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ABSTRACT: We present an approximation to the state-interaction
approach for matrix product state (MPS) wave functions (MPSSI) in a
nonorthogonal molecular orbital basis, first presented by Knecht et al.
[J. Chem. Theory Comput., 2016, 28, 5881], that allows for a significant
reduction of the computational cost without significantly compromising
its accuracy. The approximation is well-suited if the molecular orbital
basis is close to orthogonality, and its reliability may be estimated a
priori with a single numerical parameter. For an example of a platinum
azide complex, our approximation offers up to 63-fold reduction in
computational time compared to the original method for wave function
overlaps and spin−orbit couplings, while still maintaining numerical
accuracy.

1. INTRODUCTION

Accurate calculations of many photochemical processes can be
a daunting task. Excited states are often governed by strong
electron correlation effects and many close-lying excited states,
where multiconfigurational electronic structure methods1,2 are
indispensable.
Multiconfigurational methods based on the complete active

space self-consistent field (CASSCF)3 are well-established for
handling strong correlation effects. These approaches require
selecting an orbital subspace called active orbital space whose
size determines the computational cost. Traditional CASSCF
methods scale exponentially with the number of the active
orbitals and electrons, allowing for calculations of up to 22
electrons in 22 orbitals with a massively parallel approach4 but
limiting its size to approximately 18 electrons in 18 orbitals5

under more moderate computational time requirements. These
limits can be reached very quickly, especially in polynuclear
transition-metal complexes. One approach to overcome the
exponential scaling of CASSCF is the density matrix
renormalization group (DMRG)6,7 for quantum chemistry,8−16

which, combined with self-consistent field orbital optimization
(DMRG-SCF),17,18 is able to variationally approximate
CASSCF wave functions to arbitrary accuracy at a polynomial
instead of exponential scaling of the computational cost.
In the CASSCF paradigm, and also with DMRG-SCF,

excited states are usually calculated with a state-average ansatz,
where a single orthonormal set of molecular orbitals (MOs) is
optimized to provide a balanced representation of several
states. This allows for a straightforward calculation of transition
densities and moments that are required to compute properties
such as oscillator strengths, magnetic properties, or spin−orbit
couplings. However, state-averaging is not always possible or
desired: (i) the individual state characters differ too much for

an average set of orbitals to yield an adequate description; (ii)
state-averaging, for example, between different spin multi-
plicities, is not supported by the computer implementation of
the method, or (iii) a single molecular set of orbitals is simply
not possible at all. The latter problem is encountered, for
instance, when calculating the overlap between wave functions
that are associated with different molecular structures to
monitor the change in the character of the electronic wave
function, as described in ref 19. In such cases, each state is
optimized independently and the resulting MO bases for the
individual states are no longer the same. As a consequence, the
states are no longer mutually orthogonal, turning the
calculation of transition densities and moments into a
challenging task.
A solution to this predicament is to use the complete active

space state interaction (CASSI) method, proposed by
Malmqvist and Roos,20,21 who suggested to transform the
MO bases for the individual states to a biorthonormal basis.
Along with the orbital rotation, this requires a simultaneous
“counter-rotation” of the wave function expansion coefficients:
for a configuration interaction (CI)-type wave functions, which
include CASSCF wave functions, this step can be achieved
with a series of single-orbital transformations.21,22 After
transformation to biorthonormal basis, wave function overlaps
and transition densities may be evaluated at little to no
computational overhead.
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The CASSI approach was soon extended to calculate spin−
orbit couplings,23 and with the advent of DMRG for quantum
chemistry, the DMRG-based version of CASSI, later named
the matrix product state (MPS) state interaction (sic!) (MPSSI),
has been introduced.24 To account for spin−orbit interaction
with DMRG wave functions, several other approaches based
on spin-free wave functions that share a common MO basis
were developed25−27 as well as a fully relativistic four-
component approach.28,29

Multiconfigurational methods and, specifically, the CASSCF
method are often used as an underlying method for the
electronic structure calculations of ab initio nonadiabatic
dynamics:30 partially due to their computational efficiency for
small systems and ability to describe strong correlation but also
because of the readily available implementations for gradients
and nonadiabatic couplings.31−34 With the help of the CASSI
method, ab initio nonadiabatic excited-state dynamics with
spin−orbit couplings, for example, with the SHARC
approach,35 may be employed to study processes involving
different spin states coupled via intersystem crossing. Addi-
tionally, overlaps between wave functions at different time
steps may also be calculated with CASSI and may serve to
approximate nonadiabatic couplings that are included in the
on-the-fly propagation of nuclear wave functions.36 The steep
scaling of CASSCF with respect to the active orbital space may
be tamed with DMRG-SCF also with surface-hopping
dynamics, as the calculation of the analytical gradients and
nonadiabatic couplings has been recently reported,37 and
spin−orbit couplings and wave function overlaps may be
calculated with MPSSI. DMRG-SCF, despite its polynomial
scaling of the computational time with the active space size, is,
nevertheless, computationally very intensive, and MPSSI is also
a cost-intensive method with a computational cost comparable
to that of DMRG-SCF. Dynamics calculations, however,
require a cheap and performant electronic structure method,
as electronic structure calculations of energies, gradients, and
couplings are carried out for hundreds or thousands of time
steps. Accordingly, elimination of every possible bottleneck in
the electronic structure calculations is extremely beneficial for
dynamics calculations.
With the aim of making DMRG broadly applicable to ab

initio molecular dynamics simulations, in the present work, we
identify the main computational bottlenecks of an MPSSI
calculation. Then, we extensively benchmark the sensitivity of
the MPSSI accuracy to the choice of the simulation parameters
and identify the simulation setup that yields the best
compromise between computational cost and accuracy. This
optimal setup relies on two approximations, that is, a simple-
yet-effective implementation of the orbital rotation operator
and an efficient MPS truncation scheme. The error introduced
in these two steps is controlled by a single parameter that can,
therefore, be tuned based on the target simulation accuracy.
We demonstrate the effectiveness of these approximations by
means of MPSSI calculations of wave function overlaps and
spin−orbit couplings for a medium-sized transition-metal
complex.

2. THEORY
As the starting points of this work, we first outline the CASSI
and the MPSSI approaches. We assume two sets of
multiconfigurational wave functions |ΨX⟩ and |ΨY⟩, each
expressed in their own MO basis {ϕp

X} and {ϕp
Y}, respectively,

which are not mutually orthogonal. The goal of the CASSI

approach is to find the biorthonormal MO bases {ϕp
A} and

{ϕp
B} such that

ϕ ϕ δ⟨ | ⟩ =p q pq
A B

(1)

and the corresponding transformation of the wave functions
|ΨX⟩ and |ΨY⟩ such that the transition matrix elements

⟨Ψ | ̂ |Ψ ⟩X Y of any operator ̂ may be calculated with very little
additional computational effort compared to the case where
|ΨX⟩ and |ΨY⟩ belong to the same MO basis. To this end,21 the
LU decomposition of the inverse of the orbital overlap matrix
SXY (with Spq

XY = ⟨ϕp
X|ϕq

Y⟩) is constructed

=− †S C C( ) ( )XY 1 XA YB (2)

The CXA and CYB matrices define the transformation from
the MO to the biorthogonal basis such that

ϕ ϕ ϕ ϕ= =C C;A X XA B Y YB (3)

Before proceeding to the transformation of the wave
functions |ΨX⟩, let us briefly introduce the wave function
ansatz employed with DMRG, the MPS. A general CI ansatz
for an arbitrary wave function |Ψ⟩ in a Hilbert space spanned
by L spatial orbitals may be expressed as

∑|Ψ⟩ = | ⟩c k k...
k k

k k L
...

... 1

L

L

1

1
(4)

with ck1...kL as the CI coefficients and |k1...kL⟩ as occupation
number vectors. The notation |k1...kL⟩ reflects the fact that for
each spatial orbital l, we may have a local basis state |kl⟩ =
{|↑↓⟩, |↑⟩, |↓⟩, |0⟩} and the total occupation number vector
consists of local occupations of all orbitals 1, ..., L.
The CI coefficients ck1...kL may be reshaped as an L-

dimensional tensor and decomposed38,39 by repeated applica-
tion of the singular value decomposition into a product of
matrices Mkl, yielding an MPS

∑ ∑|Ψ⟩ = | ⟩
−

−
M M M k k... ...

k k a a
a

k
a a
k

a
k

L
... ...

1 1 1

L L

L
L

1 1 1

1
1

1 2
2

1
(5)

The dimension of matrices (i. e., the a indices) may be
limited to a certain maximum dimension m, usually referred to
as the number of renormalized block states or maximum bond
dimension. This way, the number of parameters entering the
wave function ansatz definition is reduced from exponential, as
it is in full CI, to polynomial. The optimization of MPS wave
functions is most commonly carried out with the DMRG
approach, for the explanation of which we refer the reader to
the comprehensive reviews of Schollwöck38,39 and ref 16.
Analogously to the MPS, operators may be expressed in a

matrix product operator (MPO) form as

∑ ∑̂ = | ⟩⟨ ′ ′|
′

′ ′ ′

−

−
W W W k k k k... ... ...

b b
b

k k
b b
k k

b
k k

L L
k k, ...

1 1 1 1

L

L
L L

1 1

1
1 1

1 2
2 2

1
(6)

We consider next the transformation algorithm for wave
functions |ΨX⟩, when |ΨX⟩ are MPSs, as introduced in ref 24.
We perform another LU decomposition, this time of the CXA

matrix, and from its lower and upper triangular parts (CL
XA and

CU
XA, respectively), we construct the matrix t, with its lower and

upper triangular part being

= −t C( )U U
XA 1

(7)

= −t 1 CL L
XA

(8)
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The matrix t is then used to transform the wave functions
|ΨX⟩ as follows

• First, the inactive orbitals are transformed by scaling the
MPS with a factor α given by

∏α =
=

t
i

n

ii
1

2
I

(9)

where i runs over all inactive orbitals.

• For the subsequent transformation with respect to the
active orbitals, the following steps are repeated for each
active orbital l:
(1) Each matrix Mkl is multiplied with tll

2 for kl = |↑↓⟩
and with tll for kl = |↑⟩ and |↓⟩,

(2) an MPO ̂ is applied to the scaled MPS |Ψ̃X⟩
yielding a transformed MPS

|Ψ̃ ⟩ = ̂ |Ψ̃ ⟩XA
(10)

with

̂ = ̂ + ̂ + ̂i
k
jjj

y
{
zzz1

1
2

2

(11)

and

∑̂ = +
≠

↑
†

↑ ↓
†

↓
t

t
a a a a( )

m j

L
mj

jj
m j m j

(12)

(3) In the last step, one performs an SVD
compression of |Ψ̃A⟩ to obtain the final MPS
|ΨA⟩, a representation of the original state in the
biorthonormal basis {ϕA}. Analogously, |ΨB⟩ may
be constructed by repeating the steps mentioned
above with the CYB matrix and |ΨY⟩ MPS. |ΨA⟩
and |ΨB⟩ are then employed to calculate transition
density matrix elements and properties.

While the original MPS transformation algorithm has been
shown to be highly accurate for various properties, including
spin−orbit couplings and g-factors of actinides,24 its current
implementation has two major bottlenecks.
The first bottleneck originates from the SVD compression

from step (3): the application of the MPO in eq 10 to an MPS
results in a transformed MPS with the maximum bond
dimension of b × m, where b is the maximum bond dimension
of the MPO ̂ and m is the maximum bond dimension of the
MPS |Ψ̃X⟩. The final SVD compression in step (3) reduces the
final bond dimension of the transformed MPS, which is
necessary since the storage size of the MPS and the cost of
transition density matrix element evaluation40 scales with

m L( )2 and thus becomes prohibitively expensive for large m.
However, MPS compression itself is a computationally
expensive step with a computational cost of m L( )3 and
constitutes a crucial bottleneck in MPSSI. The original MPSSI
implementation24 employs a fixed value of m = 8000,
preserving the expectation value of the energy up to
10−8 a. u., but at a price of significant computational cost.
The second bottleneck arises from the construction of the

MPO ̂ : as shown in eq 11, this step requires the

construction of the ̂ 2
operator, which is not trivial. The

original implementation24 avoids this problem by calculating
̂ |Ψ̃ ⟩X

and ̂ ̂ |Ψ̃ ⟩( )X
and adding the resulting MPS

afterward. Applying the ̂ operator twice, however, increases
the bond dimension of the resulting MPS by a factor of b2 and
requires an additional MPS compression step between the first
and the second application of ̂ .
In this work, we improve the efficiency of the MPSSI

method by introducing two simple but effective changes to the
MPS transformation algorithm. The first is the first-order
approximation of eq 11 by neglecting the final second-order
term. This approximation may be justified as follows: since to
allow for the formation of biorthogonal bases, the original MO
bases have to be sufficiently similar, i. e., show an overlap fairly
close to unity, the resulting t matrix should not deviate
significantly from the identity matrix. Equation 11 can be
thought of as being a second-order Taylor approximation to
the exponential of ̂ , and in the regime of t close to identity
also, a linear approximation should hold. While accounting
through the application of ̂ for a full rotation of a singly
occupied orbital j in a given many-particle basis state of the

complete many-particle wave function, neglecting the ̂ 2
term

corresponds to an approximation of the full effect of the
rotation for a corresponding doubly occupied orbital k. In
general, the latter requires the application of a two-electron
excitation operator epkqk = EpkEqk − δkqEpk.

21 Hence, neglecting
̂ 2
, as proposed in the present work, corresponds to

approximating the two-electron excitation operator epkqk for
the transformation of a doubly occupied orbital k in a given
many-particle basis state by a sum of one-electron excitation
operators, that is, epkqk ≈ Eqk − δkqEpk. Furthermore, eq 12
shows that the ̂ operator is scaled with the ratio between the
off-diagonal and diagonal elements of t . For an orthogonal
basis, t will be the identity matrix and this ratio will be zero.
Therefore, a simple estimate based on off-diagonal elements of
t, such as the L2 norm of t − IL (with IL as an L × L identity
matrix), may be employed as a measure of the accuracy of the
approximation.
The second approximation is the reduction of the maximum

bond dimension of the compressed MPS, therefore reducing
the computational cost of the MPS compression. We highlight
that the speedup associated with the reduction of the
maximum bond dimension employed in the MPS compression
step comes at the price of losing accuracy in the approximation
of the full-CI wave function as an MPS. Specifically, the error
associated with this truncation step will increase with the
difference between the two sets of nonorthogonal molecular
orbitals, as will be demonstrated later in the results. However,
two sets of molecular orbitals that are obtained for two
different spin configurations and based on the same molecular
structure are often not drastically different. This is the reason
why, as we will show in the following, the MPS can be largely
compressed without compromising the accuracy of the matrix
elements of the spin−orbit coupling operator. The compres-
sion scheme may become less efficient in more complex cases,
such as for calculating transition properties between orbitals
obtained for different excited states calculated at different
nuclear geometries. Still, it would be possible in these cases to
adapt the bond dimension m to yield a given target wave
function accuracy that is selected a priori, as discussed in ref
41. Alternatively, the loss of accuracy consequent to the MPS
compression can be monitored by calculating the expectation
value of operators that are associated with conserved quantum
numbers before and after the truncation. As we showed in our
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original work on MPSSI, a small change in the squared spin
operator indicates that the wave function accuracy is preserved
after the truncation step.
In the following section, we demonstrate that both

approaches significantly improve the computational cost of
MPSSI with almost no effect on accuracy. Although both steps
reduce the accuracy of the transformation, the following
numerical test demonstrate that the errors introduced are
negligible for several types of properties.

3. NUMERICAL EXAMPLES

As a testbed we employ trans, trans, trans-[Pt-
(N3)2(OH)2(NH3)2] (in the following referred to as 1),
which is a flagship Pt(IV) azide complex, relevant in
photoactivated cancer chemotherapy.42−44 As the majority of
5d metal compounds, 1 shows strong spin−orbit couplings and
since its photoactivation mechanism involves azide dissocia-
tion, such a process is best described by multiconfigurational
methods.45

3.1. Performance of MPSSI Approximation on Wave
Function Overlaps. In principle, CASSI/MPSSI allows for an
easy calculation of wave function overlaps constructed with
nonorthogonal orbital sets. Wave function overlaps, especially
between states at different molecular structures or spin
multiplicities, are widely used in ab initio excited-state
molecular dynamics19,36,46,47 or in wave function analysis.48

Here, we investigated the accuracy of the linear approximation
to ̂ (in the following called “MPSSI approximation”) for
wave function overlaps of both ground and excited states for
varying molecular structures of the same molecule. With an
increasing deviation of molecular structures, the dissimilarity of
the orbitals and the L2 norm of the t − IL matrix also increases,
allowing us to also assess the limits of the MPSSI
approximation with the increasing norm.
We performed CASSCF and DMRG-SCF calculations with

a comparably small active space of eight electrons in nine
orbitals. This active space is capable to qualitatively describe
the energies of the lowest excited states and is also small
enough for DMRG-SCF to be able to reproduce the CASSCF
results almost exactly: the final DMRG-SCF energies differ
from their CASSCF counterparts by no more than 10−7 a. u.
We performed a rigid scan along the Pt−N bond of one of

the azide ligands with CASSCF and DMRG-SCF and
calculated the wave function overlap of the lowest five singlet
states at structures with an elongated Pt−N bond with their
counterparts at the equilibrium structure. We calculated the
overlaps of the CASSCF wave functions with CASSI and those
of DMRG-SCF wave functions with full and approximate
MPSSI: the average pairwise differences between these are
shown in Figure 1a. The overlap difference between CASSCF
and full MPSSI (green line) reflects the error arising only due
to DMRG approximation to the CASSCF wave function. The
effect arising due to the MPSSI approximation can be fully
estimated from the approximate to full MPSSI difference (red
line). The corresponding changes in the L2 norm of t − IL
matrices are shown in Figure 1b.
Given the tightly converged DMRG-SCF wave function, the

errors arising due to the DMRG approximation are negligible:
for all r − req values except 2.8 Å, the overlap error is less than
3 × 10−4, whereas for the latter calculation, it rises slightly to
2 × 10−3. This discrepancy is due to a slightly poorer
convergence of the wave function at this particular r − req value

than for other Pt−N bond lengths. Recalling that in contrast to
the quadratic convergence of the energy, property calculations
converge linearly with respect to the wave function quality, the
maximum energy error for this case is closer to 10−7 a. u.,
whereas for other Pt−N bond lengths, it is well below this
value. Nevertheless, all of these errors are so small that they
may be considered negligible. The MPSSI approximation error
is, however, larger than the DMRG approximation error for all
calculations and rises with increasing t norm: starting with
approximately 4 × 10−4 at r − req = 0.2 Å with a corresponding
t − IL norm of 0.4 (and thus remaining in the same order of
magnitude as the DMRG approximation errors), it steadily
increases with increasing t − IL norm, reaching values of
8 × 10−3 for the extended Pt−N bonds.
In the range of r − req of 1.2 to 1.8 Å, we see a particularly

large increase in the MPSSI approximation error, which
corresponds to t − IL norm values between 0.9 and 1.
Therefore, we propose a conservative cutoff t − IL norm value
of 1, below which we recommend to use the approximation.
This choice is, however, largely arbitrary: the average overlap
error at the cutoff value is 2 × 10−3, and even the largest error
value of 8 × 10−3 in these calculation series is still sufficient for
a qualitatively correct calculation.
The suitability of larger MPSSI approximation errors for

qualitative calculations is best illustrated if one compares the
results to those from a partially converged DMRG-SCF
calculation, which is a common practice in the literature.
Figure 2 shows the same overlap errors displayed in Figure 1a
but for partially converged DMRG-SCF wave functions, where
energy differences to the corresponding CASSCF wave
function are up to 2 × 10−4 a. u. The norms of the t − IL
matrices are similar and the MPSSI approximation errors are
almost the same as the corresponding errors for the fully

Figure 1. (a) Average differences of overlaps calculated with CASSCF
and full and approximate MPSSI; (b) L2 norm of t − IL matrices, with
IL as the identity matrix; XA corresponds to the orbitals at the
equilibrium structure and YB to orbitals at a given r − req.
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converged DMRG-SCF wave functions. However, the errors
arising due to the DMRG approximation increase sharply with
the decreasing DMRG-SCF wave function quality. For energy
errors in the range of 10−4 a. u. to 10−5 a. u., typical for large-
scale DMRG calculations, the order of magnitude of the
MPSSI approximation and the DMRG approximation error is
similar, and therefore, approximate MPSSI is still suitable for
qualitative calculations.
We may conclude that the MPSSI approximation error is

independent of the DMRG wave function quality but rather
depends only on the t matrix. Thus, the L2 norm of the t − IL
matrix constitutes an easy metric available prior to the MPSSI
rotation that allows a simple decision whether the MPSSI
approximation should be employed or not.
3.2. Performance of MPSSI Approximation on Spin−

Orbit Couplings. Here, we investigate the MPSSI approx-
imation performance in the calculation of spin−orbit coupling
matrix elements, which is another typical use case for MPSSI.
We employ the same active space of eight electrons in nine
orbitals as in the previous example but calculate energies and
spin−orbit coupling matrix elements for the five lowest singlets
and triplet states of 1 at the equilibrium structure.
Figure 3a shows spin−orbit couplings calculated with

CASSCF and DMRG-SCF employing the original (full)24

and approximate MPSSI scheme. As in the previous example,
DMRG-SCF wave functions have been converged so that the

DMRG-SCF energies differ from their CASSCF counterparts
by less than 10−7 a. u.: therefore, any error arising from the
DMRG approximation is negligible. The differences between
the calculated values are displayed in Figure 3b and show that
the effect of the DMRG approximation (green curve) is indeed
negligible: the largest error due to the DMRG approximation
does not exceed 0.02 cm−1. The error due to the MPSSI
approximation is, similarly to the previous example, slightly
larger but still negligible for all practical purposes: the average
error is 0.077 cm−1 and the maximum error is approximately
0.8 cm−1.
As in the previous example, we also consider the case of a

partially converged DMRG-SCF wave function, where the
energies of some states differ up to 10−5 a. u. from their
CASSCF counterparts. This accuracy is typical for large-scale
DMRG-SCF calculations and is more than sufficient for
accurate absorption energies up to 10−5 a. u. The results are
displayed in Figure 4. We note that in this case, the SOC error
arising from the DMRG-SCF approximation increases by
several orders of magnitude up to 30 cm−1, while the MPSSI
approximation error remains the same. Thus, in this case, the
total error in the DMRG calculation largely consists of the
DMRG approximation error, while the MPSSI approximation
error is completely negligible.
Figure 5 shows the absolute errors of spin−orbit corrected

energies. All errors remain below 10−6 a. u. and thus negligible.
Finally, we would like to mention the computational time

savings arising from the approximation. Due to the small size
of the active space, the MPSSI approximation is not the
bottleneck in this calculation, but it already reduces the
computational time by approximately 40%, that is, from 10 min
7 s to 6 min 6 s of run time on 4 cores of an Intel Xeon E5-
2650 CPU.

3.3. Performance of the Methods with a Larger
Active Space. From a calculation using time-dependent
density functional theory (TD-DFT, CAM-B3LYP/def2-
TZVPP) and including several low-lying singlet excited states
of 1, we know that CASSCF and DMRG-SCF calculations
with an active space of eight electrons in nine orbitals, as
employed in the previous section, cannot even qualitatively
account for the spin−orbit couplings: the largest absolute value
for the spin−orbit coupling between the five lowest singlet and
triplet excited states was 434 cm−1, whereas the corresponding
value from a TD-DFT calculation was found to be
approximately 1800 cm−1.
This insufficiency can be remedied by a DMRG-SCF

calculation with 26 electrons in 19 orbitals, as employed in

Figure 2. Average overlap error for overlaps with CASSCF and full
and approximate MPSSI, for a partially converged DMRG-SCF wave
function. Maximum energy error with respect to a corresponding
CASSCF calculation is shown in black.

Figure 3. (a) Spin−orbit coupling (SOC) matrix elements for the first five singlet and five triplet states at the equilibrium structure of 1 for an
active space of eight electrons in nine orbitals. (b) Absolute errors of the SOC matrix elements in panel (a).
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ref 45. As this active space is computationally too expensive for
a CASSCF calculation, only DMRG-SCF calculations with
subsequent approximate and full MPSSI calculations are
performed. In addition, we assess the error arising due to the
MPS compression step in the MPS transformation by testing
various m values for the compressed MPS: the DMRG-SCF
calculations were performed for m = 500, but during the
MPSSI procedure, the intermediate MPS during rotation was
compressed either to the original m = 500 or to m = 2000.

Note that we could not afford a postcompression m value of
8000 from the original paper of Knecht et al.24 due to its
prohibitive computational requirements. Furthermore, in the
following, we consider the 10 lowest singlet and 9 triplet states.
The calculated SOC and their errors are shown in Figure 6.
As can be seen from Figure 6a, all methods yield almost

identical values for the SOC. A closer look at errors (Figure
6b) reveals a maximum error of approximately 15 cm−1, which
arises entirely due to the MPS compression. The MPSSI
approximation error is negligible: the maximum MPSSI
approximation error is 0.41 cm−1 for m = 500 and just
1 × 10−3 cm−1 for m = 2000. The small MPSSI approximation
error is not surprising for this calculation, as the t − IL norms
are only 0.002 and 0.006. We can also see that the MPSSI
approximation is affected by compression but only very
slightly: it is the compression error in the first place that
contributes to the total error, which is nevertheless still small
enough for quantitative results.
The errors in the spin−orbit corrected energies are analyzed

in Figure 7. Also, here, the largest error in energies arises solely
due to the compression. With an average error of
1.3 × 10−5 a. u. or 3 × 10−4 eV, it is also almost negligible.
The MPSSI approximation error alone for both m = 500 and
2000 are at least 2 orders of magnitude smaller and are at the
same order of magnitude as typical convergence thresholds for
the SCF procedure and way lower than the expected DMRG
truncation error: it can be safely neglected. It is noteworthy,
however, that the MPSSI approximation error increases slightly
for the lower-quality m = 500 DMRG wave function, implying
a small direct effect of the compression on the approximation.

Figure 4. (a) Spin−orbit coupling (SOC) matrix elements for the first five singlet and five triplet states at the equilibrium structure of 1 with a
partially converged DMRG-SCF wave function. (b) Absolute errors of the SOC matrix elements in panel (a).

Figure 5. Errors of spin−orbit corrected energies calculated with
CASSI and full and approximate MPSSI at the equilibrium structure
of 1 for the first 20 spin−orbit coupled states arising from spin−orbit
coupling of five singlets and five triplets. The active space employed in
this calculation consisted of eight electrons in nine orbitals.

Figure 6. (a) Spin−orbit coupling (SOC) matrix elements for the first 10 singlet and 9 triplet states at the equilibrium structure of 1, for an active
space of 26 electrons in 19 orbitals. (b) Absolute errors of the SOC matrix elements in panel (a).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00674
J. Chem. Theory Comput. 2021, 17, 7477−7485

7482

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00674?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Table 1 discloses the massive speedup that both the MPSSI
approximation and the compression entail. Compared to a full

MPSSI calculation with m = 2000, the MPSSI approximation
gains a 7.5-fold speedup, the compression alone to m = 500
gains a 18-fold speedup, and the combination of both methods
gains an overwhelming 63-fold speedup. Both, the MPSSI
approximation and compression are essentially able to
eliminate the bottlenecks in the MPSSI method, while still
retaining for quantitative accuracy.
Although the smallest m value of 500 chosen by us is

dictated by the original m value employed during the wave
function optimization, it is tempting to use an even smaller
value to save further computational time. However, given the
comparably larger compression error that would increase even
further for smaller m values, we do not recommend such a
reduction.

4. CONCLUSIONS
In this work, we presented two modifications to the original
formulation of the MPSSI method by Knecht et al.,24 which
despite being simple allow for drastic computational savings
while retaining controlled accuracy in the DMRG-SCF
calculation of properties.
The first modification, named the “MPSSI approximation”,

is based on the omission of the quadratic term in the operator
that is employed to counterrotate the MPS, to match the effect
of the basis transformation. The second modification consists
of decreasing the maximum bond dimension of the
intermediate and the final counterrotated MPS by the SVD
compression with a smaller m value. The accuracy of both
modifications may be controlled independently of each other

by a numerical parameter. In the case of the MPSSI
approximation, it is the L2 norm of the t − IL matrix employed
for the orbital rotation, which is known before the time-
consuming MPS counterrotation, and thus allows for an error
estimate of the MPSSI approximation beforehand. For the
MPS compression, it is the m value of the intermediate and the
final compressed MPS.
We have tested both modifications in two common useful

scenarios where efficiency is highly desired: the calculation of
wave function overlaps and spin−orbit couplings. Both
quantities are, for example, indispensable to perform efficient
ab initio nonadiabatic simulations on the fly. In all our
examples, the discrepancies in these properties due to the
MPSSI approximation error were very small. For tightly
converged DMRG-SCF wave functions, close enough to
CASSCF wave functions, the MPSSI approximation error
was found to be larger than the DMRG approximation error
but unlike the latter not dependent on the wave function
quality. Instead, it shows monotonous dependence on the L2

norm of the t − IL matrix. When DMRG-SCF employs large
active spaces, the MPS compression to the original m value of
the unrotated MPS allows for very substantial computational
time savings but introduces an additional source of error:
although the MPS compression error is larger than that of the
MPSSI approximation, it is still small enough to allow
quantitative computation of properties.
In the current calculations, the MPSSI approximation and

the MPS compression to m = 500 gave us a total 63-fold
speedup compared to a calculation with compression to
m = 2000, while maintaining a total error still small enough for
quantitative computation of properties. The compression to
m = 8000 as in the original implementation could not be
performed due to excessive computational requirements: the
performance gain compared to such a calculation would have
been even larger. We believe that the speedups achieved with
the improvements in this work will pave the way to faster and
more affordable large-scale multiconfigurational calculations, as
well as allow DMRG-SCF to be applied in computationally
intensive scenarios, for example, in ab-initio excited-state
molecular dynamic simulations.
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