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ABSTRACT  Microbial communities have an important role in health and dis-
ease. Candida spp. are ubiquitous commensals and sometimes opportunistic 
fungal pathogens of humans, colonizing mucosal surfaces of the genital, uri-
nary, respiratory and gastrointestinal tracts and the oral cavity. They mainly 
cause local mucosal infections in immune competent individuals. However, in 
the case of an ineffective immune defense, Candida infections may become a 
serious threat. Lactobacillus spp. are part of the human microbiome and are 
natural competitors of Candida in the vaginal environment. Lactic acid, low 
pH and other secreted metabolites are environmental signals sensed by fun-
gal species present in the microbiome. This review briefly discusses the ter-
nary interaction between host, Lactobacillus species and Candida with regard 
to fungal infections and the potential antifungal and fungistatic effect of  
Lactobacillus species. Our understanding of these interactions is incomplete 
due to the variability of the involved species and isolates and the complexity 
of the human host. 
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INTRODUCTION 
The composition of the complex microbial communities 
hosted by the human body is highly dependent on the en-
vironmental conditions and host factors. Thus, microbiome 
characteristics vary from site to site and also between indi-
viduals. Microbiomes play an important role in pathogen 
resistance, strengthening the immune system and nutrition 
uptake [1]. The mycobiome is a subset of the microbiome 
and reflects the load and composition of fungal cells in the 
human body [2]. The human vaginal microbiome is associ-
ated with prevention of various urogenital diseases such as, 
bacterial vaginosis, yeast and viral infections, sexually 
transmitted infections or urinary tract infections [3]. Lacto-
bacillus spp. and Candida spp. are commensals of the hu-

man microbiome [4]. Candida is also an opportunistic 
pathogen and can cause infections like vulvovaginal can-
didiasis (VVC), as well as more severe systemic infections. 
About 75% of women suffer from VVC at least once during 
their lifetime [5]. Systemic Candida infections occur in im-
munocompromised patients [6], caused by Candida albi-
cans (about 50%) and Candida glabrata (15%-25%) [7-9]. 
Lactobacillus spp. are part of the healthy vaginal microbi-
ome and are seen as promising probiotics to treat or pre-
vent mucosal Candida infections or to support traditional 
treatment options [10]. Probiotics are defined by the WHO 
as live microorganisms that, when administered or con-
sumed in adequate quantities, confer health benefits [4]. 
Applying Lactobacillus to treat fungal infections is based on 
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BV – bacterial vaginosis, 
CLR – C-type lectin receptor, 
EPS - extracellular polysaccharide, 
GM-CSF – granulocyte macrophage 
colony-stimulating factor 
IFN – interferon,  
LDH – lactate dehyrogenase, 
NAC – non-albicans Candida, 
PMN – polymorphonuclear leukocyte, 
SNP - single nucleotide polymorphism, 
TLR – Toll-like receptor, 
VVC – vulvovaginal candidiasis. 
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the premise that certain Lactobacillus species exert a pro-
tective effect in vivo by reducing the adhesion of the fun-
gus to the vaginal mucosa [11, 12], production of organic 
acids [11, 13, 14] and favorable metabolites [15-18] as well 
as enhancing vaginal epithelial cell immune defense mech-
anisms [19, 20]. 

Several articles discuss the composition of the human 
microbiome and mycobiome in detail [21-23] and its im-
portance with regard to vaginal health [24, 25]. The role of 
Lactobacillus species as general probiotics has been as-
sessed previously [4, 26-28]. Here we focus on the mole-
cules and mechanisms behind the putative interactions 
between Lactobacillus and Candida spp. 

 

HUMAN ASSOCIATED LACTOBACILLI  
Most vaginal microbiota contain Lactobacillus species [29-
31], with quantity and proportion of specific species and 
strains varying between women of specific ethnic origins 
[24]. Alterations in this microbiome often lead to sympto-
matic conditions, for example bacterial vaginosis or other 
mucosal vaginal infections [25]. Changes in the quantity of 
vaginal microorganisms also play a role in septic postpar-
tum, neonatal infections, pelvic inflammatory disease, mis-
carriage, pre-term birth and increased HIV acquisition and 
onward transmission [29]. Lactobacillus spp. are facultative 
anaerobe, gram-positive, catalase-negative, non-spore-
forming rods. They can produce lactic acid as end product 
of homolactic fermentation [32]. About 200 species are 
associated with the Lactobacillus genus complex [33, 34]. 
Various Lactobacillus spp. are part of the normal human 
gastrointestinal and vaginal flora. However, the species 
involved differ between gastrointestinal (GI) and vaginal 
tract. In fact, Lactobacillus spp. are the predominant mem-
bers of the vaginal microbiome in healthy women [26] and 
are thought to help preventing vaginal dysbiosis [35]. A 
healthy vaginal environment is often associated with a  
L. crispatus, L. gasseri and/or a L. jensenii dominated mi-
crobiome [36, 37]. Besides, there are also women with a 
microbiome consisting of higher proportions of facultative 
and anaerobe bacteria [3], including Prevotella or Gard-
nerella [23, 24]. These non-Lactobacillus dominated micro-
biomes are also considered as a healthy, normal vaginal 
flora in asymptomatic women and are not necessarily a 
sign for disease.  

One of the most frequently isolated organisms in the 
vaginal tract is L. iners. It is found in about 50% of both, 
healthy and diseased women, which is probably due to its 
high degree of adaption to the sometimes changing vaginal 
environment. L. iners has a small genome which indicates a 
parasitic or symbiotic lifestyle. It is associated with in-
creased risk of vaginal dysbiosis [37]. A L. crispatus domi-
nated microbiome is the second most common environ-
ment. Compared to L. iners and mixed vaginal microbiomes, 
dominance of L. crispatus is associated with a more stable 
microbiome and reduced probability to shift towards bac-
terial vaginosis [24]. Analysis at the species-level showed a 
shift from healthy vaginal microbiome dominated by  
L. crispatus to L. iners in genital infections such as VVC, 

Chlamydia trachomatis and bacterial vaginosis [38]. The 
composition of the vaginal microbiome not only differs 
between individual women, but also by ethnicity [23, 24, 
37, 39]. With changing dominating bacteria, also the pH of 
the vaginal environment changes slightly. The lowest me-
dian pH was reached by a L. crispatus dominating microbi-
ome (pH 4.0 ± 0.3) and the highest pH was detected in 
women with a non-Lactobacillus dominated one (pH 5.3 ± 
0.6) [3]. The vaginal environment also fluctuates through-
out the menstrual cycle. During menstruation a slight de-
crease in Lactobacillus spp. and a relative increase in other 
bacteria occur [24]. This may be explained by the fluctua-
tion in estrogen levels, as high levels of estrogen may favor 
a Lactobacillus dominated environment [40]. Estrogen lev-
els are low at the beginning of the menses, which could 
have a negative effect on Lactobacillus spp. numbers [24]. 
Preterm delivery is correlated with dysbiosis, lower vaginal 
levels of L. crispatus and higher levels of other taxa [41, 42]. 
Vitamin D level correlates with the vaginal L. crispatus 
abundance and could thus prevent pregnancy complica-
tions [43]. Following the conclusions of Hickey and col-
leagues it is surprising that since Döderlein´s initial discov-
ery and antibiotic activity of human associated lactic acid 
bacteria about 150 years ago, the microbial ecosystem of 
the human vagina is still not fully understood [23]. 

 

HUMAN ASSOCIATED FUNGI 
Fungi contribute marginally to the human microbiome but 
nobody is fungus-free. In the gut, about 0.1% of the species 
are of fungal origin according to metagenomics studies [44, 
45]. Nevertheless, fungi produce unique metabolites and 
enzymes and thus the fungal constituents may help main-
taining microbial community structure, metabolic function 
and immune-priming frontiers [46]. A small number of 
fungal species are asymptomatic colonizers like Candida 
spp., Malassezia spp., Cryptococcus neoformans or Pneu-
mocystis jirovecii. They have the potential to become 
pathogenic for example when the host is immunocompro-
mised or the host environment is disturbed by antibiotic 
treatment [47]. Despite antifungal therapy they survive as 
persisters [48] or acquire transient antifungal resistance 
(heteroresistance) [49]. 

Candida spp. are the fourth most common cause of 
nosocomial systemic infections in the United States. C. 
albicans has the highest prevalence in humans [50]. It is 
part of the oral, gut and vaginal mucous microbiota and is 
associated with causing VVC [10, 47]. Other relevant hu-
man associated species are C. glabrata, C. tropicalis, C. 
krusei, C. parapsilosis, C. dubliniensis and C. lusitaniae [51-
53]. 
 
Candida albicans 
C. albicans can be isolated in up to 80% of healthy individ-
uals and has its natural habitat on skin and mucous mem-
branes like oral or vaginal epithelium and urogenital tract 
[50]. C. albicans can colonize without symptoms host nich-
es which differ in nutrient availability, pH or CO2 levels. Its 
ability to thrive in these conditions is an indication for its 
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commensalism in humans and an important feature for its 
pathogenicity as well. C. albicans is pleomorphic and able 
to grow as yeast, as pseudohyphae cells or as true hyphae 
[21, 50, 54]. Pathogenicity is associated with invasive hy-
phal growth [55], whereas commensalism of C. albicans 
happens mostly in the adherent yeast cell form (also called 
blastospores), since epithelial cells fail to efficiently recog-
nize them [54, 56]. C. albicans blastospores are associated 
with vaginal transmission [5]. C. albicans belongs to the 
CTG clade of Ascomycota and Saccharomycotina [57, 58] 
with many associated asexual species [59]. CTG addresses 
the reassignment of the conventional Leu CUG codon to 
serine [60, 61]. The selective advantage of such as reas-
signment is speculative but might cause a higher variability 
of surface exposed proteins to adapt to environmental 
challenges such as recognition by the immune system [62].  

C. albicans is the cause of most oral and vaginal Candid-
iasis [10]. Important key virulence factors of C. albicans 
include biofilm formation, countering host innate immunity, 
evasion from host immune system, adherence to host sur-
face, yeast to hyphae transition and production of candida-
lysin [50, 54, 63]. Candidalysin is a cytolytic peptide toxin 
mainly expressed by hyphal cells that directly damages 
epithelial membranes leading to activation of a danger 
response signaling pathway and thus epithelial immunity 
[64]. Another important virulence factor is the ability to 
escape from phagocytosis by neutrophils (the major fungal 
killing effector immune cells) and macrophages. C. albicans 
escapes by inducing non-lytic expulsion, increasing the 
alkalinity, hyphae formation, generating protective antiox-
idants or induction of pyroptosis to lyse the phagocyte [50].  

Furthermore, biofilm formation is important for patho-
genicity and treatment, because biofilms, among other 
traits, exhibit higher antifungal resistance compared to 
planktonic cells. Only two classes of agents, amphotericin B 
and echinocandins were found to have an in vitro efficacy 
against fungal biofilms [65]. Additionally, mechanisms of 
the immune system against infections, such as macrophage 
migration towards C. albicans are reduced when cells are 
in a biofilm structure [66]. Biofilm formation in C. albicans 
develops in several stages. After initial adhesion and bio-
film arrangement, the biofilm disperses [67, 68]. These 
dispersed biofilm cells were shown to build more robust 
biofilms and exhibit a higher virulence [68]. Mixed species 
biofilms are the basis for intimate contacts and cross king-
dom interactions between bacteria and fungi. 
 
Non-albicans Candida species 
Recent studies show that isolation of non-albicans Candida 
(NAC) species became more frequently isolated in the last 
two decades [69-72]. This is perhaps due to the better 
treatment and thus lower incidence of C. albicans. The 
most important strains associated with diseases are C. gla-
brata, C. tropicalis, C. krusei, C. dubliniensis and C. para-
psilosis [73]. Susceptibility to antifungal drugs differs be-
tween the species. C. glabrata and C. krusei are intrinsically 
resistant to azoles, C. parapsilosis to echinocandins [74], 
and C. auris an emerging species is notably resistant to 
several drugs [75, 76].  

C. glabrata, the most frequent isolated NAC species in 
Europe and North America, is isolated in around 10% of 
candidiasis patients [70, 73]. C. glabrata is related to the 
bakers´ yeast Saccharomyces cerevisiae [8], and belongs to 
the Nakaseomyces clade [77]. Similar to S. cerevisiae,  
C. glabrata grows only in yeast form. Detailed genomic 
analyses show the divergence of the C. glabrata isolates 
into several distinguishable clades and document remnants 
of occasional mating events [78-80]. Other human patho-
genic Candida species like C. tropicalis or C. dubliniensis are 
closer related to C. albicans [81]. The phylogenetic distance 
of pathogenic Candida spp. suggests pathogenicity has 
evolved independently [9]. Human virulence of Candida 
species has developed in several independent ways and 
entails different mechanisms regarding adhesion, persis-
tence, immune system evasion, stress resistance, and nu-
trient requirements [82-84]. C. glabrata has highly efficient 
adhesion to various surfaces due to a range of adhesins 
[85], high stress resistance and in addition has the shortest 
replication time of all Candida spp tested so far (our un-
published results) [86].   

C. glabrata strains have an intrinsic resistance to azole 
antifungal drugs [87, 88]. C. glabrata does not cause epi-
thelial damage and does not provoke a strong immune 
response. Furthermore, it can reside in macrophages with-
out immediately harming them [9]. C. glabrata does not 
form a biofilm on vaginal mucosa in a mouse model. How-
ever, it is able to form biofilms on abiotic surfaces such as 
medical devices such as vascular and urinary catheters [89, 
90]. Biofilms on abiotic surfaces consist of yeast cells in 
multilayer structures [91]. Interestingly, a positive interac-
tion between C. albicans and C. glabrata for host infection 
has been suggested. Mixed biofilms consisting of C. glabra-
ta and C. albicans lead to more robust and complex struc-
tures and improve antifungal resistance [92]. We observed 
relatively frequent co-isolation of both fungi. Furthermore, 
C. albicans and C. glabrata co-infection seems also to be 
important for both initial colonization and establishment of 
oropharyngeal candidiasis infection by C. glabrata [93].  

Other NCAs are such as the C. parapsilosis complex,  
C. tropicalis, are, with regional differences, of more or less 
of similar prevalence as C. glabrata, while C. dubliniensis,  
C. krusei and C. lusitaniae are less frequently isolated [88, 
94]. In general, commensal and pathogenic Candida spe-
cies are confronted with and are part of the microbiome. 
Thus, multiple interactions, either synergistic or antagonis-
tic, with various bacterial species are common [95]. 

 

VULVOVAGINALE CANDIDIASIS 
The most common classic mucosal vaginal infections in-
clude bacterial vaginosis (BV), Trichomoniasis and VVC [96]. 
VVC is an acute inflammatory disease and one distin-
guishes between the uncomplicated and complicated form 
[40]. Symptoms for both are acute pruritus, erythematous 
vulva, dyspareunia and white vaginal discharge, which 
makes both variants clinically indistinguishable [5]. Compli-
cated VVC is defined as a recurrent infection or infections 
in pregnant, immunocompromised and debilitated persons, 
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as well as infections caused by Candida species other than 
C. albicans [40]. Uncomplicated VVC comprises infections 
with C. albicans, non- recurrent infections and/or infec-
tions in an immunocompetent host [40]. Around 11-30% of 
VVC are induced by NAC species [6]. A recurrent form of 
VVC develops in about 5-8% of the cases [5, 97]. Around 
15% of recurrent VVC infections are induced by C. glabrata 
[40]. Diagnosis of vaginitis is normally conducted by mi-
croscopy, wet mount, culture or PCR [96, 98]. 

Treatment options for VVC comprise a variety of anti-
fungal agents, e.g. fluconazole (oral), miconazole (topical) 
or clotrimazole (topical) [40]. Both, oral and topical anti-
fungal agents are prescribed for 1 to 7 days, depending on 
dosage and drug [5]. Fluconazole is the preferred choice 
against fungal infections as it can be taken orally in single 
dose [5]. Complicated VVC often needs a more rigid regime 
in order to keep the vaginal fungal load at reduced levels 
[10]. In addition, some NAC species are intrinsically re-
sistant or less susceptible [10, 99]. In that case a broader 
spectrum agent like amphotericin B deoxycholate, voricon-
azole, or echinocandins, such as caspofungin and anidula-
fungin, can be used to treat the infection [7, 10]. Infections 
caused by C. glabrata can also be treated alternatively with 
boric acid or flucytosine [100]. Acquired antimycotic re-
sistance emerges mainly during treatment due to selection 
in patients and is usually confined and rarely transferred 
between patients [74]. Still, therapy improvements for 
species with antimycotic resistance are needed. 

 

METABOLIC BYPRODUCTS OF LACTOBACILLUS 
Commensal bacteria generate metabolic byproducts to 
support their persistence in the host and confer a survival 
advantage over invading pathogens [32]. Lactobacillus spp. 
produce lactic acid, acetic acid, H2O2, biosurfactants and 
other compounds (see Figure 1). 

Lactic Acid 
Lactobacilli produce different short chain aliphatic organic 
acids, like lactic acid or acetic acid. The content of acetic 
acid in the vaginal environment is low, ranging from  
1-4 mM [101] as it is mainly produced under aerobic condi-
tions and the vaginal environment is anaerobic or micro-
aerobic. Indeed, acetate concentration may rise during BV 
[102]. Lactic acid, on the other hand, is produced through 
anaerobic respiration and is thought to decrease the pH in 
the vaginal tract [12, 103]. Domination of the vaginal mi-
croflora by Lactobacillus spp. is accompanied by a low pH 
(pH 3.5 - 4.5) [104]. Lactic acid concentration in the vaginal 
milieu is around 110 mM [104]. Lactic acid in combination 
with low pH was shown to inhibit C. albicans [105]. No 
inhibition of C. albicans [14, 17, 106] or C. glabrata [14, 17, 
107] was observed at a lactic acid concentration reached 
with the supernatant of a cultured L. rhamnosus strain. The 
capability and rate of production of lactic acid is Lactobacil-
lus strain specific. It was proposed that only elevated levels 
of lactic acid efficiently inhibit fungal growth [13, 107]. In 
support of this, supernatants of L. rhamnosus, L. casei and 
L. acidophilus exhibit an antifungal effect against Candida 
spp. only if harvested after prolonged incubation (24 h or 
48 h) in which lactic acid could accumulated in the medium 
[13]. In addition, the reported lactic acid concentration of 
the vaginal tract was found to be too low to prevent 
growth of all relevant Candida species (our unpublished 
observation). However, in the local vaginal micro milieu or 
biofilm, in which higher concentrations of lactic acid could 
be reached, lactic acid could be a relevant antifungal agent. 
Also, low pH itself plays a minor role in Candida infections 
as the vaginal pH does not change during VVC in contrast 
to bacterial dysbiosis [5, 108]. Most studies also show that 
Lactobacillus remains the dominant bacterial species dur-
ing VVC [108, 109]. The composition of the Lactobacillus 

FIGURE 1: Interactions between C. albicans and Lactobacillus spp. Production of metabolic products prevent colonization through C. albicans 
either due to prevention of adhesion to the epithelial cell wall, or due to high concentrations of organic acids, exerting a fungistatic effect. 
H2O2 and acetate probably don’t play a role in the vaginal tract. Saturation of adhesion sites and co-aggregation of Lactobacillus spp. prevent 
adherence of Candida spp. Gene expression in C. albicans gets changed due to presence of Lactobacillus. Expression of genes responsible for 
adherence and yeast to hyphal formation is reduced. Presence of Lactobacillus can alter the host immune response in case of Candida coloni-
zation to attract granulocytes and promote the immune defense. The picture was adapted from Bradford and Ravel[22]. 
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strains differs during Candida infections [108, 110], which 
could lead to a decrease of lactic acid concentration and 
possibly other metabolites which in turn may allow Can-
dida growth in the vaginal tract. 

Stress response to weak organic acids like lactic acid 
differs between Candida species. A C. albicans transcrip-
tome analysis of a set of different weak organic acids like 
lactic, acetic, propionic, and butyric acid led to a discovery 
of a complex core transcriptional response to all tested 
organic acids. In general, ribosomal RNA and RNA synthesis 
was reduced, indicating that C. albicans enters a starva-
tion-like metabolic state after prolonged exposure to or-
ganic acids with reduced transcription, translation and 
growth. Furthermore, intracellular iron was decreased up-
on weak organic acid exposure [111]. Generally, exposure 
to weak acids leads to dramatic changes of gene expres-
sion. The involved pathways differ between species. For 
example, CaMig1, a transcription factor associated with 
glucose repression, was discovered as a central regulator 
of weak organic acid like lactic, acetic, propionic, and bu-
tyric acid resistance in C. albicans, however, it is only active 
in the presence of glucose [112]. In fact, glucose is limited 
in the vaginal tract [113], making this glucose-dependent 
response unlikely to contribute to lactic acid resistance in 
the vaginal environment. Mnl1, the C. albicans homologue 
of the yeast Com2, was found to be required for acetic acid 
response [114]. In S. cerevisiae, the transcription factors 
Msn2, Msn4 and War1 signal weak acid stress (e.g. sorbic 
acid) [115, 116]. Activation of War1 leads to expression of 
an ABC (ATP binding cassette) transporter gene PDR12, 
which is required for weak acid ion efflux [115] and also 
induced during lactic acid stress in S. cerevisiae [117]. In-
terestingly, in C. glabrata the high osmolarity glycerol 
(HOG) pathway instead of the homologs CgMsn2 and 
CgMsn4 is activated by sorbic acid [116]. The C. glabrata 
HOG pathway is signaling general weak acid response and 
osmotic and oxidative stress [116]. Deletion of HOG1 in C. 
glabrata led to a susceptibility against lactic acid at physio-
logical conditions. Therefore, HOG1 response is needed for 
resistance to lactic acid stress [118].  

Lactic acid itself may indirectly support antifungal ther-
apy. Lactic acid and acetic acid at physiological concentra-
tions increase efficacy of different azoles against C. albi-
cans. Higher concentrations also improved efficacy of az-
oles against C. glabrata [14]. Undissociated organic acids 
like for example lactic acid or acetic acid lead to perturba-
tion of plasma membrane structures in yeast cells, which 
may increase uptake of azoles into the yeast cell [119]. The 
overall concentration of organic acids like acetic acid or 
lactic acid may be too low to have a fungistatic effect on 
their own. However, facilitating azole efficacy by lactic acid 
could improve traditional treatment of Candida infections.  

Anyhow, outside of the host environment, lactic acid 
could be less important as antifungal agent. In a co-culture 
system with C. albicans, L. paracasei [120] and L. rhamno-
sus, L. casei and L. acidophilus [13] do not acidify the envi-
ronment significantly. This could indicate that these iso-
lates do not produce sufficient amount of lactic acid. How-
ever, in contrast to these studies we find consistently 

strong acidification in co-cultures of C. albicans, C. glabrata 
with L. fermentum, L. rhamnosus or L. gasseri in vitro (our 
unpublished observations). These differences could arise 
from the media used for co-culture. Whereas both studies 
used brain heart infusion (BHI) broth for their assays [13, 
120], we used MRS, which favors Lactobacillus growth and 
is slightly acidic. Of note, BHI medium is buffered to a neu-
tral pH. C. albicans can utilize lactate as carbon source and 
can even form biofilms [121]. The Lactobacillus spp. gener-
ated lactate is used up by C. albicans as carbon source at 
neutral pH, explaining why in these studies Lactobacillus 
did not acidify the neutral BHI medium. This notion is also 
supported by a study from Willems et al. [122] in which a 
Streptococcus mutans – C. albicans biofilm had a higher 
lactic acid production, accompanied with a higher pH com-
pared to a sole bacterial biofilm, hinting that C. albicans 
uses the lactate and thus, prevents acidification of its envi-
ronment.  

Taken together, lactic acid is most probably not the 
sole antifungal agent produced by Lactobacillus spp. Neu-
tralized supernatants of L. pentosus [123, 124], L. rhamno-
sus GR-1 and L. reuteri RC-14 [11] were able to inhibit 
growth of C. albicans [123, 124] and C. glabrata [11]. In 
support of this, inhibition of Candida spp. by L. crispatus,  
L. gasseri and L. vaginalis is not correlated to lactic acid 
production [125]. 
 
Hydrogen Peroxide 
Production of H2O2 is an important feature of Lactobacillus 
spp. to defend against bacterial infections [109, 126]. This 
is probably not strictly the case for Candida infections. The 
non-H2O2 producer L. rhamnosus GR-1 and the H2O2 pro-
ducer L. reuteri RC-14 both inhibited growth of C. albicans 
[105]. Similar results were obtained with C. glabrata [11]. 
Most isolates of C. glabrata also have high tolerance to 
reactive oxygen species (ROS) such as H2O2 [127]. Several 
facts suggest that H2O2 only plays a minor role in Candida 
defense of Lactobacillus species in the microaerobic vagi-
nal environment. Lactobacillus spp. produce H2O2 predom-
inantly under aerobic conditions, but the conditions in the 
vagina are hypoxic [27]. The physiological concentration 
reached in Lactobacillus cultures (< 100 µM) does not harm 
lactobacilli, BV - associated bacteria and Candida spp. [128]. 
High concentrations of H2O2 (10 mM) which could harm 
Candida spp. were shown to be harmful to vaginal Lacto-
bacillus species [128]. 
 
Other antifungal factors  
Other suggested antifungal factors produced by bacteria 
are small molecules like bacteriocins and biosurfactants 
[129]. Bacteriocins are proteinaceous, bacterial substances, 
which are able to inhibit growth of same or closely related 
species. Bacteriocin-like substances are very similar to bac-
teriocins, but often inhibit a broader range of species like 
gram-positive, gram-negative bacteria or fungi [130]. 
Pentocin TV35b is a bacteriocin-like peptide produced by  
L. pentosus which was found to have a fungistatic effect on 
C. albicans [18]. It remains the only reported bacteriocin-
like peptide till today.  
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Adhesion to the mucosa is generally seen as the first 
step of infection [131, 132]. Lactobacillus spp. produce 
biosurfactants reducing adherence of competing organisms 
to the epithelial cell wall [133]. Some biosurfactants are 
active against C. albicans [15, 98]. For example, biosurfac-
tants produced by L. jensenii and L. gasseri are able to re-
duce biofilms on polystyrene plates of C. albicans, C. tropi-
calis and C. krusei by 25%-35 [15]. CV8LAC, a biosurfactant 
produced by L. brevis is able to decrease C. albicans adhe-
sion and biofilm formation to precoated medical-grade 
silicone [134]. The use of this biosurfactants could be de-
veloped further as a potential new coating material for 
medical devices to minimize Candida infections [134]. In 
general, supernatants of different Lactobacillus species 
were found to reduce adhesion of C. albicans to HeLa cells 
(L. crispatus, L. gasseri) [125], to plastic surface (L. paraca-
sei) [135], as well as to TR146 cells (L. rhamnosus) [136]. 
The question remains open, if these supernatants contain 
unrecognized biosurfactants or if other metabolites are 
able to reduce adhesion.  

C. albicans adheres to vaginal epithelial cells and initi-
ates morphological changes of the cells leading to induc-
tion of cellular endocytosis. Treating these infected cells 
with L. crispatus lead to a decrease in adhesion, hyphal 
formation and proliferation of Candida [137]. C. albicans 
adhesion to Vk2/E6E7 cells was reduced by their preincu-
bation with extracellular polysaccharide (EPS) produced by 
L. crispatus L1 [16]. This reduction was similar to the cell-
dependent reduction of adhesion by a preincubated  
L. crispatus L1 [16]. However, co-cultivation of EPS and  
C. albicans on Vk2/E6E7 cells did not reduce adhesion of  
C. albicans, whereas co-culture of C. albicans and L. crispa-
tus lead to a reduction of adhesion of C. albicans [16]. EPS 
could therefore be a putative new coating agent. The cell-
dependent reduction of adhesion is probably due to co-
aggregation of Lactobacillus and Candida species. Co-
aggregation is a characteristic of early biofilm formation as 
it involves adhesion-receptor interactions between the 
microbial cell surfaces. Therefore, competition for binding 
sites could be partly influencing proper adhesion of Can-
dida to mucosal surfaces [12]. With regard to studies with 
NAC species, L. reuteri [12], L. pentosus [123] L. rhamnosus 
GR-1 and L. reuteri RC-14 [11] were shown to possess the 
ability to co-aggregate with various Candida species be-
sides C. albicans, for example C. glabrata [11, 12], C. krusei 
[12] or C. tropicalis [123]. Interestingly, good initial adhe-
sion of L. gasseri, L. crispatus or L. vaginalis isolates was 
not consistent with good inhibition of adherence of C. albi-
cans [125]. This suggests that minimizing the adhesion of  
C. albicans is not solely due to saturation of adhesion sites, 
but rather through either changes in the epithelial cell sur-
face or due to influencing the adhesion ability of the path-
ogen itself [125].  

Lactobacillus spp. influence C. albicans morphology. 
Hyphae formation was impaired in co-culture with L. para-
casei [120, 135]. Interaction of Lactobacillus and C. albicans 
alters the gene expression pattern towards the yeast form. 
C. albicans yeast form generally shows reduced adhesion 
and biofilm formation [54]. Interaction between Lactobacil-

lus spp. and Candida leads to expression changes of genes 
associated with biofilm formation, yeast to hyphal transi-
tion and adhesion. For example, ALS3, EFG1 or HWP1, 
were suppressed in C. albicans cells treated with L. paraca-
sei supernatant [135, 138]. Efg1 is a regulator for several 
genes responsible for yeast-hyphae transition such as ALS3, 
HWP1 or SAP (secreted aspartate proteases) genes [139, 
140]. Furthermore, interaction with L. paracasei induced 
expression of YWP1, a gene associated with the yeast form 
[135]. Furthermore, PHR1, a pH responsive gene coding for 
a glucan remodeling enzyme supporting hyphal growth in 
Candida, was downregulated in C. albicans co-cultured 
with L. reuteri RC-14 and L. rhamnosus GR-1 [105, 141]. 
This suggests that Lactobacillus spp. influences C. albicans 
to stay in its less invasive form, which could help prevent-
ing overgrowth of the fungus. In addition, the interaction 
directly leads to downregulation of several C. albicans 
genes related to adhesion, invasion and counteraction of 
host defenses [138]. In C. glabrata altered gene expression 
of genes related to adhesion in the presence of L. rhamno-
sus and L. reuteri supernatants was also observed. Down-
regulation of the adhesion gene YAK1 was accompanied by 
reduced levels of the Yak1-dependent adhesin EPA6, which 
is involved in adhesion and biofilm development [107, 142]. 
This indicates that presence of Lactobacillus spp. decreases 
adhesion and maybe virulence of C. glabrata.  

RNA-Seq of C. albicans gene expression in response to a 
TR146 cell monolayer, which was preincubated with  
L. rhamnosus GG revealed upregulation of genes involved 
in fatty acid catabolism, glyoxylate cycle and gluconeogen-
esis and downregulation of glycolysis and ergosterol bio-
synthesis genes [136]. Another study investigating  
L. reuteri RC-14 and L. rhamnosus GR-1 co-culture found an 
upregulation of glycolysis and a reduced expression of 
genes relating to gluconeogenesis [105]. Thus, strain-
specific effects are obviously an important factor to keep in 
mind while exploring Lactobacillus spp. as potent novel 
probiotics. Furthermore, one study was conducted on cell 
layer surface, while the other one on an abiotic surface 
[105, 136]. This could be an indicator for the importance of 
proper in vitro systems, mimicking the actual environment 
as close as possible. 
 
Three-way interactions including the host 
The ability to recognize and sense a pathogen is crucial for 
the immune system to initiate an immune response. Can-
dida spp. have a cell wall, consisting of carbohydrate poly-
mers such as mannans, β-glucans and chitin merged with a 
protein matrix [143]. This cell wall components can be de-
tected by Toll-like receptor family (TLR), C-type lectin re-
ceptor (CLRs) family like Dectin-1, Dectin-2 or Mincle, Ga-
lectin-3 and scavenger receptors [143] which start the im-
mune response. For example, C. albicans mannans gets 
recognized by TLR4, whereas β- glucans are sensed by Dec-
tin-1 [143]. CLRs are the responsible receptor family for the 
immune reaction against disseminated Candidiasis [144]. 
CBL-B, an E3-ubiquitin ligase, controls availability of Dectin-
1 and -2 receptors in phagocytes [144]. Interestingly, in 
vivo testing in mice showed that inhibition of CBL-B con-
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veys a protective effect against C. albicans systemic infec-
tions [144]. Single nucleotide polymorphism (SNP) in dif-
ferent TLRs also can lead to increased susceptibility against 
C. albicans and Candidiasis, for example SNP in TLR1 is as-
sociated with an impaired cytokine release during C. albi-
cans infection [143].  

Activation of the host innate immune response by  
C. albicans leads to the production of various cytokines and 
chemokines by epithelial cells [145]. An effective Th1 re-
sponse is crucial for defense against C. albicans infections 
[20, 145, 146]. Development of antifungal Th1 response is 
initiated by TLRs [143]. Th2-type response, on the other 
hand, is considered as nonprotective against the fungi [147, 
148]. Th1 response comprises production of INF-γ, TNF β 
IL-6 and IL-2, which are protective against most fungal in-
fections [149]. Humoral immunity is mediated by Th2 re-
sponse, which produce IL-4, IL-5 and IL-13 [150]. Upregula-
tion of Th2 response is associated with reduced IFN- γ pro-
duction and therefore, correlating with higher disease se-
verity and poor prognosis [149]. Th2 induction was found 
to be dependent on Type 1 interferon (INF-1) cytokines 
[151]. INF-1 are associated with mediation of lethal effects 
during disseminated Candida infections [152], which could 
be another explanation why Th2 response correlates with 
poor disease progression. Additionally, there are Th17 cells 
which, among others, produce IL-17. Th17 cytokines are 
thought to exhibit a protective role against mucosal and 
disseminated fungal infections [149]. Sole C. albicans inter-
action leads to a decrease of IL-2 and IL-4 production in 
epithelial cells. In addition, IL-17 response gets impaired, 
which suggests a diminished inflammatory immune re-
sponse [137]. Furthermore, C. albicans hyphae bind to 
TLR2 and induce the production of IL-10, an anti-
inflammatory cytokine, which leads to fewer regulatory  
T cells [153] and therefore a decreased host immune re-
sponse. In mice, IL-10 expression is associated with higher 
susceptibility to candidiasis [154, 155]. IL-8 and IL-1α secre-
tion gets significantly increased upon C. albicans treatment, 
indicating that they play an important role in the natural 
host’s defense against the yeast infection [19].  

Treatment of epithelial cells with only Lactobacillus spp. 
also alters the immune response. For example, L. crispatus 
increased IL-2 and decreased IL-8 response of vaginal epi-
thelial cells [137]. Another study found that stimulation of 
epithelial cells with L. rhamnosus GG or L. reuteri RC-14 
without prior interaction with Candida leads to an upregu-
lation of IL-8 release [19, 136]. Treated cells showed nei-
ther visible damage [136] nor induction of apoptosis [156]. 
IL-8 acts as chemoattractant for polymorphonuclear leuko-
cytes (PMNs) and other granulocytes. PMNs are associated 
with defense mechanisms against Candida infections [157]. 
Additionally, they induce a Th1 response [20]. Therefore, 
induction of IL-8 by Lactobacillus spp. could work as a pro-
tective mechanism for the host by attracting PMNs to 
quicken the immune response in case of an infection.  

Simultaneous treatment of epithelial cells with C. albi-
cans and Lactobacillus supernatants showed increased IL-8 
(L. reuteri RC-14) and IFNγ-induced protein 10 (IP-10) (L. 
rhamnosus GR-1) release and reduced the inflammatory 

response of the host [19]. However, other studies showed 
that L. plantarum 59 and L. fermentum interaction down-
regulates IL-8 response in C. albicans infection on HeLa 
cells [158]. Quantity of antifungal agents produced by Lac-
tobacillus spp. like lactic acid could in turn lead to a vari-
ance in cytokine response [19]. Treatment with L. crispatus 
was able to mitigate C. albicans-induced reduction in IL-17 
expression of vaginal epithelial cells [137]. This would indi-
cate that L. crispatus prevents C. albicans from downregu-
lating an IL-17 dependent immune response. However, the 
role of Th17 response in VVC is not fully clear yet [159, 
160]. Cells preincubated with L. rhamnosus have decreased 
release of lactate dehydrogenase (LDH) during infections 
[136]. LDH is a soluble enzyme, found in almost every living 
human cell and is responsible for lactic acid fermentation. 
In case the cell membrane is damaged, it is released into 
their surrounding extracellular space and serves as a cell 
death marker [161]. Decreased release of LDH suggests 
that cells, treated with Lactobacillus spp., are protected 
from C. albicans induced cell damage [136]. Another way 
how Lactobacillus spp. could mediate tolerance to C. albi-
cans on the mucosa is by producing tryptophan catabolites 
via Indolamin-2,3-Dioxygenase IDO1 [162]. These act on 
regulatory T-cells which results in raising local expression 
of IL-22 and thus, could provide immunoprotection to VVC. 
IDO1 and IL-22 deficiency in animals is linked to increased 
susceptibility in VVC [163]. 

The host immune response in C. glabrata infection is 
generally lower than with C. albicans [164]. It was shown 
that only granulocyte macrophage colony-stimulating fac-
tor (GM-CSF) is induced by C. glabrata. GM-CSF is a potent 
activator of macrophages and initiates recruitment of mac-
rophages [164]. Since C. glabrata has the ability to survive 
and replicate in macrophages, it could be that the fungus 
attracts macrophages on purpose [164]. There are no stud-
ies addressing the immune response towards C. glabrata 
or other NAC species in presence of Lactobacillus spp.  

Interestingly, treatment of vaginal cells with lactic acid 
(33 mM) decreases the production of IL-6 and IL-8 and 
significantly increases production of the anti-inflammatory 
cytokine IL-1 receptor antagonist (IL-1RA) which reduces 
the inflammatory activity of IL-1α and IL-1β [165]. This sug-
gests that lactic acid alone is sufficient to decrease produc-
tion of pro-inflammatory molecules. However, it is current-
ly unclear if this repression can be obtained when treating 
the cells with Candida and lactic acid simultaneously. 

 

CONCLUSION 
Lactobacillus species are promising candidates to improve 
treatment of vulvovaginal Candida infections. Results often 
vary between Lactobacillus and Candida strains, making it 
difficult to pinpoint specific pathways and mechanisms. 
The probiotic effect seen in vitro of Lactobacillus strains is 
probably only partly due to the accumulation of lactic acid. 
The lactic acid content in the vaginal tract is too low to 
have an effect on Candida spp. and one has to assume that 
higher local concentrations of lactic acid are possibly pre-
venting overgrowth of Candida spp. in close proximity to 
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Lactobacillus. In addition, organic acids produced by Lacto-
bacillus spp. do positively influence efficacy of antifungal 
agents by increasing the permeability of fungal plasma 
membrane structure, which facilitates azole uptake. Still, 
lactic acid, low pH and, to a minor extent, other secreted 
metabolites are environmental signals sensed by C. albi-
cans and are leading to changes of gene expression and 
transition to hyphal growth. Another putative mechanism 
for the probiotic effect might be competition for available 
niches and reduced adhesion. All in all, the antifungal ef-
fect (Figure 1) of Lactobacillus comprises different aspects 
and has a species and strain dependent components. So far, 
most studies concentrated on C. albicans. However, NAC 
species have usually different resistance profiles and may 
also require different treatments. Moreover, studies ad-
dressing these fungi are still scarce. Further investigations 
are definitely needed to expand our knowledge on NAC-
Lactobacillus interactions. All in all, carefully selected Lac-
tobacillus species active against specific Candida species 
could lead to improved treatment options. 
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