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Background: T2-weighted (T2w) intracranial vessel wall imaging (IVWI) provides good
contrast to differentiate intracranial vasculopathies and discriminate various important
plaque components. However, the strong cerebrospinal fluid (CSF) signal in T2w images
interferes with depicting the intracranial vessel wall. In this study, we propose a T2-
prepared sequence for whole-brain IVWI at 3T with CSF suppression.

Methods: A preparation module that combines T2 preparation and inversion recovery
(T2IR) was used to suppress the CSF signal and was incorporated into the commercial
three-dimensional (3D) turbo spin echo sequence-Sampling Perfection with Application
optimized Contrast using different flip angle Evolution (SPACE). This new technique
(hereafter called T2IR-SPACE) was evaluated on nine healthy volunteers and compared
with two other commonly used 3D T2-weighted sequences: T2w-SPACE and FLAIR-
SPACE (FLAIR: fluid-attenuated inversion recovery). The signal-to-noise ratios (SNRs) of
the vessel wall (VW) and CSF and contrast-to-noise ratios (CNRs) between them were
measured and compared among these three T2-weighted sequences. Subjective wall
visualization of the three T2-weighted sequences was scored blindly and independently
by two radiologists using a four-point scale followed by inter-rater reproducibility
analysis. A pilot study of four stroke patients was performed to preliminarily evaluate
the diagnostic value of this new sequence, which was compared with two conventional
T2-weighted sequences.

Results: T2IR-SPACE had the highest CNR (11.01 ± 6.75) compared with FLAIR-
SPACE (4.49 ± 3.15; p < 0.001) and T2w-SPACE (−56.16 ± 18.58; p < 0.001).
The subjective wall visualization score of T2IR-SPACE was higher than those
of FLAIR-SPACE and T2w-SPACE (T2IR-SPACE: 2.35 ± 0.59; FLAIR-SPACE:
0.52 ± 0.54; T2w-SPACE: 1.67 ± 0.58); the two radiologists’ scores showed excellent
agreement (ICC = 0.883).
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Conclusion: The T2IR preparation module markedly suppressed the CSF signal without
much SNR loss of the other tissues (i.e., vessel wall, white matter, and gray matter)
compared with the IR pulse. Our results suggest that T2IR-SPACE is a potential
alternative T2-weighted sequence for assessing intracranial vascular diseases.

Keywords: intracranial vessel wall imaging, atherosclerosis, stroke, SPACE, T2IR

INTRODUCTION

Intracranial atherosclerotic disease is a leading cause of ischemic
stroke worldwide, particularly in the Asian population (Kim
and Johnston, 2011; Qureshi and Caplan, 2014). High-resolution
magnetic resonance (MR) intracranial vessel wall imaging
(IVWI) has been reported as a promising technique allowing
direct visualization of intracranial atherosclerotic plaques (Swartz
et al., 2009; Qiao et al., 2011; Zhu et al., 2016; Mandell et al.,
2017; Young et al., 2019). The characterization of intracranial
vessel walls using MR imaging requires suppressing the MR signal
arising from luminal blood and cerebrospinal fluid (CSF) (Qiao
et al., 2011; van der Kolk et al., 2013; Dieleman et al., 2014;
Mandell et al., 2017; Young et al., 2019), helping to delineate
both the inner and outer walls of the vessels. Early studies mainly
focused on T1-weighted IVWI because of its ability to reveal
vessel wall abnormalities with (i.e., atherosclerotic plaque) or
without contrast agents (i.e., intraplaque hemorrhage), and it
can also help classify intracranial vasculopathy (i.e., vasculitis)
(Qiao et al., 2011; van der Kolk et al., 2013; Dieleman et al.,
2014; Zhang et al., 2015; Mandell et al., 2017; Young et al., 2019;
Jia et al., 2020).

Recently, studies have shown that T2-weighted IVWI has
the potential to identify intracranial plaque components and
classify plaque types (van der Kolk et al., 2015; Harteveld
et al., 2016; Jiang et al., 2016). For example, T2-weighted IVWI
allows the identification of lipid cores and fibrous cap ruptures
(Turan et al., 2013; Chung et al., 2014). Xu et al. (2010)
reported that a hyperintense band adjacent to the lumen on
T2-weighted images might suggest a fibrous cap. Ryu et al.
(2009) reported that the foci of T2 hyperintensity within plaques
were more frequently observed in symptomatic stenosis than
in asymptomatic stenosis. Additionally, T2-weighted IVWI can
be used as a complementary tool in multi-contrast vessel wall
imaging for classifying intracranial vasculopathy (Mossa-Basha
et al., 2015, 2016, 2017) and detecting atherosclerotic lesions
that are not visible on magnetic resonance angiography (MRA)
(Li et al., 2009).

Although T2-weighted IVWI shows great potential in clinical
use, its bright CSF signal makes the outer boundary of
the intracranial vessel wall indistinguishable and may lead
to estimation bias in vessel wall thickness. Fluid-attenuated
inversion recovery (FLAIR) imaging has been applied to three-
dimensional (3D) T2-weighted IVWI to suppress the CSF
signal (Turan et al., 2013). However, using inversion recovery
requires a long inversion time for adequate CSF suppression
and causes a significant deficiency in the signal-to-noise ratio
(SNR). Another technique that combines T2 preparation and an
inversion recovery pulse (referred to as T2IR) was developed

to suppress background tissue for flow-independent peripheral
angiography (Brittain et al., 1997); its advantages of an improved
SNR and reduced T1-weighting make it suitable for various
applications (i.e., cardiac MRI, vessel wall imaging, and cerebral
blood mapping) (Brittain et al., 1995; Mugler et al., 2000; Wong
et al., 2001; Rooney et al., 2007; Busse et al., 2008; Liu et al., 2010,
2017; Visser et al., 2010; Xie et al., 2010; Mugler, 2014; Zhao et al.,
2016; Zhang D.F. et al., 2017; Qi et al., 2018; Qin et al., 2019;
Zhang et al., 2019; Zi et al., 2020). The T2IR preparation module
was used to achieve a submillimeter volumetric FLAIR sequence
in an ultra-high field system (Visser et al., 2010).

In the present study, we combined the T2IR preparation
module with 3D variable-flip-angle TSE- Sampling Perfection
with Application optimized Contrast using different flip angle
Evolution (SPACE) acquisition, called T2IR-SPACE, and achieved
high resolution IVWI at 3.0T. The performance of the new
sequence was assessed in a simulation study and an in vivo study
in healthy volunteers and patients. The preliminary work for this
study was partially reported in Zhang et al. (2019).

MATERIALS AND METHODS

Pulse Sequence
The proposed T2IR-SPACE sequence comprises two parts
(Figure 1): a T2IR preparation module (Brittain et al., 1997) and
T2-weighted SPACE acquisition sampling (Mugler et al., 2000;
Mugler, 2014) at the null point of the CSF signal.

Figure 1B illustrates the timing diagram of the T2IR
preparation module used in the present study. This module
is designed according to the Carr-Purcell Malcolm Levitt
(MLEV) method (Brittain et al., 1995). First, the longitudinal
magnetization is excited by a 90o

x radiofrequency (RF) pulse.
Next, four composite refocus pulses (90o

x − 180o
y − 90o

x) are
applied, with the phases alternated to minimize the adverse
effects of B1 and B0 field inhomogeneities. Finally, a composite
90o

x (270o
−x − 360o

x) pulse tips the T2-prepared transverse
magnetization down to the −z axis. The pulse is designed
following the composite pulse (270o

x − 360o
−x) of −90o

x (Brittain
et al., 1995) but with an opposite phase to tip the magnetization
downward. The duration of the T2IR module, TEprep, weights the
longitudinal magnetization by −e−TEprep/T2. A spoiling gradient
is applied to dephase all the remaining transverse magnetizations
(not shown in Figure 1). The SPACE acquisition is delayed by the
time of inversion (TI) from the last 90◦ pulse at the null point
of the CSF signal. All the pulses used are hard pulses, and the
durations of the 90◦, 180◦, 270◦, and 360◦ RF pulses are 0.5, 1,
1.5, and 2 ms, respectively.
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FIGURE 1 | (A) Schematic of the T2 IR preparation module followed by SPACE acquisition. (B) Zoom in of T2 IR preparation module.

Simulations
Bloch simulations (Busse et al., 2008; Zhang et al., 2015) were
performed to investigate the signal behaviors of the intracranial
vessel wall and CSF in the T2IR-SPACE sequence. The simulation
parameters were as follows: TR/TE = 2500/92 ms; echo spacing
(ESP) = 4.4 ms; echo train length (ETL) = 77; TEprep = 200 ms;
and TI = 950 ms. The T1 and T2 values were 4300 and 2200 ms
for CSF (Rooney et al., 2007; Liu et al., 2017), and 1200 and
50 ms for the vessel wall (Xie et al., 2010; Qi et al., 2018). The
simulation was implemented and performed in MATLAB version
2010 (MathWorks, Natick, MA, United States). The optimization
of the parameters of T2IR module (TEprep and TI) is provided in
the Supporting Material (Supplementary Figure 1).

The signal evolutions of the vessel wall and CSF in
conventional 3D T2-weighted vessel wall imaging (T2w-SPACE)
and 3D T2-weighted vessel wall imaging with a FLAIR
preparation pulse to suppress CSF (FLAIR-SPACE) were also
simulated and compared with the proposed T2IR-SPACE
sequence. The imaging parameters were adjusted to achieve the
same spatial resolution and spatial coverage in the same scan
time for all three sequences. The simulation parameters for T2w-
SPACE were the same as those for T2IR-SPACE (Supplementary
Figure 2 shows the optimization of T2w-SPACE). For FLAIR-
SPACE, the simulation parameters were TR/TE = 6250/345 ms,
ESP = 4.4 ms, ETL = 195, and TI = 2100 ms. The recently
developed techniques, such as delay alternating with nutation
for tailored excitation (DANTE) prepared T2w-SPACE and
AntiDrive were also compared with our proposed T2IR-SPACE
(Yang et al., 2016; Fan et al., 2017; Viessmann et al., 2017; Zhang L.
et al., 2017). The Parameters for the DANTE module were: flip
angle = 8◦, number of pulses = 150, maximum gradient (in x, y,
and z directions) = 20 mT/m, interpulse duration = 1.5 ms.

In vivo Experiments
All the experiments were performed using a 3T clinical whole-
body MR system (TIM TRIO, Siemens, Erlangen) equipped

with a 32-channel head coil. Nine healthy volunteers (three
female; aged 24–61 years; mean age: 44.9 years) without known
cerebrovascular disease were recruited for the volunteer study.
Four patients (one female; aged 33–52 years) with symptoms of
stroke and a diagnosis of intracranial arterial stenosis based on
earlier MR angiography or computed tomography angiography
were recruited for the pilot study. The patients were recruited
during initial hospitalization within 30 days of symptom onset.
Two more volunteers (both females, aged 62 and 29 years)
were recruited to compare DANTE prepared T2w-SPACE and
AntiDrive with T2IR-SPACE. Both studies were approved by the
institutional review board, and informed consent forms were
signed by all the participants before MR imaging.

For each volunteer, IVWI using whole-brain coverage was
performed using T2IR-SPACE, T2w-SPACE, and FLAIR-SPACE.
The imaging parameters were the same as those in the simulation
and were summarized in Table 1. All the sequences were
performed in the sagittal orientation. The fat suppression
technique used in this study was composed of a spectral-selective
pulse and spoiling gradients. GRAPPA was used to accelerate the
scan time. The total scan time was 11 min 40 s for each of the
three sequences.

In the patient study, three scans (T2IR-SPACE, T2w-SPACE,
and FLAIR-SPACE, respectively) were conducted for two
patients. The other two patients underwent only T2IR-SPACE
and T2w-SPACE scans because they could not endure the long
scan times. The imaging parameters were the same as those in
the volunteer study.

Image Analysis
Qualitative image analysis was performed at a workstation (Syngo
MultiModality Workplace, Siemens Healthcare, Germany) by
two experienced radiologists (Q.Y.L. and Z.Y. with over 10 and
7 years of experience in neurovascular imaging, respectively)
independently. The 3D image sets of T2IR-SPACE, FLAIR-
SPACE and T2w-SPACE were presented to the two radiologists
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TABLE 1 | Imaging parameters of the sequences evaluated in the study.

T2IR-SPACE FLAIR-SPACE T2w-SPACE

TR/TE (ms) 2500/92 6250/345 2500/123

TEprep/TI (ms) 200/950 . . ./2100 . . ./. . .

Echo train length 77 195 77

Common parameters

Matrix size 288 × 288 × 224

FOV (mm) 170 × 170 × 134.4

Slice partial Fourier 5/8

Bandwidth (Hz/pixel) 579

GRAPPA/ref. lines 2/24

Fat suppression Yes

Flip angle mode T2 var

Voxel size (mm) 0.6 isotropic

Scan time 11 min 40 s

individually in a random order, with imaging information being
blinded. The intracranial vascular beds were divided into three
segments for assessment: Segment 1 included the M1–2 segments
of the middle cerebral artery (MCA); Segment 2 included the
basilar artery (BA) and V3–4 segments of VA; Segment 3 included
C4–7 segments of ICA. Image quality was assessed using a four-
point scale: 0 (poor), more than 50% of the vessel walls were
invisible; 1 (acceptable), more than 50% of the walls were visible,
but with noticeable blurring or limited SNR and CNR between
the vessel wall and CSF; 2 (good), vessel walls were continuously
visible but were slight blurred; 3 (excellent), vessel walls were
clearly depicted with good SNR, CNR and sharpness. Scores >1
were regarded as diagnostic.

Quantitative analysis was performed at the following three
vessel segments surrounded by CSF with different flow rate: the
M1 segment of the MCA of both the left and right sides, BA, and
internal carotid artery cavernous segment (C4, ICA) of both the
left and right sides. T2IR-SPACE, FLAIR-SPACE and T2w-SPACE
images were co-registered on the workstation using 3D image
fusion functionality (Syngo Fusion, Siemens, Germany). 2D
cross-sectional wall images were reconstructed by an experienced
MRI scientist (Z.N.) using multiplanar reconstruction for each
arterial segment; five vessel segments were reconstructed for
each subject. Care was taken to ensure location matching
among different scans. The SNR of the vessel wall and adjacent
CSF and the contrast-to-noise ratio (CNR) between them were
measured using region-of-interest (ROI) analysis. Based on the
aforementioned 2D images, the ROI was manually prescribed
on the images where the vessel walls were clearly visualized in
all three sequences, and the mean signal intensities (S) of these
sequences were obtained. The SNR is defined as SNR = S/σ, where
S is the mean signal intensity of a certain tissue (VW or CSF) and
σ is the noise measured as the standard deviation from an artifact-
free air region of the nasal cavity. The CNR between the VW and
CSF is defined as CNR = SNRVW-SNRCSF.

Statistical analyses were performed by using SPSS software
(version 19.0; Chicago, IL, United States). The intra-reader
correlation coefficient (ICC) was obtained from a two-way
random model. The ICC value was interpreted as excellent,

good, fair, and poor when it was between 0.75 and 1,
between 0.6 and 0.74, between 0.4 and 0.59, and less
than 0.4, respectively. Paired two-tailed Wilcoxon signed-
rank test was performed on the data sets to determine the
significance of the differences. The significance level was set
at p < 0.05/2 = 0.025 (Bonferroni correction). The data were
presented as means ± standard deviation.

RESULTS

Simulations
The simulated signal evolutions within one TR were plotted after
ten repetitions of the pulse sequence until the signal evolutions
reached the steady-state for subsequent repetitions. The signal
evolution for T2IR-SPACE (Figure 2A) comprises four parts: (I)
transverse magnetization (Mxy) modulated by T2 decay during
the T2IR module, in which, the Mxy of CSF decreases slightly
because of its long T2 value and the Mxy of vessel wall is close
to zero at the end of the T2IR module; (II) a second 90o

x pulse
tipping the transverse magnetization to the negative longitudinal
axis, and the Mz recovering from the −z axis during TI; (III)
Mxy during the SPACE acquisition that performs around the
null point of CSF; and (IV) recovery of the Mz during Trec. The
signal evolution for FLAIR-SPACE (Figure 2C) comprises three
parts: (I) recovery of the Mz from the −z axis after the inversion
recovery pulse; (II) Mxy during the SPACE acquisition around the
null point of CSF; and (III) recovery of Mz during the remainder
of the TR. T2w-SPACE signal evolution (Figure 2E) has two
parts: (I) Mxy during the SPACE acquisition and (II) recovery
of Mz during the remaining time of TR. Figures 2B,E,F are the
magnified blocks from Figures 2A,B,E, showing the Mxy during
the SPACE acquisition in T2IR-SPACE, FLAIR-SPACE, and T2w-
SPACE, respectively. The CSF signals were well suppressed
in both T2IR-SPACE and FLAIR-SPACE (both < 0.05). The
signal intensity of the vessel wall in T2IR-SPACE (∼0.2) was
almost twice that in FLAIR-SPACE (∼0.1). Although T2w-SPACE
had the highest vessel wall signal (∼0.25) among these three
sequences, the unsuppressed CSF signal (∼0.5) resulted in a low
contrast between the vessel wall and CSF.

In vivo Experiments
The MR scans were successfully acquired in all the participants
with adequate or excellent image quality. As expected, the CSF
signal was effectively suppressed in all T2IR-SPACE images
while the signal of other tissues maintained a high level. The
qualitative image analysis results are summarized in Table 2. T2IR
SPACE showed better overall image quality when visualizing
the intracranial vessel wall (reader 1, T2IR-SPACE: 2.35 ± 0.59;
FLAIR-SPACE: 0.52 ± 0.54; T2w-SPACE: 1.671 ± 0.58). The
inter-reader reliability was 0.883 (0.794–0.93; p < 0.0001).
Representative images are shown in Figure 3. The vessel walls
were clearly visualized at all segments of intracranial arteries on
T2IR-SPACE images, while they were almost invisible at most
segments on FLAIR-SPACE images because of their low SNRs
(labeled by red arrows). Additionally, the intracranial vessel wall
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FIGURE 2 | Signal evolutions of the vessel wall and CSF for (A) T2 IR-SPACE, (C) FLAIR-SPACE, and (E) T2w-SPACE sequences within one TR using Bloch
simulation. Signal evolutions of transverse magnetization during the acquisition for (B) T2 IR-SPACE, (D) FLAIR-SPACE, and (F) T2w-SPACE.

TABLE 2 | Comparison of the vessel wall visualization quality among T2 IR, FLAIR, and T2w based on a four-point scale (0, poor; 1, fair; 2, good; and 3, excellent).

T2IR-SPACE FLAIR-SPACE T2w-SPACE

Radiology scores (mean ± SD) Radiology scores (mean ± SD) p-value: vs. T2IR Radiology scores (mean ± SD) p-value: vs. T2IR

Reader 1 MCA 2.78 ± 0.44 0.67 ± 0.50 0.006 1.67 ± 0.50 0.008

BA 2.22 ± 0.67 0.11 ± 0.33 0.006 1.67 ± 0.50 0.059

ICA 2.56 ± 0.53 0.89 ± 0.33 0.006 2.11 ± 0.33 0.102

Overall 2.52 ± 0.58 0.56 ± 0.51 <0.001 1.81 ± 0.48 <0.001

Reader 2 MCA 2.11 ± 0.33 0.22 ± 0.44 0.006 1.22 ± 0.44 0.011

BA 2.00 ± 0.50 0.11 ± 0.33 0.006 1.44 ± 0.73 0.059

ICA 2.44 ± 0.73 1.11 ± 0.33 0.014 1.89 ± 0.60 0.132

Overall 2.19 ± 0.56 0.48 ± 0.58 <0.001 1.51 ± 0.64 0.001

Mean 2.35 ± 0.59 0.52 ± 0.54 <0.001 1.67 ± 0.58 0.001

could not be differentiated in T2w-SPACE images because of the
high CSF signal.

The quantitative results are summarized in Table 3. T2IR-
SPACE showed the best image contrast between the vessel wall
(VW) and CSF (CNR: 11.01 ± 6.75) among the three sequences.
As expected, the SNRs of the VW and CSF from T2w-SPACE
were the highest (VW: 50.45 ± 18.50; CSF: 106.61 ± 7.70), but
the high CSF signal made delineating the outer boundary of the
intracranial vessel wall challenging. The CSF signal was effectively
suppressed in both T2IR-SPACE and FLAIR-SPACE, but the
T2IR-SPACE had a much higher vessel wall signal (20.57 ± 6.07
vs. 9.40 ± 3.06; p< 0.001), resulting in a higher CNR between the
VW and CSF (11.01 ± 6.75 vs. 4.49 ± 3.15; p< 0.001). The CNRs

approximately agreed with the Bloch simulation predictions
shown in Figure 2.

Imaging was successfully performed in all four patients.
Among the four patients, three patients were found to have
atherosclerosis plaques at the location of stenosis. One patient
(female, 33 years old) was diagnosed as probable vasculitis
(Figure 4), concentric wall thickening at MCA was more
conspicuous on the T2IR-SPACE image than on the FLAIR-
SPACE and T2w-SPACE images. Figures 5, 6 show the patients
with atherosclerosis, in which wall thickening at the M2 segment
of MCA was depicted only in T2IR-SPACE imaging (Figure 5).

Figure 7 shows example images from a 62-years-old subject
acquired with T2IR-SPACE and DANTE prepared T2w-SPACE,
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FIGURE 3 | Comparison among (A) T2 IR-SPACE, (B) FLAIR-SPACE, and (C) T2w-SPACE images in a healthy 60-year-old volunteer. Curved multi-planar
reconstruction images of both the left and right sides, starting from the internal carotid artery (ICA) and continuing up to the M2 segment of the middle cerebral artery
(MCA), were generated for visual comparison. Bottom images show the zoomed-in image to better show the inner/outer vessel wall for each sequence, CSF area
are labeled by the arrows. (A) The vessel walls are clearly visualized at all segments of intracranial arteries on T2 IR-SPACE. (B) The SNR is low on FLAIR-SPACE,
and most of the intracranial vessel wall cannot be delineated (indicated by the red arrowheads). (C) For T2w-SPACE, delineating the outer boundary of the
intracranial artery wall is challenging.

TABLE 3 | SNR and CNR measurement results.

T2IR-SPACE FLAIR-SPACE T2w-SPACE

Measurement (mean ± SD) Measurement (mean ± SD) p-value: vs. T2IR Measurement (mean ± SD) p-value: vs. T2IR

SNR: VW 20.57 ± 6.07 9.40 ± 3.06 <0.001 50.45 ± 18.50 <0.001

SNR: CSF 9.55 ± 1.87 4.91 ± 1.87 <0.001 106.61 ± 7.70 <0.001

CNR: VW-CSF 11.01 ± 6.75 4.49 ± 3.15 <0.001 −56.16 ± 18.58 <0.001

where T1w-SPACE was also scanned as a reference standard.
Wall thickening was detected at the M2 segment of the right
MCA in T2IR-SPACE (yellow arrow). This lesion was confirmed
in T1w-SPACE but could not be visualized in DANTE-SPACE.
We performed T2w-SPACE with AntiDrive in another healthy
subject. The result is shown in Figure 8, illustrating that the
CSF signal is not well suppressed and the intracranial vessel
wall is not visible.

DISCUSSION

T2IR-SPACE achieved high spatial resolution, large spatial
coverage and, more importantly, remarkable CSF suppression

and enhanced WM-CSF CNR. As shown in our preliminary
results, T2IR-SPACE greatly improves the ability of conventional
T2w-SPACE to differentiate vessel walls from CSF and is a
potential alternative to T2w-SPACE for assessing intracranial
vascular diseases.

The subjective assessment results showed that T2IR-SPACE
had better intracranial wall visualization than the other two
sequences in all vessel wall segments (Table 2). The subjective
mean scores of T2IR-SPACE were significantly higher than those
of FLAIR-SPACE in all segments. This is because the IR pulse
significantly reduced the SNR of the overall image and most
parts of the intracranial vessel wall were missing in FLAIR-
SPACE images, as demonstrated in both volunteer subjects and
patient subjects (Figures 3, 4). Moreover, the radiologist scores
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FIGURE 4 | A 33-year-old female patient diagnosed with vasculitis. (A) T2 IR-SPACE, (B) FLAIR-SPACE, and (C) T2w-SPACE images. Top: coronal view of the right
MCA; Bottom: sagittal view of the thickened vessel wall pointed by the arrowheads. Among the three T2w sequences, only T2 IR-SPACE depicted concentric wall
thickening on the M1 segment of the right MCA; the vessel wall was not clear on FLAIR-SPACE, and most parts of the vessel wall were missing; the vessel wall on
T2-weighted SPACE imaging appeared normal.

of T2IR-SPACE were significantly higher than those of T2w-
SPACE in the MCA and BA segments. This is because in the
two regions, and the CSF signal in T2-weighted images was
high, the outer boundary of the intracranial vessel wall was
difficult to differentiate from the surrounding CSF (Figures 3–
6), interfering with the accurate diagnosis by the radiologist. In
the ICA segment, the radiologist score of T2IR-SPACE showed
little improvement without statistical significance compared with
T2w-SPACE because the intracranial vessel wall at the ICA region
was not surrounded by the CSF fluid, so the high CSF signal
would not influence the vessel wall visualization. Our proposed
T2IR-SPACE technique compensates for the imperfection of the
above two existing approaches. It suppresses the CSF signal
without much signal loss of other tissues, and the vessel wall
can be clearly visualized at all segments of intracranial arteries
in T2IR-SPACE images (Figures 3–6).

Previous studies have demonstrated that patients with
symptomatic MCA stenosis have larger wall area, plaque area
and remodeling index than asymptomatic patients (Xu et al.,
2010; Zhang D.F. et al., 2017; Zhao et al., 2016). A hyperintensity
band adjacent to the lumen was often observed on T2-weighted
images, which was assumed to represent the fibrous cap (Xu
et al., 2010; Mossa-Basha et al., 2015). In these studies, the MCA-
CSF interface was used to manually trace the vessel area. The
high CSF signal in T2-weighted MRI images makes it difficult to
distinguish the outer boundary of the intracranial vessel wall and
results in inaccurate measurements of wall area and plaque area.

T2IR-SPACE suppresses CSF uniformly in whole-brain coverage
and allows clear visualization of the interface between the MCA
and CSF, which helps to characterize the features of intracranial
plaques more accurately and stratify stroke risk in patients with
atherosclerotic disease.

Recently, DANTE prepared SPACE and SPACE with
AntiDrive have gained popularity in IVWI due to their efficient
CSF suppression and superior SNR efficiency (Yang et al.,
2016; Fan et al., 2017; Viessmann et al., 2017; Zhang L. et al.,
2017). We compared these techniques with our proposed
T2IR-SPACE in a preliminary volunteer study. The DANTE
module suppresses the CSF well around the circle of Wills
but varies at distal (M2 or beyond) segments of the MCA or
adjacent to the brain parenchyma (Figure 7, red arrowheads),
because CSF fluid velocity varies in those regions and DANTE
is a velocity-sensitive module, thus resulting in a heterogeneous
CSF signal and interfering with accurate diagnosis by the
radiologist. The T2IR module provides robust CSF suppression
regardless of the flow velocity, because this module relies on
physical properties (T1 and T2) of CSF rather than the velocity
of CSF. Hence, this approach is insensitive to slow flow and
flow direction. In T2w-SPACE with AntiDrive, the CSF signal
is not well suppressed and the intracranial vessel wall is not
visible. This is because the TR (2500 ms) is relatively long in
T2w-SPACE, although the AntiDrive pulse inverts the Mz of
CSF to the negative longitudinal axis at the end of the echo
train, the CSF still recovers to a relatively high value during
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FIGURE 5 | Curved MPR of (A) T2 IR-SPACE and (B) T2w-SPACE from a 46-year-old male patient. Top: coronal view of the right MCA; Bottom: sagittal view of
artery at the location of the dashed line; Wall thickening was depicted only in T2 IR-SPACE (labeled by the arrowhead). The vessel appeared normal in T2w-SPACE.

FIGURE 6 | In a 45-year-old male patient with ischemic stroke, (A) reconstructed T2 IR-SPACE image and (B) T2w-SPACE identified a plaque at the M1 segment of
the right MCA. However, the cross-sectional view (bottom dashed insert) showed eccentric wall thickening only on T2 IR-SPACE because of the signal suppression of
surrounding CSF. The outer boundary of the eccentric plaque was not visible on T2w-SPACE. The yellow arrow means the eccentric wall thickening.

the long Trec. However, in T1w-SPACE, CSF signal is already
low enough and lower than the brain parenchyma due to
the short TR, and the application of AntiDrive pulse would
further reduce the CSF signal and improve the T1 contrast.

This is the reason why AntiDrive pulse is widely used in
T1-weighted IVWI.

In this study, a composite 90◦ pulse was used instead
of a hard pulse to tip the magnetization down with better
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FIGURE 7 | Comparison between (A) T2 IR-SPACE and (B) DANTE prepared T2w-SPACE in a 62-year-old subject. (C) T1w-SPACE was scanned as a reference
standard. The yellow arrows indicate the wall thickening which is visualized in T2 IR-SPACE and T1w-SPACE. The red arrowheads indicate the heterogeneous CSF
signal caused by the DANTE module.

FIGURE 8 | Representative images of T2w-SPACE with AntiDrive from a healthy subject. The CSF is not well suppressed and the intracranial vessel wall is not visible.

immunity to B0 field inhomogeneity. However, the composite
pulse has a narrower bandwidth with limited RF amplitude when
implemented on a human scanner and is thus sensitive to B1
field inhomogeneity.

This study has several limitations. One limitation of the
technique is the long scan time as result of the long TR
required for CSF nulling. This can not be easily compensated
for by e.g., choosing a longer ETL as this would negatively
impact the effective resolution of the scan. We however feel
that the robustness of CSF suppression justifies the use of
the sequence. Furthermore, there have efforts already using
compressed sensing for IVWI for T1-weighting imaging (Zhu
et al., 2018; Jia et al., 2020) and such strategies might
be used in T2-weighting imaging to enable shortening of
the scan time, thereby improving the clinical feasibility of
our sequence. Second, we performed simulations and found

that T2IR-SPACE was affected by partial T1-weighting next
to the desired T2-weighting, due to the short TI time
(Supplementary Figure 3). We will optimize the parameters
of T2IR-SPACE to reduce the T1-weighting in future studies.
Third, the number of patients involved in this study was small.
However, the present study was designed to demonstrate the
feasibility and potential of T2IR-SPACE in IVWI. Separate
clinical studies involving a large patient cohort are needed to
evaluate the clinical relevance for the diagnosis of intracranial
vascular disease.

CONCLUSION

In the present study, we developed a new whole-brain T2-
weighted intracranial arterial wall imaging sequence with CSF
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suppression. The T2IR preparation module suppresses the CSF
signal remarkably without much SNR loss of in other tissues
(i.e., vessel wall, white matter, and gray matter) compared with
the IR pulse. Our results suggest that T2IR-SPACE is a potential
alternative T2-weighted sequence for assessing intracranial
vascular diseases.
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