID-19 with real-time reverse-transcriptase-
polymerase chain reaction (rRT-PCR) assay (VIASURE Sars-
CoV-2, CERTEST Biotec SL, Zaragoza, Spain) and treated in the
Intensive Care Unit (ICU) of the ‘Attikon’ University Hospital of
Athens due to acute respiratory distress syndrome (ARDS)
development. Nine non-COVID-19 ICU patients and 21COVID-
19 patients presented with a mild form of the disease were used as
control populations. Twenty healthy blood donors were also
used as controls to establish normal values for standard
extrinsically activated ROTEMassay (EXTEM) and Endogenous
Thrombin Potential (ETP) assay. ICU COVID-19 patients were
2

on therapeutic anticoagulant doses with low molecular weight
heparin (LMWH), as per our ICU specific protocol (enoxaparin
1mg/kg every 12hours), while non-ICU COVID-19 and ICU
non-COVID-19 patients were on thromboprophylaxis with
LMWH (enoxaparin 1mg/kg every 24hours). All patients were
enrolled within 24h after ICU admission. The study was
performed in accordance with the Declaration of Helsinki and
was approved by the hospital’s institutional review board
(180;14/04/2020). Informed consent was obtained from all
participants or relatives.
Diagnosis of ARDS was made according to Berlin Defini-

tion.[17] Demographic were recorded on study enrolment.
Clinical data and samples for laboratory testing were collected
from ICU COVID-19 patients on days 1, 3, 7. Disease severity
indexes, including Acute Physiology and Chronic Health
Evaluation (APACHE) II and Sequential Organ Failure Assess-
ment (SOFA), lung compliance, lung injury score, sepsis induced
coagulopathy (SIC) and disseminated intravascular coagulation
(DIC) scores, were also calculated.
Biochemical, hematological and haemostatic parameters.
The following parameters were recorded on days 1, 3, 7: PaO2/

FiO2, PaCO2, HCO3, white blood cell count, platelets, total and
direct billirubin, creatinine, blood urea nitrogen, aminotransfer-
ases, C-reactive protein (CRP), procalcitonin, activated partial
thromboplastin time and prothrombin time, fibrinogen, ROTEM
analysis, Plasminogen activator inhibitor-1 (PAI-1) activity,
Endogenous Thrombin Potential (ETP) and D-dimer levels in
plasma.
PAI-1 activity was determined on an automated coagulation

analyzer (Behring Coagulation System,Marburg, Germany) with
reagents (Berichrom PAI; Dade Behring, Milton Keynes, UK) and
protocols from the manufacturer.
INNOVANCE ETP (Siemens Healthcare Diagnostics) is a

global hemostasis function test to assess the ETP of plasma
samples and was performed on the BCS XP system hemostasis
analyzer as previously described.[18] The estimated parameters of
the thrombin generation (TG) curve included area under the
curve (AUC), also referred to as ETP and maximum TG depicted
by peak height (Cmax).
For ROTEM analysis, the EXTEM test was performed on the

ROTEM analyzer (Tem Innovations GmbH, Munich, Germany)
as formerly described.[19] The following ex-TEM variables were
measured: clotting time (CT, seconds), the time from the
beginning of measurement until the formation of a clot 2mm
in amplitude; clot formation time (CFT, seconds), the time from
CT (amplitude of 2mm) until a clot firmness of 20mm was
achieved; amplitude was recorded at 10min (A10, mm); a angle
(a°), the angle between the central line (x-axis) and the tangent of
the TEM tracing at the amplitude point of 2mm, describing the
kinetics of clot formation; maximum clot firmness (MCF, mm),
the final strength of the clot; Maximum clot elasticity (MCE) is
calculated using the following formula: MCE= (MCF∗100)/
(100-MCF); lysis index at 60min (LI60, %), the percentage of
remaining clot stability in relation to the MCF following the 60-
min observation period after CT which indicates the speed of
fibrinolysis and maximum lysis (ML) index which reflects the
percent decrease of maximal amplitude over time.
2.1. Statistical analysis

Statistical analysis of the population data included descriptive
statistics, presented as means±SD, medians and interquartile
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ranges (IQR), or as frequencies (percentages) when appropri-
ate. The demographic characteristics, the clinical parameters,
the conventional laboratory values and the ROTEM param-
eters between the study groups (COVID-19 ICU patients,
non COVID-19 ICU patients, COVID-19 non-ICU patients
and healthy subjects) were compared using the Chi-square
test for categorical variables, and the two-sample Wilcoxon
rank-sum (Mann-Whitney) test or the Kruskal-Wallis test for
continuous variables. The assessment of correlation between
laboratory values and certain clinical parameters was per-
formed using the Spearman rank correlation coefficient test.
Spearman’s rho of<0.20 indicates very weak correlation, 0.21
to 0.40 weak correlation, 0.41 to 0.60 moderate correlation,
0.61 to 0.80 strong correlation, and>0.81 very strong
correlation. For statistical analysis, we used the R software
(version 3.6). For all tests, a p-value<0.05 indicates statistical
significance.
3. Results

The demographics, clinical and conventional laboratory param-
eters ofCOVID-19 ICUpatients, andCOVID-19non-ICUpatients
are presented in Table 1. The results of ETPmeasurements and the
EXTEM parameters among the 3 study groups (COVID-19 ICU
patients, non-COVID-19 ICU patients, COVID-19 non-ICU
patients) and healthy controls are summarized in Table 2.
COVID-19 ICU patients had significantly higher A10 and MCF
than non-COVID-19 ICU patients (p=0.030 and 0.049, respec-
tively). Moreover, COVID-19 ICU patients had significantly
higher A10 (p=0.020), MCF (p=0.046), LI60 (p=0.001), alpha
angle (p=0.008) and significantly lower CFT (p=0.042) and
ML (p=0.001) compared to non-ICU COVID-19 patients.
Furthermore, as shown in Table 2, most EXTEM parameters
were significantly different (p<0.05) between healthy subjects and
COVID-19, ICU or non-ICU, patients. The correlations between
laboratory and clinical parameters in ICU COVID-19 patients,
obtained from 25 observations based on serial measurements, are
summarized inTable 3.LI60was found tobemoderatelypositively
correlatedwith procalcitonin levels (rho=+0.49, p=0.045), while
a moderate positive correlation was shown between D-dimers and
SOFA score (rho=+0.51, p<0.001) and, D-dimers and Lung
Injury score (rho=+0.50, p=0.013).
Table 1

Clinical characteristics and conventional laboratory values of COVID

COVID-19 ICU patients (n=11)

Gender (males, %) 10 (90.9)
Age (years) 73.5±12.9; 78.0 (67.0–71.0)
PAI-1 activity (U/ml) 2.7±1.6; 2.1 (1.4–4.3)
Procalcitonin (ng/Ml) 0.88±1.02; 0.52 (0.23–1.25)
INR 1.19±0.20; 1.10 (1.04–1.32)
APTT (seconds) 36.1±5.09; 36.0 (33.0–39.7)
Fibrinogen (mg/dl) 486.1±199.9; 439.5 (313.0–439.5)
D-dimers (ng�103/ml) 3.85±3.47; 2.42 (1.47–7.32)
WBC (count�103/ml) 21.3±30.6; 11.8 (7.1–20.0)
Neutrophils (%) 65.2±26.8; 78.0 (61.0–82.0)
Lymphocytes (%) 16.0±21.1; 10.0 (4.0–15.0)
PLTs (count�103/ml) 248.0±130.2; 262.0 (120.0–350.0)
CRP (mg/L) 78.6±62.8; 48.0 (22.8–128.0)

Data are presented as means±SD, medians and interquartile ranges (IQR), or as absolute values (perc
aPTT=ctivated partial thromboplastin time, CRP=C-reactive protein, INR= international normalization r

3

4. Discussion

Based on ROTEM measurements, critically ill COVID-19
patients demonstrated a more hypercoagulable and hypofibri-
nolytic profile related to those with COVID-19 mild illness, while
hypercoagulability and hypofibrinolysis were evident in both
patient groups as compared to healthy controls. This indicates
that hypercoagulability in COVID-19 infection might be
associated with disease severity.
The exactly same pattern of shorter EXTEM-CFT and

increased EXTEM-MCF in hospitalized COVID-19 positive
patients compared with healthy controls, which became more
pronounced in patients with more severe disease, has recently
been reported.[20,21] It is noteworthy that in our hands, a more
hypercoagulable state was also detected in COVID-19 ICU
patients compared with non-COVID-19 ICU patients with
similar critical illness severity.
On the other hand, prolonged PT/APTT, reduced platelet

counts and abnormal fibrinogen levels, which are pathognomon-
ic signs of DIC were absent in ICU COVID-19 patients. The
association between severe COVID-19 infection and hypercoag-
ulability has recently been demonstrated by whole blood
thromboelastography and thromboelastometry.[13,14,16] Authors
have reported the absence of abnormal conventional coagulation
tests, which, in turn, supports the absence of consumption
coagulopathy.[13] Similarly, in the current study, based on SIC or
DIC score, coagulopathy was detected in only two critically ill
patients. Thus, it is confirmed that coagulopathy in most ICU
COVID-19 patients does not conform to classic DIC.[2]

In keeping with our findings, PT and APTT levels did not
significantly differ between mild and severe COVID-19
cases,[6,22] although this has not been a constant finding.[3,23]

The fact that inflammation-induced coagulopathy is a very
dynamic process, ranging from initial hypercoagulability to-
wards a subsequent hypocoagulable profile, depending on the
critical illness evolvement,[24] might account for this inconsisten-
cy. Unlike other conventional coagulation tests, increased D
dimer levels were identified as a predictor for the development of
severe disease and were significantly associated with the need for
ICU admission, in accordance with previous studies.[3,6,10,25,26]

In the current study, the prognostic value of high D dimers levels
was corroborated by their moderate correlation with SOFA and
lung injury score. However, it should be noted that based on our
-19 ICU patients and COVID-19 non-ICU patients.

COVID-19 non-ICU patients (n=21) P value

11 (52.3) P= .050
68.2±20.4; 73.0 (50.0–88.0) P< .001

1.4±0.9; 1.5 (0.8–2.1) P= .07
0.20±0.27; 0.1 (0.06–0.23) P< .001
1.12±0.16; 1.13 (1.03–1.18) P= .45
39.2±6.7; 37.8 (34.3–41.9) P= .38

451.6±131.2; 436.5 (399.0–503.0.) P= .98
1.32±1.28; 0.86 (0.54–1.21) P= .001

7.1±4.4; 6.7 (4.5–8.2) P= .003
60.1±13.8; 60.5 (52.3–68.8) P= .09
23.2±15.1; 18.4 (14.6.3–28.8) P= .033

285.6±120.2; 253.0 (207.0–396.0) P= .59
48.9±60.9; 32.3 (9.2–55.0) P= .17

entages) when appropriate.
ate, PAI-1=plasminogen activator inhibitor, PLTs=platelets, WBCs=white blood cells.
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data there was no difference between COVD ICU and non-
COVID ICU patients. Thus, it is not clear whether D dimmers
increase is a specific marker of COVID infection or may be just a
marker of being critically ill.
Probably, due to treatment with therapeutic and prophylactic

anticoagulant doses in patients with severe and mild form of the
COVID-19 infection, respectively, ETP and EXTEM CT values
were similar between them. The use of therapeutic anticoagulant
doses in our ICU COVID-19 patients has resulted in significantly
greater suppression on thrombin generation compared to healthy
controls. It is noteworthy, that anti-Xa activity was within
therapeutic ranges in almost all ICU COVID-19 patients. Besides
CT, all other EXTEM variables showed significant hypercoagula-
bility in ICU COVID-19 patients compared to non-ICU COVID-
19, but also to ICU non-COVID-19 patients, indirectly supporting
the use of anticoagulants in this clinical setting. The anticoagulant
treatment given has probably prevented excessive generation of
thrombin which, in turn, could have possibly led to a more intense
hypercoagulable state than the currently observed. In a recent
study, all ICUCOVID-19 patients on prophylactic anticoagulation
had ETP within the normal range suggesting a major hypercoagu-
lability that could not be controlled with prophylactic heparin
therapy.[27] Recent data showed that routine chemical venous
thromboembolism prophylaxis may be inadequate in preventing
venous thromboembolism in severe COVID-19.[28] However,
no correlation of these EXTEM parameters with disease severity
scoreswas found. Small sample sizemightpartiallyaccount for this.
Regarding fibrinolysis, severe COVID-19 infection was

associated with a trend to increased PAI-1 activity levels which
might result in a decreased fibrinolytic activity compared to mild
COVID-19 cases, as detected by both EXTEM LI60 and ML
variables. It is of note the moderate association between LI60 and
procalcitonin levels, supporting the well established, close
interrelation among fibrinolysis shutdown and inflammation
severity. Fibrinolysis shutdown, as demonstrated by complete
lack of clot lysis on TEG, and its correlation with thromboem-
bolic events in severe COVID-19 infection has also been
previously noted,[15] while Nougier et al showed that hypofi-
brinolysis is mainly associated with increased PAI-1 levels in ICU
COVID-19 patients, while they reported significantly higher
plasma levels of PAI-1 in ICU patients, as compared to non-ICU
COVID-19 patients.[27] Moreover, increased PAI-1 levels were
measured in the blood of SARS-CoV-infected patients during the
2002–2003 epidemic.[29] However, taking into account that in
the current study, PAI1 activity did not significantly differ
between ICU COVID and ICU non-COVID patients, it is hard to
say, if fibrinolysis shutdown is driven by COVID or just by
severity of patient’s condition. In any case, COVID-19-related
proinflammatory cytokines induce an endothelial injury resulting
in primary hemostasis activation and the overexpression of tissue
factor.[2] A reduced capacity to cleave and remove fibrin deposits
in association with the enhanced procoagulant activity probably
contributes to fibrin deposition forming localized/disseminated
microthrombi and worse clinical outcome.[24,30]

EXTEM assay was selected to monitor the coagulation system
in this clinical setting because EXTEMmeasurements are valid in
the presence of very high heparin concentrations.[31] The fact that
VMs assess the kinetics of clot formation and clot lysis
simultaneously, providing overall information on coagulation
and fibrinolysis equilibrium, renders them more suitable to
evaluate the current hemostatic state as compared to conven-
tional coagulation assays. However, they are considered



Table 3

Correlation of laboratory and clinical parameters in COVID positive ICU patients.

Procalcitonin SOFA score Lung Injury score

Variables Spearman’s rho P value Spearman’s rho P value Spearman’s rho P value

CT �0.46 .057 �0.13 0.56 �0.31 .16
CFT 0.08 .75 �0.13 0.54 �0.21 .34
LI60 0.49 .045 0.20 0.36 0.02 .90
ML 0.40 .10 �0.27 0.22 �0.06 .77
D-dimers 0.38 .10 0.51 0.011 0.50 .013

CT= clotting time, CFT= clot formation time, ML=maximal lysis, LI60= lysis index at 60 min.

Tsantes et al. Medicine (2020) 99:47 www.md-journal.com
inappropriate to assess each hemostatic component individually
and independently.[32] Based on our results, critically ill COVID-
19 patients showed hypercoagulability and fibrinolysis shutdown
despite the administration of therapeutic anticoagulant treat-
ment. The clinical significance of this finding remains unknown,
since the small sample size and the study design did not allow to
estimate its clinical impact. However, this is the first study
investigating the haemostatic state of ICU COVID-19 patients on
therapeutic anticoagulant treatment. Studies with larger sample
sizes and use of specific assays evaluating certain hemostatic
components in association with clinical outcome are required to
delineate the prognostic role of the intense hypercoagulable
profile in severe COVID-19 infection and determine the
appropriate anticoagulant treatment strategy.
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