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Abstract
Reactions of β-azolyl enamines and nitrile oxides were studied by both experimental and theoretical methods. (E)-β-(4-Nitroimi-

dazol-5-yl), (5-nitroimidazol-4-yl) and isoxazol-5-yl enamines smoothly react regioselectively at room temperature in dioxane solu-

tion with aryl, pyridyl, and cyclohexylhydroxamoyl chlorides without a catalyst or a base to form 4-azolylisoxazoles as the only

products in good yields. The intermediate 4,5-dihydroisoxazolines were isolated as trans isomers during the reaction of (E)-β-

imidazol-4-yl enamines with aryl and cyclohexylhydroxamoyl chlorides. Stepwise and concerted pathways for the reaction of

β-azolyl enamines with hydroxamoyl chlorides were considered and studied at the B3LYP/Def2-TZVP level of theory combined

with D3BJ dispersion correction. The reactions of benzonitrile oxide with both E- and Z-imidazolyl enamines have been shown to

proceed stereoselectively to form trans- and cis-isoxazolines, respectively. The preference of E-isomers over Z-isomers, driven by
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the higher stability of the former, apparently controls the stereoselectivity of the investigated cycloaddition reaction with

benzonitrilе oxide. Based on the reactivity of azolyl enamines towards hydroxamoyl chlorides, a novel, effective catalyst-free

method was elaborated to prepare 4-azolyl-5-substituted isoxazoles that are otherwise difficult to obtain.
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Introduction
The biological activity and technically useful properties of isox-

azoles have made them the focus of both medicinal and materi-

als chemistry over the years [1]. Isoxazoles have been found in

natural products [1], and they exhibit anticancer [2], antiviral

[1], anti-inflammatory [3], antidiabetic [4], anti-Alzheimer [5]

and many other types of biological activity [6]. Isoxazolines and

isoxazoles have been applied as chemosensors, liquid crys-

talline compounds, ligands for asymmetric synthesis, and they

are also convenient reagents in organic synthesis [1]. Although

bicyclic assemblies of azoles exhibit interesting chemical prop-

erties and biological activities [1,7-11] isoxazoles conjugated to

other azole rings are poorly presented in the literature in com-

parison with monocyclic and fused derivatives [1,6].

Recently isoxazoles conjugated to pyrazole A [12], imidazole B

[13] and tetrazole C [4] rings were found as promising candi-

dates for anticancer and antidiabetic drugs and for the treatment

of cognitive disorder (Figure 1). It makes prospective the syn-

thesis of new derivatives of isoxazoles conjugated with other

azole rings.

Figure 1: Biologically active isoxazoles conjugated to other azole
rings.

The few synthetic methods for 4-(azol-5-yl)isoxazoles

published in the literature involve the formation of either azole

or isoxazole rings in the final step [1,13,14]. Cyclization reac-

tions of 2-azolyl-1,3-dicarbonyl compounds with hydroxyl-

amine and cyanomethylazoles with hydroxamoyl chlorides are

used for the synthesis of a few representatives of 4-(azol-5-

yl)isoxazoles [1,4,12-16]. Cycloaddition reactions of azoly-

lacetylenes with nitrile oxides are an alternative method for the

synthesis of this type of compounds [14,17] (Scheme 1).

Despite of good yields this method has serious limitations for

the synthesis of azolylisoxazoles due to the poor availability of

the starting materials. Therefore, the search of new regioselec-

tive routes to azolylisoxazoles remains a synthetic challenge.

We turned our attention to the reaction of enamines with nitrile

oxides (or their precursors, hydroxamoyl chlorides). The reac-

tion has been shown to take place regioselectively to form only

one of two possible regioisomers [18-26].

Therefore, this holds some promise for the development of an

efficient method based on this reaction for the synthesis of

monocyclic, fused and conjugated isoxazoles. At the same time,

there are few reports on the systematic study of this reaction

[23,24].

A general discussion about the reasons of regioselectivity and

stereoselectivity for this reaction is lacking from the literature.

To the best of our knowledge there are no examples for the syn-

thesis of 4-isoxazolyl- and imidazolylisoxazoles and imida-

zolylisoxazolines by this reaction.

We report here the results of experimental and theoretical

studies for the reaction of β-azolyl enamines bearing isoxazol-5-

yl, imidazol-4-yl and imidazol-5-yl moieties with aryl, pyridyl

and cyclohexylhydroxamoyl chlorides, pointing to a concerted

mechanism of this reaction.

Results and Discussion
The starting enamines 1a–e bearing imidazole (1a,b) and isoxa-

zole (1c–e) rings were prepared from the corresponding

5-methylazoles by reaction with dimethylformamide dimethyl

acetal (DMF-DMA) adapting synthetic procedures published

earlier [26-30]. Their structures can be unambiguously assigned

as the trans-isomers by observing the coupling constant

(J = 13.0–13.6 Hz) for the protons of the vinyl fragment in the
1H NMR spectra.

Hydroxamoyl chlorides are known as masked nitrile oxides and

the latter could easily be generated by reaction of the former

with a base [31-33]. Nitrile oxides, apart from the expected

cycloaddition reaction, could undergo dimerization affording

isomeric products with different structures [31-33]. Therefore

we could expect, besides isoxazoles, the formation of various

byproducts in the reaction of hydroxamoyl chlorides 2a–h with

β-azolyl enamines 1a–e (Figure 2). This complicates the base-
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Scheme 1: Reactions of azolyl enamines with nitrile oxides.

Figure 2: Structures of starting enamines 1 and hydroxamoyl chlorides 2.
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Scheme 2: Synthesis of 4-azolylisoxazoles 4a–p from enamines 1a–e and hydroxamoyl chlorides 2a–h. Reaction conditions: (i) 1 (1.1 mmol),
2 (1 mmol), 1,4-dioxane (5 mL), rt, 12–48 h, (ii) 3b,c (1 mmol), H2O/HOAc (1:1 mixture) (2 mL), rt, 30 min (3b) or overnight (3c).

catalyzed preparation of 4-azolylisoxazoles from enamines and

hydroxamoyl chlorides, lowering the yield.

Fortunately, we have found that the reaction of enamines 1a–e

with hydroxamoyl chlorides 2a–h can take place smoothly at

room temperature in 1,4-dioxane solution without base to form

4-imidazolyl- and 4-isoxazolylisoxazoles 4a–p as exclusive

products in good yields (Scheme 2). Probably the formation of

nitrile oxides from hydroxamoyl chlorides occurs catalytically

due to formation of dimethylamine as a result of the aromatiza-

tion reaction with the isoxazoles, in which dimethylamine is

formed. One can also propose that enamines 1 or traces of

dimethylamine can act as base and facilitate the initial forma-

tion of nitrile oxides. Thus, different conjugated heterocycles of

type 4 could be prepared starting from different enamines 1a–e

and hydroxamoyl chlorides 2a–h. The yields vary from 43 to

90% (Scheme 2, see Supporting Information File 1 for full ex-

perimental data), and are mainly in the 65−90% range.

Imidazolylisoxazoles 4a–h, imidazolylisoxazolines 3a–c and

3-aryl-4-carboxyisoxazol-5-ylisoxazoles 4i–p are novel conju-

gated heterocycles. There are very few known examples of

isoxazol-5-ylisoxazoles, that have been prepared by other

methods [14,15]. In contrast to our approach, these methods are

not applicable for the regioselective synthesis of compounds

containing a 3-aryl-4-carboxyisoxazole fragment, a structural

motif in the anticancer pyrazolylisoxazole, and rather the 3,5-

disubstituted isoxazole (compound 5, Scheme 2) is expected

[12]. The presence of regioisomer 5 was not registered by TLC

control and NMR spectra of the crude reaction mixture. A rise

of temperature and use of other solvents decrease the product

yields due to formation of tar-like products. The presence of a

base increases the rate but also considerably decreases the

yields of the products due to the formation of a large amount of

tar-like products. Enamines 1a–e, bearing imidazole and isoxa-

zole rings and several hydroxamoyl chlorides 2a–h bearing

aryls with electron-withdrawing and releasing groups, pyridine

and cyclohexane can be used for the synthesis of azolylisoxa-

zoles 4a–p. Reactions of enamines with hydroxamoyl chlorides

mainly lead to aromatic isoxazoles via intermediate 4,5-

dihydro-5-aminoisoxazoles, which in some cases were isolated

[23,24,26]. The latter could be transformed to aromatic isoxa-

zoles by treatment with bases or acids [32]. Reactions of

β-azolyl enamines 1a–e with hydroxamoyl chlorides 2a–h
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mainly afford aromatic isoxazoles 4b,d,f–p and intermediate

isoxazolines were not detected by TLC analysis. Conversely,

TLC allowed to observe the formation of imidazolylisoxazo-

lines 3 as a result of the reaction of enamines 1a,b with hydrox-

amoyl chlorides 2. The isoxazolines transform to aromatic isox-

azoles 4 during purification. Fortunately, we were able to

isolate the products of the reaction of β-imidazolyl enamines

1a,b with hydroxamoyl chlorides 2a,d,g, and the novel imida-

zolylisoxazolines 3a–c as pure stereoisomers in 67, 65 and 21%

yields, respectively. To the best of our knowledge it is the first

example of a stereoselective formation of 4-aryl(hetero-

aryl)isoxazolines in the reaction of acyclic enamines with nitrile

oxides. The stereoselective formation of trans-4-alkylisoxazo-

lines in the reaction of β-azolyl enamines with benzonitrile

oxides was observed by Pokar et al. [34] in 1980 and diastereo-

selective formation of fused isoxazolines was recently reported

by Jelizi et al. [35]. Their structures are assigned as trans-

isomers which are deduced from coupling constants of 4.0 and

4.2 Hz for the C4–H and C5–H in the NMR spectra (see Sup-

porting Information File 2 for NMR spectra descriptions and

copies). In turn, isoxazolines 3b,c were easily transformed to ar-

omatic isoxazoles 4c,h in aqueous acetic acid at room tempera-

ture. Interestingly, the analogous reaction of hydroxamoyl chlo-

rides 2c,f,g with enamines 1a,b leads directly to aromatic

4-imidazolylisoxazoles 4b,d,e–g. Probably isoxazolines 3a–c

are more stable than other compounds of type 3 under column

purification conditions. The 3,4-disubstituted isoxazole struc-

tures of compounds 4a–p were confirmed by the combination

of mass spectrometry, NMR spectroscopy, and X-ray analysis

(see Figure 3, Figure 4 and Supporting Information File 2 for

details of X-ray study of compounds 4a,o,p).

Figure 3: Imidazolylisoxazole 4a according to XRD data in the ther-
mal ellipsoids of the 50% probability level.

Figure 4: Isoxazolylisoxazole 4p according to XRD data with thermal
ellipsoids of 50% probability level.

According to the XRD data, the molecules of compound 4a are

non-planar with the Ph substituent turned toward the oxazole

ring by a 51° angle and the imidazole ring turned toward the

oxazole moiety by 23°. Crystals of 4a possess a chiral packing,

where not a shortened intermolecular contact is observable. The

bond lengths and angles in molecules 4a,o,p are standard.

Apparently, hydroxamoyl chlorides transform to nitrile oxides

under conditions of the isoxazole synthesis. The formation of

isoxazolines 3b,c in the reaction and their transformation to

isoxazoles under mild conditions supports a mechanism where

the isoxazolines are the intermediates. The exclusive formation

of isoxazolines as trans isomers from E-enamines allow us to

conclude that the reaction of β-azolyl enamines with hydrox-

amoyl chlorides proceeds in a regio- and stereospecific manner.

In contrast to the reactions of these β-azolyl enamines, similar

reactions of β-alkyl enamines as reported by Bujak et al. [24]

are regioselective and not stereospecific and therefore not

concerted. We could propose stepwise (path 1) and concerted

(path 2) reaction mechanisms for the formation of isoxazolines

3a–c as depicted in Scheme 3, in accordance with the proposed

reaction mechanisms of heterocyclic enamines proposed earlier

by Elliott and co-workers [36]. Path 1 includes the formation of

intermediate A as a result of the electrophilic substitution of the

β-H atom of the enamines 1a,b after treatment with hydrox-

amoyl chlorides 2a,d,g.

The intermediate A undergoes cyclization to oxazolines 3a–c

via addition of its hydroxy group onto the double bond of the

enamine fragment. This kind of cyclization was ruled out by
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Figure 5: Geometries of enamine 1a appropriate to the calculated minima on the PES, and their relative free energies at 298.15 K in gas phase
conditions.

Scheme 3: Plausible mechanisms for reaction of hydroxamoyl chlo-
rides 2 with imidazolyl enamines 1a,b.

Elliott et al. [36] because of a disfavored 5-endo-trig cycliza-

tion for the corresponding intermediate oxime.

Path 2 involves the initial transformation of hydroxamoyl chlo-

ride to a nitrile oxide, followed by concerted cyclization to tria-

zolines 3a–c. We have found that introduction of electron-with-

drawing substituents into the aryl moiety of the hydroxamoyl

chloride increases the rate of reaction. Thus, the reaction times

of enamine 1e with hydroxamoyl chloride 2a (R = Ph) as deter-

mined by TLC analysis is 30 h (product 4p), while those for 2f

(R = 6-Cl-2-FC6H3) is 18 h (product 4l) and for 2b

(R = 4-MeOC6H4) 32 h (products 4i), respectively. The regio-

and stereospecificity and the apparent reaction rate increase by

the introduction of electron-withdrawing substituents into the

benzonitrile oxide structure, allow to presume that the reaction

of enamines with nitrile oxides can be described as 1,3-dipolar

cycloadditions with inverse electron demand, similarly to the

reaction of enamines with azides [37].

To gain deeper insights into the mechanism of the cycloaddi-

tion between nitrile oxides and enamines, quantum chemical

calculations were carried out using the Gaussian 09 [38]

programs package at B3LYP/def2-TZVP [39-42] theory level.

Grimme’s D3BJ dispersion correction [43,44] was applied to

improve the long range interactions related calculation accu-

racy [45]. To the best of our knowledge there is not a high level

of theoretical investigations reported on the possible reaction

pathways of nitrile oxides with acyclic enamines so far, but

only a few works based on a semi-empirical approach and a

study of Domingo on reactivity of exocyclic enamines [46-50].

For the theoretical investigation, nitrile oxide 6a and enamine

1a were chosen as the model reactants. The geometries of

starting molecules and products can be associated with a local

minimum on the potential energy surface (PES) as proven by

calculation of the vibrational frequencies among which not an

imaginary value was found. Transition state geometries were

proven by the presence of the only imaginary frequency appro-

priate to the reaction’s pathway. Geometry optimization per-

formed on the starting enamine 1a allowed localizing four mini-

mums on the PES with geometries shown in Figure 5.

The transition state between the lowest energy E- and Z-isomers

of 1a, 1a_1 and 1a_3, respectively, was calculated by scanning
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Scheme 4: Calculated pathways for the formation of experimentally observed 3a, regioisomer 7 and isoxazoline 8.

the dihedral angle around the double bond, and found to be

38.09 kcal∙mol−1 above 1a_1 in free energy. Calculations of the

suggested mechanisms (Scheme 3) performed for E-isomer

1a_1 and nitrile oxide 6a allowed localizing a concerted transi-

tion state for both, observed and not observed regioisomers 3

and 8, respectively. Investigation of the stepwise mechanism’s

pathway allowed locating the only transition state (1a_1−7),

which is appropriate to the addition of nitrile oxide 2a onto the

double bond of enamine 1a_1, and the respective product –

oxime 7. However, the intermediate 7 was found to cyclize to

isoxazoline 3a through the transition state corresponding to the

concerted mechanism, e.g., via TS 1a_1−3a (Scheme 4). Inter-

estingly, isoxazolines 9 and 10 with cis orientation of the Az

and NMe2 groups, were found to be the products of transition

states 1a_3−9 and 1a_3−10, respectively, both based on 1a_3

geometry of enamine 1a, whereas transition states based on

1a_1 geometry of the enamine lead to isoxazolines 3a and 8

with trans orientation of the Az and NMe2 groups (Scheme 4).

Thus, one could conclude, that the configuration around the

double bond of the enamine controls the stereoconfiguration of

the isoxazoline formed. Apparently, the lower stability of 1a_3

compared to 1a_1, results in an equilibrium strongly shifted

towards the latter and, consequently, in the stereoselective for-

mation of isoxazoline 3a.

According to the obtained transition state geometries of the

cycloaddition, the concerted mechanism is quite asynchronous,

which is indicated by the shorter length of the forming C–C

σ-bond compared to C–O (Figure 6). A highly asynchronous

transition state was also observed by the Domingo group some

years ago for the reaction of exocyclic enamines with benzo-

nitrile oxides leading to spirocyclic isoxazolines [46].

It is remarked, that transition states 1a_1−3a and 1a_3−9 have

longer lengths of the forming bonds compared to those of tran-

sition states 1a_1−8 and 1a_3–10, which indicates an easier

attainability of the formers. Calculations of the thermodynamic

parameters suggest that transition state 1a_1−3a, leading to ob-

served product 3a, is by 8.9 kcal∙mol−1 more stable than transi-

tion state 1a_1−8, leading to the not observed regioisomer 8,

and by 5.3 kcal∙mol−1 more stable than state 1a_1−7 of the step-

wise mechanism. Isoxazoline 3a in its own is by 7.1 kcal∙mol−1

more stable than regioisomer 8.

These values clearly show a lower energy barrier for transition

state 1a_1−3a compared to the others considered here, which

explains the observed regioselective formation of isoxazoline

3a (Figure 7). An analysis, applying geometry strain model and

molecular orbitals theory [51], reveals that the geometry distor-

tion of nitrile oxide 6a has a major contribution to the activa-

tion energy barrier, whereas the geometry distortion energy of

the enamine is minor. Also, the analysis shows close values of

the orbital interaction energy for all the found transition states

(Table 1). It should be noted the close orbital interaction energy

values are obtained at longer distances between the reactants in

case of transition states 1a_3a and 1a_9, as compared to transi-

tion states 1a_8 and 1a_10, respectively. This indicates a

longer-range orbital interaction between the reactants in the

case of formers, resulting in smaller geometry distortions.

Thus, the lowest electronic activation energy of transition state

1a_1−3a among all calculated transition states is a result of

both, an easier attainability of the state governed by longer

range orbital interactions, and a smaller value of the total geom-

etry distortion energy (Table 1).
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Figure 6: Structures of the localized transition states. Lengths of the forming bonds are given in Å.

Figure 7: Summary of the calculated pathways of the cycloaddition reaction between enamine 1a and benzonitrile oxide 6a. The pathway leading to
the observed product is highlighted green. Values of the free energies are given in respect to the sum of free energies of enamine 1a_1 and nitrile
oxide 6a at the optimized geometries.
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Table 1: Calculated data of the electronic activation energy (∆E), orbital interaction energy (∆Ei), and geometry distortion energies (∆Ed).a

Entry TS ∆Eb ∆Ei ∆Ed total ∆Ed enamine ∆Ed nitrile oxide

1 1a_1−3a 8.0384 −22.8691 30.9075 7.0448 23.8627
2 1a_1−7 12.8883 −23.3032 36.1915 9.5132 26.6783
3 1a_1−8 16.9191 −22.0768 38.9959 10.4814 28.5145
4 1a_3−9 8.4848 −24.1853 32.6701 7.3005 25.3696
5 1a_3−10 22.2029 −23.0625 45.2654 13.7263 31.5391

aThe values are given with respect to enamine 1a_1 (1a_3 for TS 1a_3−9 and 1a_3−10) and nitrile oxide 6a; b∆E given in kcal·mol−1.

Figure 8: Isosurface plots of the HOMO of enamine 1a_1 (bottom) and the LUMO of nitrile oxide 6 (top) in the geometries of transition states 1a-1−3a
(left) and 1a_1−8 (right), visualized at isovalue 0.05 by the use of Chemcraft 1.8 program (http://www.chemcraftprog.com/).

Plots of respective orbitals at transition state geometries show a

better orbital interaction in 1a_1−3a transition state compared

to 1a_1−8. The HOMO of 1a_1 is predominantly localized at

the β-carbon atom from the amino group whereas the LUMO of

6a has major localization on the carbon atom of the nitrile

group (Figure 8). Calculated energy gaps between HOMO of

1a_1 and LUMO of 6a and vice versa at optimized geometries

are 3.68 eV and 4.57 eV, respectively. This finding is in agree-

ment with the inverse electron-demand concept for the investi-

gated reaction which explains well the observed reaction rate

increase when an electron-withdrawing group is introduced to

the structure of nitrile oxide. Thus, according to calculations,

reaction of enamines with nitrile oxides leading to isoxazolines,

complies to cycloaddition with inverse electron-demand. The

observed stereoselectivity of the cycloaddition is probably

driven by the higher stability of the E-isomer of the starting en-

amine, whereas the regioselectivity is controlled by better

orbital overlap in the transition state leading to the experimen-

tally observed regioisomer.

Conclusion
β-Azolyl enamines bearing imidazole and isoxazole rings were

shown to react regioselectively with aryl, pyridyl and cyclo-

hexylhydroxamoyl chlorides in the absence of a base or a cata-

lyst to afford 4-azolylisoxazoles as the only isomers. The data

of combined experimental and theoretical studies allow classi-

fying the reaction of enamines with nitrile oxides as inverse

electron-demand 1,3-dipolar cycloaddition. The found stereose-

lectivity of the cycloaddition is driven by the higher stability of

the E-isomer of the starting enamine, whereas the regioselectiv-

http://www.chemcraftprog.com/
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ity is controlled by better orbital overlap in the transition state

leading to the experimentally observed regioisomer. The reason

for the lowest electronic activation energy leading to the

experimentally observed product among all calculated

transition states, is caused by both relatively better stabilizing

orbital interactions and relatively smaller geometry distortion

energies.

Experimental
1H and 13C NMR spectra were recorded on Bruker Avance II

spectrometer in DMSO-d6 or CDCl3 (400 and 100 MHz, re-

spectively) using Me4Si as an internal standard. Mass experi-

ments were performed on Shimadzu GCMS-QP2010 Ultra gas

chromatograph operating at an ionization potential of 70 eV

(EI). The IR data have been recorded on a Bruker Alpha

(NPVO, ZnSe) FTIR spectrometer. Microanalyses were per-

formed on PerkinElmer Series II CHNS/O 2400 elemental

analyzer. The melting point was determined on a Stuart SMP 3

apparatus. The progress of the reactions and the purity of the

compounds were monitored by TLC on TLC Silica gel 60 F245

Aluminum sheets (Merck KGaA) in EtOAc/hexane (1:2),

EtOAc/hexane (1:1), CHCl3/EtOH (1:1), CHCl3/EtOH (20:1),

CHCl3/EtOH (50:1) system.

General procedure for the preparation of
4-azolylisoxazoles 4a,b,d–g,i–p
To a solution of the corresponding enamine 1 (1.1 mmol) in

1,4-dioxane (5 mL) an appropriate hydroxamoyl chloride

2 (1 mmol) was added. The reaction mixture was stirred at room

temperature for 12–32 h. The solvent was removed under

reduced pressure and then 10 mL of C2H5OH/H2O (1:1) mix-

ture was added to the oily precipitate. The formed precipitate

was filtered off, washed with EtOH and purified by silica gel

(60–120) column chromatography (EtOAc/hexane, CHCl3/

EtOH, CH2Cl2) or crystallization from EtOH to afford the

desired isoxazole 4.

4-(1-Methyl-5-nitro-1H-imidazol-4-yl)-3-phenylisoxazole

(4a). Colorless powder, yield 53%, mp 130–132 °С (column,

CHCl3/EtOH 20:1); IR (ν/сm−1): 3097, 1611, 1472, 1329, 1134;
1H NMR (DMSO-d6) δ 3.95 (s, 3H, CH3), 7.12–7.62 (m, 5H,

CHAr), 8.13 (s, 1H, CHimidaz.), 9.33 (s, 1H, C5−H); 13C NMR

(DMSO-d6) δ 35.5, 111.4, 127.6, 128.3, 128.7, 129.8, 132.2,

135.9, 141.7, 160.3, 160.9; EIMS (m/z): 270 [M]+; anal. calcd

for C13H10N4O3: C, 57.78; H, 3.73; N, 20.73; found: C, 57.43;

H, 3.45; N, 20.99.

4-[4-(1-Methyl-5-nitro-1H-imidazol-4-yl)isoxazol-3-

yl]benzonitrile (4b). Pink powder, yield 65%, mp 189–191 °С

(column, CH2Cl2); IR (ν/сm−1): 3109, 2227, 1615, 1480, 1354;
1Н NMR (CDCl3) δ 4.02 (s, 3H, CH3), 7.55 (s, 1H, CHimidaz.),

7.67 (s, 4H, CHAr), 8.99 (s, 1H, C5–H); 13С NMR (CDCl3) δ

36.3, 111.4, 113.6, 118.5, 129.3, 132.3, 133.0, 133.6, 135.9,

140.5, 160.0, 160.8; EIMS (m/z): 295 [M]+; anal. calcd for

C14H9N5O3: C, 56.95; H, 3.07; N, 23.72; found: C, 56.85; H,

3.01; N, 23.79.

Preparation of isoxazolines 3a–c
Isoxazolines 3a–c were synthesized in the same manner as isox-

azoles 4a,b,d–g,i–p (see general procedure). The reaction time

is 12 h (3a,b) and 48 h (3c).

N,N-Dimethyl-4-(1-methyl-5-nitro-1H-imidazol-4-yl)-3-

phenyl-4,5-dihydroisoxazol-5-amine (3a). Colorless powder,

yield 67%, mp 132–134 °С (column, EtOAc/hexane 1:1);
1H NMR (DMSO-d6) δ 2.34 (s, 6H, NMe2), 3.91 (s, 3H,

NCH3), 5.28 (d, J = 4.2 Hz, 1Н, СН), 5.30 (d, J = 4.2 Hz, 1Н,

СН), 7.29–7.33 (m, 3H, HAr), 7.49–7.58 (m, 3H, HAr), 7.89 (s,

1H, CHimidaz.); 
13С NMR (DMSO-d6) δ 35.9, 39.3, 49.1, 104.2,

126.8, 128.1, 129.3, 130.2, 135.5, 142.2, 142.7, 155.2; EIMS

(m/z): 315 [M]+; anal. calcd for C15H17N5O3: C, 57.13; H, 5.43;

N, 22.21.; found: C, 57.07; H, 5.66; N, 22.10.

3-(4-Chlorophenyl)-N,N-dimethyl-4-(1-methyl-5-nitro-1H-

imidazol-4-yl)-4,5-dihydroisoxazol-5-amine (3b). Colorless

powder, yield 65%, mp 164–166 °С (EtOH); IR (ν/сm−1): 3120,

1490, 1361, 1306; 1Н NMR (DMSO-d6) δ 2.34 (s, 6H, NMe2),

3.92 (s, 3H, СН3), 5.29 (d, J = 4.0 Hz, 1Н, СН), 5.32 (d, J = 4.0

Hz, 1Н, СН), 7.31 (d, J = 8.8 Hz, 2H, HAr), 7.54 (d, J = 8.8 Hz,

2 H, HAr), 7.89 (s, 1H, CHimidaz.); 
13С NMR (DMSO-d6) δ

35.9, 39.3, 49.0, 104.6, 128.3, 128.6, 129.4, 134.8, 135.5, 142.2,

142.4, 154.4; EIMS (m/z): 349 [M]+; anal. calcd for

C15H16ClN5O3: C, 51.51; H, 4.61; N, 20.02; found: C, 51.65;

H, 4.47; N, 20.28.

Transformation of isoxazolines 3b,c to
isoxazoles 4c,h
A solution of corresponding isoxazoline 3b,c (1 mmol) in a

mixture of H2O/HOAc (1:1, 2 mL) was stirred at room tempera-

ture for 30 minutes (3b) or overnight (3c). The formed precipi-

tate was filtered off, washed with H2O and dried in a desiccator

over P2O5 and recrystallized from EtOH (4c) or purified by

flash column chromatography (CH2Cl2) (4h).

3-(4-Chlorophenyl)-4-(1-methyl-5-nitro-1H-imidazol-4-

yl)isoxazole (4c). Pink powder, yield 70%, mp 129–131 °С

(EtOH); 1Н NMR (DMSO-d6) δ 3.95 (s, 3H, СН3), 7.43–7.56

(m, 4H, HAr), 8.13 (s, 1H, CHimidaz.), 9.37 (s, 1H, C5–H); 13С

NMR (DMSO-d6) δ 35.5, 111.4, 127.2, 128.8, 129.5, 131.6,

134.7, 135.9, 141.8, 159.4, 161.3; EIMS (m/z): 304 [M]+; anal.

calcd for C13H9ClN4O3: C, 51.25; H, 2.98; N, 18.39; found: C,

51.36; H, 2.79; N, 18.52.
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X-ray diffraction study
X-ray analyses were accomplished on an Xcalibur 3 diffrac-

tometer using the standard procedure (graphite-monochromated

Mo K-irradiation, ω-scanning with step 1o, T = 150.00(10) K)

(4o,p) or 295(2) K (4a) (See Supporting Information File 2).

Using Olex2 [52], the structures were solved with the Superflip

[53] structure solution program using Charge Flipping and

refined with the ShelXL [54] refinement package using Least

Squares minimization. Deposition numbers for compounds 4a

(1473400), 4o (1405543) and 4p (1405542) contain the supple-

mentary crystallographic data for this paper. These data can be

obtained free of charge from the Cambridge Crystallographic

Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.
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