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It is highly possible to obtain high-quality microbial products in appreciable amounts,
as aerospace technology is advancing continuously. Genome-wide genetic variations
in microorganisms can be triggered by space microgravity and radiation. Mutation
rate is high, mutant range is wide, and final mutant character is stable. Therefore,
space microorganism breeding is growing to be a new and promising area in
microbial science and has greatly propelled the development of fermentation technology.
Numerous studies have discovered the following improvements of fermentation potential
in microorganisms after exposure to space: (1) reduction in fermentation cycle and
increase in growth rate; (2) improvement of mixed fermentation species; (3) increase in
bacterial conjugation efficiency and motility; (4) improvement of the bioactivity of various
key enzymes and product quality; (5) enhancement of multiple adverse stress resistance;
(6) improvement of fermentation metabolites, flavor, appearance, and stability.
Aerospace fermentation technology predominantly contributes to bioprocessing in a
microgravity environment. Unlike terrestrial fermentation, aerospace fermentation keeps
cells suspended in the fluid medium without significant shear forces. Space radiation and
microgravity have physical, chemical, and biological effects on mutant microorganisms
by causing alternation in fluid dynamics and genome, transcriptome, proteome, and
metabolome levels.

Keywords: extreme environment, microorganism, production improvement, fermentation improvement, genetic
mutant, aerospace technology

INTRODUCTION

Microorganism fermentation is the most prominent and rapidly growing segment of biological
sciences, and fermentation of microbes and their products are closely associated with agriculture
and the food and pharmaceutical industries (Kalsoom et al., 2020). However, there are some
challenges for industrial fermentation, including limited biomass, time-consuming to reach steady-
state and low cell densities (Yang and Sha, 2019), and low yields and nutri. Electrical energy is
mainly used for industrial fermentation. However, electrical fields may affect the fermentation
bioprocess by altering its micronutrients (Gavahian and Tiwari, 2020). Semi-solid and submerged
fermentations have been widely conducted in industries but with low-level yields and time spent
because of terrestrial gravity. The space’s extreme environment, with high-level radiation and
microgravity, may address these important issues via wide-range mutants.
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The space’s extreme environment, with a temperature above
absolute zero degrees, mainly includes microgravity, space
radiation (in the form of rays, electromagnetic waves, and/or high
energic particles), the ionosphere ionized by solar and cosmic
radiations, ultra-vacuum, etc. (Figure 1). Space microgravity is
defined as gravity less than 10−4 G (1 G is defined as 9.8 m/s2) in
the space’s environment. Under the space environment, mutant
DNA occurs at a global chromosomal level because of the
deletion, replacement, or insertion of bases, which is higher than
on the earth (Mulkey, 2010) and improves the fermentation
potentials of microorganisms, such as Lactobacillus acidophilus
(Shao et al., 2017), Saccharomyces cerevisiae (Liu et al., 2008), and
Bacillus subtilis (Nicholson and Ricco, 2019).

Since September 21, 1992, China Manned Space Engineering
has been burgeoning. In the past 30 years, it has attained
significant success in aerospace technology, including the
launch of a series of Shenzhou spacecraft. China started space
microorganism experiments in the Shenzhou I spacecraft on
November 20, 1999 (Fang et al., 2005), and has accumulated a
visual experience in effects of the space’s extreme environment
on microorganisms (Figure 1 and Supplementary Table 1).
In September 2010, China officially launched its space station
program, and space microorganism sciences have been steadily
developing ever since (Long, 2016). On November 1, 2011, the
Shenzhou VIII spacecraft began a large-scale space microbiology
experiment equipped with 15 microorganisms (Su et al., 2013).
The study revealed changes in bacterial invasion, antibiotic
resistance, and environmental adaptation. The mechanisms may
be caused by various factors, including genome, transcriptome,
proteome, and metabolome. On the same date, engineered
bacterial strains with recombinant human interferon a1b were
launched into the space station. Five mutant engineered bacterial
strains showed significantly higher production of recombinant
human interferon a1b and one strain with twofold increase in
antibiotic activities (Wang et al., 2014). The mutant tetrodotoxin
strains via spatial mutagenesis can be used for industrial
production of toxins. After purification of toxins, they are mainly
used for detoxification and effectively reduce the relapse rate of
addicts (China patent no. CN103160454B) (Mulkey, 2010). On
June 11, 2013, Lysobacter enzymogenes was trained in the space
environment via the Shenzhou X spacecraft (Liu, 2017). The
mutants showed increase in the production of endoproteinase
Lys-C by up to 40.2% with perfect stability. On October 17, 2016,
Acinetobacter baumannii was trained in the space environment
via the Shenzhou XI spacecraft. The ability for biofilm formation
of the mutant strain was reduced (Zhao et al., 2019).

The effect of the space environment on production of
antibiotic actinomycin D by Streptomyces plicatus was tested in
US Space Shuttle STS-80. The space flight reduced the number
of cells in CFU/ml of S. plicatus and increased the productivity
of actinomycin D (Lam et al., 2002). Deletion of the ribosomal
protein gene in the yeast Saccharomyces cerevisiae was detected
after flight in the Russian space station, suggesting that space
radiation containing high-linear energy transfer causes deletion-
type mutants (Fukuda et al., 2000). In another study, three fungal
species, Aspergillus sydowii, Penicillium palitans, and Rhodotorula
mucilaginosa, grew in the Japanese Space Station KIBO for 7

years and the fungi are still increasing and expanding over time
(Satoh et al., 2021).

Whole-genome sequencing and bioinformatics indicated
changes at the genome, transcriptome, proteome, and
metabolome levels, which contribute to phenotypic changes
of mutant strains (Kimura et al., 2006; Sakai et al., 2018). Most
mutants may be induced with improvement of fermentation
potentials via the space’s extreme environment. Mutants can
be screened via high-throughput techniques in a laboratory
on Earth and can be found with improvement in fermented
microorganisms, including (1) shortened fermentation cycle
and increased growth rate because of decreasing lag phase and
prolonging exponential phase via upregulation of DNA replicon
gene (srmB) and repression of nucleoside metabolism genes (dfp,
pyrD, and spoT) (Arunasri et al., 2013; Senatore et al., 2018);
(2) optimization of fermented mixed species (Zongzhou and
Yaping, 2009); (3) increase in bacterial conjugation efficiency and
motility by stimulation of plasmid transfer (Beuls et al., 2009)
and gene regulation of flagellar synthesis and function and/or
taxis (Acres et al., 2021); motility induces three-dimensional
transitions of bacterial monolayers (Takatori and Mandadapu,
2020); (4) improvement of key enzyme bioactivity and product
quality (Zhang et al., 2015); and (5) improvement of metabolite
production, flavor, appearance, and stability (Figure 1 and
Supplementary Table 1; Bin et al., 2015; Senatore et al., 2020).
Therefore, aerospace technology provides an unprecedented
platform for exploring microorganism’s utilization systems.

MECHANISMS FOR THE PHYSICAL,
CHEMICAL, AND BIOLOGICAL EFFECTS
OF SPACE MICROGRAVITY AND
RADIATION ON THE FERMENTATION
POTENTIAL OF MICROORGANISMS

Space microgravity induces mutant microorganisms.
Microgravity can affect physical and chemical environmental
parameters and induce mutant strains. Kanglemycin C is an
immunosuppressant produced by Nocardia mediterranei var.
kanglensis but with limited yields. Space flight can induce
Kanglemycin C-producing mutant strains with high-level
products (Zhou et al., 2006). The marine bacterium Vibrio
fischeri was tested during long-duration spaceflight. The results
showed that rodA was depleted, but that impacts on symbiont
genes were minimal under microgravity (Burgos et al., 2020). On
the other hand, microgravity may increase bacterial conjugation
efficiency by stimulating plasmid transfer (De Boever et al.,
2007). Some phenotype changes of space microorganisms may
be caused by alternation in the metabolic pathway and fluid
dynamics.

Although the space’s microgravity can induce microbe
mutants at the genome, transcriptome, proteome, and
metabolome levels, the exact mechanism for microgravity-
inducing mutants remains unclear. Molecular weight affects
steric forces, interfacial tension, and surface viscosity,
which all have an influence on molecule distribution
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FIGURE 1 | Possible effects of the space’s extreme environment on the fermentation potential of microorganisms. The space’s environment mainly includes
microgravity, space radiation (galactic cosmic ray, electromagnetic waves, solar cosmic ray, solar wind, and solar magnetic and/or high energetic particles),
ionosphere current, and a degree above absolute zero. Most microorganism mutants may be induced with the improvement of fermentation potentials via the
space’s extreme environment, including species, growth rate, enzyme activities, product yields, antibiotic activities, metabolite composition, fermentation flavor and
color, and strain stability (Supplementary Table 1).

(Bąk and Podgórska, 2016). Thus, microgravity will change
these parameters, which possibly affect protein crystallization
(Durbin and Feher, 1996). Protein crystallization is found to be
easily formed in the space’s microgravity environment (Scott
and Vonortas, 2021). Therefore, we propose that microgravity
will affect the physical environment of biological molecules and
their interaction. Changes in macromolecules interaction will
lead to changes in genome structure, transcriptome, proteome,
metabolome, and glycomics (Figure 2A).

SPACE RADIATION INDUCES MUTANT
MICROORGANISMS

Space is filled with high-energy particles (including alpha,
protons, electrons, and neutrons) and electromagnetic waves
(gamma rays and X-rays), which can cause high-level mutation

of DNAs and proteins. Space radiation causes changes in spore
survival and rifampicin resistance in Bacillus species by inducing
amino acid mutants at sites Q469L, A478V, and H482P/Y
(Moeller et al., 2010). An interplay between microgravity and
space radiation can induce DNA strand breaks, chromosome
abnormalities, micronucleus formation, or various mutants
(Moreno-Villanueva et al., 2017). Some forms of radiation affect
the ability for microbial biofilm formation by surface barrier
discharge (Salgado et al., 2021). S. cerevisiae irradiated with
gamma rays had genome-wide variants because of DNA strand
break (Chan et al., 2007).

Space radiation has physical, chemical, and biological effects
on mutant microorganisms with various rays and particles. X-ray
and alpha-particles induce DNA double-strand break (Newman
et al., 1997) and UV- and gamma-irradiation-induced DNA
single-strand breaks in microorganisms (Figure 2B; Lankinen
et al., 1996). An electron particle or X-ray triggers H2O molecules
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FIGURE 2 | Possible functional mechanisms for space microbiology
technology. (A) Possible physical and molecular mechanisms for space
microgravity-inducing mutant microorganisms. (B) Physical, chemical, and
biological effects of space radiation. X-ray and alpha-particles induce DNA
double-strand break and UV irradiation and gamma irradiation induce DNA
single-strand breaks. (C) Advantages of space fermentation technology when
compared with terrestrial fermentation technology. (D) Disadvantages of
space fermentation technology when compared with terrestrial fermentation
technology.

to ionize and disrupt, and produce low-energy electrons and
OH-radicals, which contribute to DNA strand break (Figure 2B).

COMPARISON OF TERRESTRIAL
FERMENTATION AND SPACE
FERMENTATION TECHNOLOGY

Aerospace fermentation technology predominantly contributes
to bioprocessing with its unique space microgravity environment.
Unlike terrestrial fermentation, aerospace fermentation keeps
cells suspended in the fluid medium without significant shear
forces, which are often caused by stirred terrestrial systems
(Figure 2C). A space fermentation device, clinostat, provides a
method of keeping cell movement in liquid without introducing
excessive mixing via the rotational velocity of vessel’s inner
walls (Topolski, 2021). Meanwhile, cell sedimentation can be
prevented via microgravity (Figure 2C). On the other hand,
semi-solid culture is often limited to low-level target products in
a terrestrial lab because of gravity, which can be overcome via
space fermentation technology (Figure 2C). Finally, energy can
be saved during space fermentation via space solar energy, while
electrical power is a predominant way to supply energy during
terrestrial fermentation (Figure 2C). Certainly, there are some
disadvantages for space fermentation technology when compared
with terrestrial fermentation; there are some difficulties in dealing
with thermal control, gas bubbles, and product isolation and
purification because of the lack of gravity (Figure 2D).

DISCUSSION

Space is a special environment consisting of microgravity and
strong radiation, and plays an important role in producing
various mutant microorganisms with health-promoting
properties or improved fermentation potentials. Important
research results and practical applications of microorganisms
with the help of aerospace technology have been achieved in
microbial pharmaceuticals, microbial fertilizers, and wine-
making fields. Mutant microorganisms caused by aerospace
technology have broad research prospects and research value.

To improve the quality of fermentation products, the quality
of yeast is very crucial. In the brewing process, yeast plays an
important role during the conversion of sugar into ethanol,
and this process will affect the quality and yield of wine.
To get better-performing brewing functional flora, creation of
mutant strains at a genome-wide level is available via aerospace
technology. The wine and beer industries have been dominated
by Saccharomyces cerevisiae in the world (Peris et al., 2018).
S. cerevisiae is “indispensable” as a contributor to the flavor-
active metabolite profile and aroma-active compounds of beers
(Kutyna and Borneman, 2018). Beer yeast mutants (S. cerevisiae
HT-1, HT-2, and HT-3) were obtained from the Shenzhou
VIII spacecraft and produced more active metabolites that are
beneficial to human health and further improve product quality,
flavor, and appearance (Bin et al., 2015). The fermentation beer
was separated from the yeast sediment by centrifugation.
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Aerospace biotechnology opens a way for effectively
cultivating new varieties and special germplasm resources and
has a bright future ahead. With the improvement of fermentation
products, there is a boom in modern industry and agriculture.
With the continuous development of world spacecraft, space
methods will be applied to various areas, pushing for more
reliable studies on space microorganisms. However, there
are still some challenges for space microorganism research.
Apparently, there is still a lack of effective methods to avoid
the generation of harmful mutant microbes, and some of them
may be deadly. Post-spaceflight lab screening lacks methods for
controlling the direction of mutagenesis, and more mutagenesis
pathways need to be further explored and investigated. Most
human pathogenic isolates from space stations have been
found to be multidrug-resistant, such as sulfamethoxazole,
erythromycin, and ampicillin, which will cause adilemma in the
antibiotic industry.
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