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Abstract
The current study investigates multiple acoustic cues–voice onset time (VOT), spectral center 
of gravity (SCG) of burst, pitch (F0), and frequencies of the first (F1) and second (F2) formants 
at vowel onset—associated with phonological contrasts of voicing and emphasis in production 
of Arabic coronal stops. The analysis of the acoustic data collected from eight native speakers of 
the Qatari dialect showed that the three stops form three distinct modes on the VOT scale: [d] 
is (pre)voiced, voiceless [t] is aspirated, and emphatic [ṭ] is voiceless unaspirated. The contrast 
is also maintained in spectral cues. Each cue influences production of coronal stops while their 
relevance to phonological contrasts varies. VOT was most relevant for voicing, but F2 was 
mostly associated with emphasis. The perception experiment revealed that listeners were able to 
categorize ambiguous tokens correctly and compensate for phonological contrasts. The listeners’ 
results were used to evaluate three categorization models to predict the intended category 
of a coronal stop: a model with unweighted and unadjusted cues, a model with weighted cues 
compensating for phonetic context, and a model with weighted cues compensating for the voicing 
and emphasis contrasts. The findings suggest that the model with phonological compensation 
performed most similar to human listeners both in terms of accuracy rate and error pattern.
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1 Introduction

Mapping acoustic cues to phonological categories is an important and complicated area in phonol-
ogy and speech perception because links between cues and features are usually multidimensional. 
Features are typically encoded by several cues, and cues are often used to encode more than one 
feature (Repp, 1983; Lisker, 1986; Nearey, 1989). In the process of categorization, listeners usually 
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have to deal with two issues. First, they are to parse an acoustic signal (Fowler, 1984; Gow, 2003) 
and attribute combined acoustic cues to sources, such as gestures (Fowler, 1984; Fowler & Brown, 
2000) or phonetic features (Gow, 2003; Cole et al., 2010). Since each cue provides an estimate of 
the relevant part of the acoustic signal, listeners assign some weight or importance to each cue in 
order to get an accurate estimate of the whole category. Although researchers largely agree that the 
weight of a cue is a function of its reliability to predict a category (e.g., Nearey, 1990; Toscano & 
McMurray, 2010, among others), particular mechanisms of cue weighting in categorization are a 
matter of debate. Second, listeners are to deal with ambiguity and compensate for coarticulation or 
absence of cues (Mann, 1980). Research on compensation (Fowler, 2006; Gaskell & Marslen-
Wilson, 1996; Lotto et al., 1997; Lotto & Kluender, 1998; Viswanathan et al., 2010) suggests that 
listeners are likely to recover the intended category by assigning ambiguity in an acoustic signal to 
coarticulation. However, it is not clear how compensation affects cue weighting. Ambiguous cues 
may be evaluated as less reliable and assigned smaller weight. But when a cue is missing in a sig-
nal, listeners may compensate for it by assigning greater weight to other cues.

Most studies of speech perception investigated the mechanisms of cue integration, cue parsing, 
and compensation using cases in which the same cue is shared by two adjacent segments, or CV/
VC/CC diphones: F3 as a cue to place of articulation in rd/rg/ld/lg clusters (Mann, 1980), nasal 
airflow in VN diphones (Gow, 2003; Fowler & Brown, 2000), vowel duration as a primary cue to 
voicing of a stop and a secondary cue to vowel height in bat/bad/bet/bed syllables (Nearey, 1990), 
F1 as a primary cue to vowel height and a secondary cue to stop voicing in hVt/d syllables (Nearey, 
1997), lip rounding in si/sy/ʃi/ʃy syllables (Nearey, 1992; Smits, 2001), or VOT as a primary cue to 
stop voicing and secondary cue to vowel duration in p/bV syllables (Miller et al., 1986).

In each of these cases, the same cue contributes to categorization of both segments in a diphone, 
which includes some sort of compensation mechanism or trading relation between cues (Repp, 
1983). The task becomes more challenging when listeners have to deal with parsing of multiple 
cues to multiple categories. Research on vowel-to-vowel coarticulation (Cole et al., 2010; 
McMurray et al., 2011) and on categorization of English fricatives (McMurray & Jongman, 2011) 
suggests that ambiguity in cues can (at least partially) be resolved by removing contextual informa-
tion about talkers and neighboring segments. There is little research on cases where multiple cues 
are used to categorize single segments that belong to multiple phonological contrasts. An example 
of such a case is Arabic coronal stops د [d], ت [t], and ط [t]̣, which are crosscut by two phonological 
dimensions: voicing and emphasis. Both contrasts are linked to essentially the same cues: VOT, 
mean frequency of burst (SCG of burst), fundamental frequency (F0), and frequencies of the first 
(F1) and second (F2) formants of the following vowel. One might suggest that these cues would 
differ in terms of their relevance to the two phonological dimensions. For example, VOT would be 
important to distinguish voicing in stops (Lisker & Abramson, 1964; Yeni-Komshian et al., 1977), 
but F2 or F1 would be more relevant for the contrast in emphasis (Jongman et al., 2011). However, 
if one of these cues is missing or becomes ambiguous, proper categorization of stops might be a 
challenging task. It is not clear how acoustic cues are parsed and what kind of compensation 
mechanism might be used in this case.

One of the possibilities not often discussed in the literature is that listeners might use some kind 
of “phonological,” contrast-specific compensation. Unlike compensation for coarticulation, in 
which listeners prefer to assign ambiguity in acoustic signal of a segment to articulation of the 
neighboring segment, “phonological” compensation is listeners’ preference to resolve ambiguity in 
the acoustic signal in favor of a neighboring category in the same phonological dimension. Previous 
research showed that listeners can use lexical and phonological knowledge to compensate for 
ambiguity resulting from phonetic or phonological assimilation (Gaskell & Marslen-Wilson, 1996; 
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McMurray et al., 2009). This knowledge was shown to be language specific and learned from 
experience (Darcy et al., 2009).

The computational mechanism of such compensation can be analogous to cue weighting uti-
lized in some models of speech perception (Nearey, 1990; Toscano & McMurray, 2010). If the cue 
is linked to more than one contrast, listeners may weigh the same cue for each contrast in a segment 
differently and use this difference to compensate for absence of other cues or context. In order to 
be retrieved and used in perception, the difference must be learned from previous experience. 
Toscano and McMurray (2010) argued that in order to be learned, the development of speech cat-
egories “must be at least partially category independent” (p. 438). Therefore, contrast-specific cue 
weighting can be viewed as part of phonological compensation, in which listeners may use expec-
tations derived from phonological knowledge in addition to expectations derived from phonetic 
context (Smits, 2001).

To investigate mechanisms of “phonological” compensation, the current paper looks into acous-
tic properties and categorization of three coronal stops [t], [d], and [t]̣ specified for phonological 
contrasts of voicing and emphasis in a vernacular Arabic dialect of Qatar. Previous studies of voic-
ing and emphasis in the world’s languages suggest that the two contrasts utilize the same or similar 
acoustic cues, for example, voice onset time, or VOT (Lisker & Abramson, 1964), release burst 
spectrum (van Alphen & Smits, 2004; Jongman et al., 2011), fundamental frequency (F0) (Ohde, 
1984; Kingston & Diel, 1994), F1 frequency (Westbury, 1983; Kingston & Diel, 1994; Jongman 
et al., 2011) and F2 frequency on vowel onset (Jongman et al., 2011; Zawaydeh & de Jong, 2002). 
This dialect provides a convenient situation to evaluate contrast-specific weighting of cues and 
contrast-specific compensation in categorization. In particular, the paper focuses on the case when 
the three categories of Arabic coronal stops are produced with potentially ambiguous short-lag 
VOT values. To the best of our knowledge, little or no research has been done in this area.

2 Voicing and emphasis in Qatari Arabic

Multiple cues have been reported to encode the phonological contrasts of voicing and emphasis in 
Arabic coronal stops (Jongman et al., 2011; Khattab et al., 2006). Similar to other Khaleeji (Gulf) 
dialects, Qatari Arabic has three contrastive stops at coronal place of articulation: voiced [d], voice-
less [t], and voiceless emphatic [t]̣ (Feghali, 2008). Defined broadly as “voiced” or “voiceless” in 
phonological descriptions of Arabic (e.g., Watson, 2002), the three categories of stops form three 
distinct modes on the VOT scale. Voiced and voiceless coronal stops also differ in VOT. Voiced [d] 
is produced with voice lead (M = –58 ms), voiceless [t] is aspirated, with long-lag VOT (M = 54 
ms) (Kulikov, 2020), and emphatic [t]̣ has short-lag VOT (M = 16 ms) (Kulikov et al., 2020). But 
unlike in languages with a three-way voicing contrast, for example Thai or Eastern Armenian 
(Lisker & Abramson, 1964), the three modes on the VOT scale in Qatari Arabic distinguish two 
phonological contrasts: voicing and emphasis. The voiceless unaspirated stop [t]̣ is not only a 
voiceless category but is also an emphatic category.

Emphasis in Arabic coronal obstruents is a phonological contrast in secondary place of articula-
tion (Ladefoged & Maddieson, 1996). The primary cues to emphasis are spectral. Emphatic coro-
nal obstruents are articulated with a retracted tongue root and/or raised tongue back (McCarthy, 
1994), which causes lowering spectral mean of a consonant (Jongman et al., 2011), including lower 
SCG of burst of a stop (Kulikov et al., 2020). Emphatic articulation is typically spread onto an 
adjacent vowel (Zawaydeh & de Jong, 2002) changing its spectral characteristics. Acoustic corre-
lates of emphasis include raising of F1 and lowering of F2 frequencies of the vowel, which usually 
prevail during the entire duration of the vowel. Importantly, emphasis in a consonant is perceived 
predominantly through the emphatic quality of the vowel because the differences between the 
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spectra of plain and emphatic consonants are quite small (Jongman et al., 2011). Similar to other 
vernacular dialects of Arabic, cues to emphatic consonants in Qatari Arabic include lower SCG of 
stop bust, as well as raised F1 and lowered F2 on the following vowel (Kulikov et al., 2020). 
Crucially, these cues also encode the contrast in voicing. Kulikov (2020) reports that vowels fol-
lowing voiced [d] have lower F1 than vowels following voiceless [t] (p. 171). SCG of burst is also 
lower in voiced stops (Kulikov, 2016).

The two types of cues for emphasis—temporal and spectral cues—are not independent of one 
another. There seems to be a trading relation between VOT and spectral cues in Arabic emphatic 
stops. In on-going sound changes among female speakers that result in loss of emphasis, the lower 
degree of emphasis on a vowel (measured as lower F2 value) has been shown to correlate with 
longer VOT in a stop (Khattab et al., 2006).

Being phonologically distinct, the three categories of coronal stops reveal an overlap on the VOT 
scale. In addition to unaspirated [t]̣ produced with short-lag VOT, phonologically voiced [d] can be 
produced without prevoicing, that is, they can have short-lag VOT, and some tokens of [t] have 
shorter duration of aspiration (Kulikov, 2020). Disambiguation of these stops might require use of 
secondary cues to voicing—SCG of burst, F0, F1, or F2. It is noteworthy that these cues are also 
important for perception and production of emphasis in Arabic. Therefore, parsing cues to voicing 
and emphasis may include a compensation mechanism to adjust cue weights for the two contrasts. 
For example, shorter VOT may not only disfavor a voiceless stop but also favor emphasis.

The following experiments provide evidence for acoustic properties of the coronal stops in 
Qatari Arabic and listeners’ preferences in segment-to-segment compensation in the absence of 
rich context. In Experiment I, I looked into the distribution of the three stop categories on the VOT 
scale and investigated acoustic cues that distinguish voiced, voiceless, and emphatic coronal stops. 
Experiment II presents perception patterns in human listeners’ identification of stops that fall into 
the ambiguous VOT interval between 0 and 40 ms. As all these tokens had short-lag VOT and were 
produced before the same vowel, I was looking for and found a bias, or preference in disambigua-
tion, toward a particular stop category that cannot be explained by coarticulation. I argue that the 
bias can be explained as a type of compensation for “phonological context.” Finally, listeners’ 
perception was tested against three models of cue integration that attempted to account for “pho-
nological” compensation.

3 Experiment I: Coronal stops in Qatari Arabic

3.1 Method

The production data were collected from eight native speakers (females) of Qatari Arabic, who 
were undergraduate students at Qatar University. They were born to families who belong to the 
original Qatari tribes. None of them reported speech or hearing disorders. The participants were 
asked to speak in their native dialect as if they were talking to family and friends. The instructions 
were delivered in colloquial Arabic by Arabic-speaking research assistants.

The recordings were made in a quiet room using a Shure WH30XLR microphone and a portable 
Marantz PND661 MKII recorder. The participants pronounced (read) words (n = 25) with word-
initial voiced d (n = 9), voiceless t (n = 9), and emphatic ṭ (n = 7) stops presented to them in 
Arabic orthography. The list of words used in the experiment is given in the Appendix. Each target 
word was pronounced six times in a carrier phrase Qaalet . . . marratain “She said . . . one more 
time.”

The recorded materials were evaluated by two native speakers of Qatari Arabic for naturalness. 
Four tokens were discarded due to mispronunciation. The total of 1196 tokens were prepared for 



Kulikov 77

acoustic analysis. The segment boundaries were set manually in PRAAT (Boersma & Veenink, 
2015). VOT was measured as timing between the stop release and the onset of voicing. Both wave-
forms and spectrograms were used to identify the beginning of glottal pulses. Spectral cues, such 
as fundamental frequency (F0) and frequency of the first (F1) and second (F2) formant at vowel 
onset, as well as mean SCG of burst, were measured to evaluate the glottal state and degree of 
emphasis (pharyngealization) of stop articulation during the release. The landmarks for measure-
ments are summarized in Figure 1. For subsequent analysis of stops in the ambiguous VOT range 
between 0 and 40 ms, 100 voiced [d]s, 120 voiceless [t]s and 120 emphatic [t]̣s were randomly 
selected out of 565 tokens that overlapped on the VOT scale.

3.2 Results I: Contrastive categories of coronal stops

Observation of distributions of VOT values (Figure 2A) revealed that voiceless, voiced, and 
emphatic stops in Qatari Arabic form three distinct modes. In Lisker and Abramson’s (1964) terms, 
they would present three laryngeal categories: (pre)voiced [d], voiceless aspirated [t], and voice-
less unaspirated [t]̣. The voiceless unaspirated category, however, does not form a separate “voic-
ing” category in Arabic phonology. It marks an emphatic category [t]̣, which, in addition, would be 
typically identified by formant frequencies of the neighboring vowel, F2 being the most character-
istic cue to emphasis (Zawaydeh & de Jong, 2002). Observation of distributions of these values 
(Figure 2B) suggested that there is a boundary at approximately 1500 Hz, with lower values mark-
ing the emphatic category. Both cues revealed some overlap between contrastive categories sug-
gesting possible trade-in relation between cues in production and compensation in perception of 
the stop categories.

Figure 1. The waveforms and spectrograms of a voiced (A), a voiceless (B), and a voiceless emphatic (C) 
coronal stop in Qatari Arabic: prevoiced [d] in daas “stepped,” voiceless aspirated [th] in taab “repented,” 
voiceless unaspirated emphatic [ṭ] in ṭaaf “ignore.”
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3.3 Results II: Cues to voicing and emphasis in coronal stops

Analysis of the cues included several stages. First, the five cues to voicing and emphasis—VOT, 
SCG of burst, F0, F1, and F2—were tested for the effect of stop category (voiceless [t], voiced [d], 
and voiceless emphatic [t]̣). The effect of stop identity was evaluated using linear mixed-effects 
models in the lme4 package (Bates et al., 2015) in R (R Core Team, 2019). Each of the five acousti-
cal cues was a dependent variable. Stop category was used as a fixed factor; talker and item were 
used as random factors. As independent variables were manipulated within-subjects, it was plausi-
ble to use both random slope and random intercept for the talker and item (Barr et al., 2013) to 
adjust for talker and item variation in production of the acoustic cues for different categories of 
stops in different types of syllables. Although Likelihood ratio tests showed that the maximal 
model achieved a better fit than the models without random slope for talker, χ2(5) = 172.53, p < 
.0001, and item, χ2(5) = 12.54, p < .05, the improvement was found only for VOT. Adding ran-
dom slopes to the models evaluating spectral cues did not improve model fit. Therefore, random 
slopes were excluded from the final model for the benefit of model convergence (Matuschek et al., 
2017) and consistency of representation of the results for each cue.

3.3.1 Effect of stop category on each cue. Table 1 summarizes the results of the fixed effect of stop 
category for the five cues, and the effects are plotted in Figure 3. The p-values for factor levels 
were calculated using the lmerTest package (Kuznetsova et al., 2017). The stop categories were 
coded using simple coding so that the reference category (intercept) was voiceless [t], and the 
parameter estimates for voiced [d] and emphatic [t]̣ (lines 2 and 3 for each cue in Table 1) were 
evaluated against it. As the model does not provide a procedure to compare the latter stops to each 
other, the comparison between voiced [d] and emphatic [t]̣ (line 4 for each cue in Table 1) was done 
using a pairwise comparison of EMMs in the emmeans package (Lenth, 2020).

Figure 2. Boxplots of (A) VOT and (B) F2 values of coronal stops [d], [t], and [ṭ] in Qatari Arabic.



Kulikov 79

The effect of stop category was significant for most cues. VOT was the longest in voiceless [t], 
(M = 51 ms); it averaged 14 ms in emphatic [t]̣, and it was negative averaging—54 ms in voiced 
[d]. SCG of burst was the highest in voiceless [t], (M = 1987 Hz); it decreased in emphatic [t]̣ 
averaging 1122 Hz and in voiced [d] averaging 797 Hz. F0 at vowel onset was the highest after 
voiceless [t] (M = 235 Hz); it decreased after emphatic [t]̣ (M = 220 Hz) and after voiced [d] (M 
= 219 Hz). The latter were not significantly different from one another (p = .441). F1 was on aver-
age the highest after emphatic [t]̣ (M = 659 Hz); it was lower after voiceless [t] (M = 576 Hz) but 
the difference was not significant, and the lowest after voiced [d] (M = 479 Hz). F2 was after 
voiced [d] (M = 2267 Hz); it was slightly lower after voiceless [t] (M = 1888 Hz) but the differ-
ence was not significant, and the lowest F2 was found after emphatic [t]̣ (M = 1383 Hz).

Table 1. Summary of mixed-effects linear models examining an effect of stop category (voiceless [t], 
voiced [d], emphatic [ṭ]) on each cue. The reference category is voiceless [t].

Cue Level Estimate Std. Error T value Pr (> |t|)

VOT 1. Intercept 51.2 4.2 12.29 < .0001
 2. [d] –104.8 3.5 –30.11 < .0001
 3. [ṭ] –36.9 3.7 –9.94 < .0001
 4. [d] vs. [ṭ] –67.9 3.7 –18.23 < .0001
 Residual 750.3  
 Item (intercept) 38.8  
 Talker (intercept) 90.3  
SCG of burst 1. Intercept 1987.1 202.5 9.81 < .0001
 2. [d] –1190.4 159.9 –7.44 < .0001
 3. [ṭ] –864.5 170.9 –5.06 < .0001
 4. [d] vs. [ṭ] –325.9 116.4 –2.81 .021
 Residual 597121  
 Item (intercept) 102533  
 Talker (intercept) 225911  
F0 1. Intercept 235.1 6.7 35.28 < .001
 2. [d] –15.5 1.9 –7.87 < .001
 3. [ṭ] –12.9 2.1 –6.12 < .001
 4. [d] vs. [ṭ] –2.6 2.1 –1.24 .441
 Residual 170.8  
 Item (intercept) 13.9  
 Talker (intercept) 339.9  
F1 1. Intercept 575.5 37.4 15.38 < .001
 2. [d] –96.8 48.9 –1.98 .060
 3. [ṭ] 83.2 52.3 1.59 .125
 4. [d] vs. [ṭ] –180.0 52.3 –3.44 .006
 Residual 4027  
 Item (intercept) 10699  
 Talker (intercept) 1599  
F2 1. Intercept 1888.3 84.4 22.35 < .001
 2. [d] 191.5 117.3 1.64 .136
 3. [ṭ] –505.9 123.2 –4.10 < .001
 4. [d] vs. [ṭ] 697.4 125.2 5.57 < .0001
 Residual 16966  
 Item (intercept) 61387  
 Talker (intercept) 4138  
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3.3.2 Variability in cues. The previous analysis revealed significant differences in production of cues 
for each stop category; however, it did not show how important each cue was to distinguish a stop 
category. Nor did it account for the fact that the three categories were crosscut by two phonological 
dimensions: voicing (voiced [d] vs. voiceless [t] and [t]̣) and emphasis (emphatic [t]̣ vs. 

Figure 3. Effect plots for five acoustic cues (VOT, SCG of burst, F0, F1, and F2) to coronal stops [t], [d] 
and [ṭ] in Qatari Arabic.
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non-emphatic [t] and [d]). Evaluation of contextual variability in each cue is a crucial condition for 
categorization and compensation. If a cue is invariant, listeners may not need to weight or adjust it. 
Categorization under this scenario may not require compensation of any kind. Possible invariance 
of cues and their relevance to categorization of voicing and emphasis was evaluated in a series of 
hierarchical linear regression models. Each cue was a dependent variable; the independent varia-
bles were dummy codes for talker identity, vocalic context, and the stop identity split between two 
phonological contrasts. R2

change was used as a measure of effect size (Cohen & Cohen, 1983), 
revealing the proportion of variance explained by a predictor variable in question at each step. The 
effect was considered small if R2

change was smaller than .05, medium if it was between .05 and .15, 
and large if it was greater than .15 (see Table 2).

I adopted the invariance criterion used in McMurray and Jongman (2011). The cue is invariant 
if contextual effects of talker and vowel are small or medium, and the effect of a phonological 
feature is large. Hierarchical regression provides a computational mechanism to remove parts of 
variance and evaluate each source of variance separately. First, the effects of talker and context 
were partialed out by adding seven dummy codes that represented variance in eight participants, 
and four dummy codes that represented vocalic context: one for length of a following vowel (short 
or long), one for number of syllables (one or two), and two for vowel category (a, i, u) in target 
words. The effect sizes were consistent with the relative amount of variance for the random effects 
of talker and item observed in the mixed-effects models (section 3.3.1). The talker accounted for a 
significant amount of the variance in all cues, but the size varied from being small for VOT and F2 
to medium for F1, and small for SCG of burst and F2. Vocalic context also accounted for a signifi-
cant amount of the variance in all cues. The effect size was small for F0, medium for VOT and SCG 
of burst, and large for F1 and F2.

Next, the dummy codes for voicing and emphasis were added to the regression model sepa-
rately. Codes for voicing were added first to account for the fact that prevoicing in most voiced 
stops must signal the presence of voicing at a relatively early stage. For the voicing contrast, the 
largest effect size was obtained for VOT, the effect sizes were medium for SCG of burst, F1, and 
F2, and the smallest effect size was obtained for F0. For the emphasis contrast, the largest effect 
size was obtained for F2, and small effect sizes were found for SCG of burst, F0, and F1.

Each phonological contrast revealed one primary acoustic correlate: VOT was the most impor-
tant cue to voicing, and F2 was the primary cue to emphasis. The effect of phonological contrast 
on each of them was larger than the sum of the effects for other cues. But essentially only VOT met 
the definition of an invariant cue for the voicing contrast: it had a medium combined effect of con-
text (R2 = .128) and a very large effect of the phonological feature (R2 = .564). F2 approached the 

Table 2. Summary of regression analyses examining effects of talker, vowel, and the phonological 
contrasts on each cue. R2

change values are shown.

Cue Talker Vowel Stop identity

(df = 7, 1188) (df = 4, 1184) Voicing Emphasis

(df = 1, 1183) (df = 1, 1182)

VOT .029*** .099*** .564*** .043***
SCG of burst .175*** .106*** .113*** .039***
F0 .564*** .033*** .043*** .024***
F1 .072*** .514*** .138*** .001^
F2 .023*** .474*** .119*** .141***

Note: significance levels: ^ – p = .05, *** – p < .001.
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definition of an invariant cue to the emphasis contrast: it had the relatively large effect of a phono-
logical feature (R2 = .141), but the combined effect of context was also very large (R2 = .497).

3.3.3 Interim summary. The acoustic analyses of the cues to voicing and emphasis revealed signifi-
cant differences between the categories of coronal stops in each of the five cues. The coronal stops 
formed distinct categories on the VOT scale: [d] was mostly (pre)voiced, [t]̣ was voiceless unaspi-
rated, and [t] was voiceless aspirated. In addition, the voicing and emphasis contrasts in coronal 
stops were maintained in spectral cues. The contrast between voiceless [t] and voiced [d] was 
manifested as difference in SCG of burst and F0. Emphatic [t]̣ was different from non-emphatic 
stops in F2 and SCG of burst, and it was different from voiced [d] in F1.

The relevance of cues for each phonological contrast varied. VOT, quite expectedly, was pri-
marily associated with the voicing contrast. F2, on the contrary, was primarily associated with the 
emphatic category. The other spectral cues—SCG of burst, F0, and F1—had smaller effects of 
voicing and emphasis. Absence of invariant cues for both contrasts suggests that cue weighting and 
compensation may be crucial in categorization of Arabic coronal stops, especially in cases when 
stops are ambiguous. The acoustic analysis of stops overlapping on the VOT scale is presented in 
the following section.

3.4 Results II: Cues in stops in the ambiguous VOT range

3.4.1 Distribution of VOTs in three categories of stops. Analysis of distributions of VOT in voiced, 
voiceless, and emphatic alveolar stops in the data revealed a considerable overlap between the 
three categories within the range 0–40 ms, that is, the range in which voiceless unaspirated stops 
are typically produced. In addition to voiceless unaspirated emphatic [t]̣s, 23% of Qatari Arabic [d]
s were produced without prevoicing. Of voiceless [t]s 25% had shorter duration of aspiration in the 
range of 35–40 msec. (Figure 4).

Figure 4. Distributions of VOT and F2 values in voiceless [t], voiced [d], and emphatic [ṭ] in Qatari 
Arabic. The red square represents the ambiguous area between 0 and 40 ms on the VOT scale.



Kulikov 83

The questions to ask at this point are the following: to what extent will overlap on the VOT scale 
lead to neutralization between the three categories? and to what extent will spectral cues compen-
sate for potential loss of contrast on the VOT scale? Compensation is, in fact, expected because no 
stop category differed from the other two in all cues. Voiced [d] and emphatic [t]̣ were different in 
F1 and F2 frequencies but showed no significant difference in SCG of burst or F0. Voiceless [t] and 
emphatic [t]̣ were different in SCG of burst, F0, and F2 frequencies but showed no significant dif-
ference in F1. Voiced [d] and voiceless [t] were different in SCG of burst, F0, and F1 frequencies; 
however, they showed no significant difference in F2.

3.4.2 Cues in stops within the ambiguous VOT range. For the analysis of the cues in stops within the 
ambiguous VOT range, separate mixed-effects linear models for each cue were fit to the data. Stop 
category was a fixed factor, talker and item were random factors (intercepts). Pairwise comparison 
of EMMs was used to evaluate the difference between voiced and emphatic stops. Table 3 sum-
marizes the models.

The effect of stop category was significant for all cues. Despite the overlap, the three VOT cat-
egories were significantly different from one another, although the means were within the range 
characteristic of a voiceless unaspirated category. VOT was the longest in voiceless [t] (M = 34 
ms); it was shorter in emphatic [t]̣ (M = 14 ms) and in voiced [d] (M = 18 ms). SCG of burst was 
the highest in voiceless [t] (M = 2027 Hz); it decreased in emphatic [t]̣ (M = 1124 Hz) and in 
voiced [d] (M = 1101 Hz). The 152 Hz difference between the latter was not significant (p = .284). 
F0 was the highest after voiceless [t] (M = 235 Hz); it decreased after emphatic [t]̣ (M = 224 Hz) 
and after voiced [d] (M = 227 Hz). The latter were not significantly different from one another (p 
= .806). F1 frequency was on average the highest after emphatic [t]̣ (M = 659 Hz); it was lower 
after voiceless [t], but the difference was not significant, and it was the lowest after voiced [d] (M 
= 467 Hz). F2 frequency was the highest after voiced [d] (M = 2041 Hz); it decreased after voice-
less [t], and it was the lowest after emphatic [t]̣ (M = 1383 Hz).

3.4.3 Interim summary. The results revealed significant differences between three categories in all 
cues, including VOT. However, mean VOT values for stops in the ambiguous area fell into the 
range of the voiceless unaspirated category (14–32 ms). Therefore, it is not clear whether these 
differences have any perceptual effect. Differences in spectral cues were more prominent, and they 
were similar to the differences reported in Section 4.1 with one exception: F1 was significantly 
lower (MD = –125 Hz) after voiced [d] than after voiceless [t] when the former was produced 
without prevoicing, suggesting some kind of compensatory mechanism. When VOT is not a reli-
able predictor of voice, F1 transition may reveal sufficient information about the glottal state of an 
obstruent (Summerfield & Haggard, 1977). The results suggest that distinction between the catego-
ries of overlapping stops is maintained mainly by spectral cues. As three categories of stops are 
crosscut by two phonological contrasts, each spectral cue may be evaluated in relation to both 
contrasts. The next section presents a perception study that addresses the question of how cues are 
weighed by human listeners in a categorization task.

4 Experiment II: Perception of stops in the ambiguous VOT 
range by human listeners

Accuracy in categorization of coronal stops in the ambiguous VOT range by human listeners was 
assessed in two conditions: 1) Noise, where only two consonantal cues, VOT and SCG of burst, 
were directly accessible to listeners, and 2) Vocalic, in which all five cues were available to listen-
ers. In the absence of some cues, listeners are expected to compensate for them. But if phonetic 
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context is also impoverished, the compensation mechanism may include addressing to more 
abstract layers of phonological knowledge about the categories.

4.1 Method

One hundred and thirty-five coronal stops [d], [t], and [t]̣ from Experiment 1 with VOT in the range 
between 0 and 40 ms were selected for the identification task. They showed reasonable variation 
in acoustic cues. The files were edited manually to create two types of stimuli: with a noise portion 
(Noise condition) and with both noise and vocalic portions (Vocalic condition), which yielded a 

Table 3. Summary of mixed-effects linear models examining an effect of stop category (voiceless [t], 
voiced [d], emphatic [ṭ]) on each cue in stops overlapping on a VOT scale. The reference category is 
voiceless stop [t].

Cue Level Estimate Std. Error t value Pr (> |t|)

VOT 1. Intercept 33.5 1.3 25.5 < .001
 2. [d] –15.1 1.8 –8.3 < .001
 3. [ṭ] –19.3 1.4 –13.5 < .001
 4. [d] vs. [ṭ] 4.2 1.3 3.2 .024
 Residual 15.7  
 Item (intercept) .3  
 Talker (intercept) .9  
SCG of burst 1. Intercept 1339.0 371.6 8.8 < .001
 2. [d] –599.4 126.7 –4.1 .001
 3. [ṭ] –432.4 124.9 –4.0 .001
 4. [d] vs. [ṭ] –152.0 132.2 –1.1 .284
 Residual 413177  
 Item (intercept) .0  
 Talker (intercept) 887670  
F0 1. Intercept 234.8 7.4 31.7 < .001
 2. [d] –10.4 3.6 –2.6 .017
 3. [ṭ] –7.6 3.1 –2.7 .015
 4. [d] vs. [ṭ] –2.8 3.2 –.3 .806
 Residual 155.6  
 Item (intercept) 8.9  
 Talker (intercept) 625.9  
F1 1. Intercept 699.2 24.5 28.5 < .001
 2. [d] –177.0 25.5 –6.9 < .001
 3. [ṭ] –8.7 31.1 –.3 .788
 4. [d] vs. [ṭ] –185.7 36.3 –5.5 < .001
 Residual 2269  
 Item (intercept) 1133  
 Talker (intercept) 2035  
F2 1. Intercept 1869.0 54.5 34.3 < .001
 2. [d] 139.8 58.3 2.4 .036
 3. [ṭ] –541.8 72.4 –7.5 < .001
 4. [d] vs. [ṭ] 692.9 81.7 8.5 < .001
 Residual 9157  
 Item (intercept) 6457  
 Talker (intercept) 9343  
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total of 270 stimuli. The noise portion included duration of burst from the release point to the 
beginning of glottal pulsing. The vocalic portion included 20 ms of a vowel after the release captur-
ing the point where the measurements of the vocalic cues (F0, F1, and F2) were performed in the 
first experiment.

Twenty-eight undergraduates from Qatar University participated in this study, and 14 served in 
each condition (vocalic vs. noise). All participants belonged to local communities and were native 
speakers of Qatari Arabic with no known speech or hearing impairment. All of them indicated that 
they could speak English as a second language. They received a bonus point in an enrolled class 
for their participation.

The stimuli were played back in random order twice with a 2 sec interval through Direct Sound 
EX-25 headphones. Listeners responded by circling one of the three options written in standard 
Arabic orthography ( د [d], ت [t], ط [t]̣) on answer sheets. Prior to the actual test, the participants 
performed a short training test with three non-ambiguous stops to ensure they could hear the dif-
ference between the phonemes in Arabic.

4.2 Results I: Categorical responses

The effects of stop identity and condition were evaluated using linear mixed-effects models in the 
lme4 package (Bates et al., 2015) in R (R Core Team, 2019). Listeners’ response score was a 
dependent variable. Stop category (voiceless, voiced, emphatic) was used as a fixed within-sub-
jects factor; condition (noise, vocalic) was a between-subjects factor; listener and item were ran-
dom factors; stop category was a random slope for listener to adjust for individual variation in 
perception of the stimuli of different categories of stops (Barr et al., 2013). The maximal model 
was selected as it achieved a better fit than the model without a random slope, χ2(18) = 283.69, p 
< .0001. The model parameters are summarized in Table 4 (Appendix 1). Figure 5 shows the 
results of the identification test.

In the noise condition, the scores were the highest for voiceless [t] (79%), lower for emphatic 
[t]̣ (65%), and the lowest for voiced [d] (47%). In the vocalic condition, performance significantly 
improved for voiced [d] and emphatic [t]̣, reaching 58% and 85% respectively, but the 7% increase 
for voiceless [t] was not significant.

Figure 5. Categorical response patterns of the identification tests for three categories of coronal stops 
in the noise and vocalic conditions.
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The follow-up tests revealed that low performance in voiced [d] was due to confusion with 
voiceless [t] rather than emphatic [t]̣ in both conditions. Listeners were equally likely to hear [d] as 
[t] in the noise condition (Z = –2.1). In the vocalic condition, this ratio dropped to 50% (Z = –3.2) 
but voiceless [t] was still a more likely competitor than emphatic [t]̣ (Z = –13.9). In contrast, lis-
teners were able to categorize the voiceless and emphatic stops without a bias toward a particular 
category in both noise and vocalic conditions.

4.3 Results II: Compensation

Relationship between listeners’ accuracy and acoustic cues was evaluated using linear mixed-
effects models in the lme4 package. Listeners’ response score was a dependent variable. Stop cat-
egory (voiceless, voiced, emphatic) and acoustic cue were fixed within-subjects factors; condition 
(noise, vocalic) was a between-subjects factor, and participant was a random factor. Stop category 
was used as a random slope for listener to adjust for individual variation in perception of different 
categories of stops. The model parameters for each cue are summarized in Tables 5–9 (see Appendix 
1). Figures 6 and 7 visualize the results.

Figure 6. Summary of the identification test for the three coronal stops in Qatari Arabic in the noise and 
vocalic conditions along primary cues to voicing and emphasis.
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4.3.1 Primary cue to voicing: VOT. For the analysis of VOT, the values were binned in 5 ms intervals 
(Figure 6A), and mean accuracy scores for each interval were fitted to the linear model (see Table 5). 
VOT significantly affected accuracy, Log Likelihood: χ2(1) = 20.36, p < .05. Two- and three-way 

Figure 7. Summary of the identification test for the three coronal stops in Qatari Arabic in the noise and 
vocalic conditions along secondary cues to voicing and emphasis.
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interactions with condition and stop category indicated that VOT was a more accurate predictor of a 
stop category in the vocalic condition. Quite predictably, listeners’ response to VOT was categorical 
in distinguishing the voicing contrast between voiceless aspirated [t] and unaspirated [d] and [t]̣. The 
categorical boundary was between 20 and 25 ms, and tokens with VOT longer than 30 ms were typi-
cally identified as [t] in both conditions. Accuracy in voiced and emphatic stops with ambiguous 
VOT values decreased (Voiced: β = –.017, p < .05; Emphatic: β = –.019, p < .01) as VOT became 
longer. Pairwise comparison between voiced and emphatic stops revealed that the latter were identi-
fied more accurately at 10 ms (β = .256, T = 2.468, p < .05), 15 ms (β = .184, T = 3.735, p < .05), 
and 20 ms (β = .153, T = 2.202, p < .05). The difference suggests that listeners used some sort of 
compensation mechanism, resolving ambiguity in unaspirated tokens in favor of emphatic stops.

4.3.2 Primary cue to emphasis: F2. For the analysis of F2, the values were binned in 200 Hz intervals 
(Figure 6B), and mean accuracy scores for each interval were submitted to the model (Table 6). F2 
significantly affected accuracy, Log Likelihood: χ2(1) = 74.0, p < .0001. As expected, F2 was a 
more accurate predictor of a stop category in the vocalic condition (β = .108, p < .05). Listeners 
showed a categorical response to F2 to distinguish the contrast between emphatic [t]̣ and non-
emphatic [t] and [d]. The categorical boundary was at 1500 Hz; tokens with higher F2 were typi-
cally identified as plain [t] or [d]. Interaction with stop category indicated that accuracy in voiced 
and emphatic stops with ambiguous VOT values decreased (Voiced: β = –.0005, p < .0001; 
Emphatic: β = –.0004, p < .05) as F2 became higher, whereas accuracy of identification of voice-
less stops increased (β = .0004, p < .0001). Pairwise comparison between voiced and voiceless 
stops revealed that voiceless stops were identified more accurately than voiced stops at 1800 Hz (β 
= .286, T = 3.848, p < .01), 2000 Hz (β = .305, T = 4.114, p < .01), and 2200 Hz (β = .337, T 
= 4.538, p < .001). The differences also suggest compensation as listeners resolved ambiguity in 
plain tokens in favor of voiceless stops.

4.3.3 Secondary cues to voicing and emphasis (SCG of burst, F0, F1). The frequency values of second-
ary cues were also binned in 500 Hz intervals for SCG of burst, 10 Hz intervals for F0, and 100 Hz 
intervals for F1; mean accuracy scores for each interval were submitted to the models (see Tables 
7–9). The results show that each cue significantly affected identification accuracy, SCG of burst: 
Log Likelihood, χ2(1) = 16.62, p < .0001; F0: Log Likelihood, χ2(1) = 18.64, p < .0001; F1: Log 
Likelihood, χ2(1) = 13.14, p < .05. Vocalic condition improved accuracy for vocalic cues (F0: β 
= .131, p < .01; F1: β = .106, p < .05) but did not affect the consonantal cue (SCG of burst: β = 
.085, p = .142). Effects of stop category were significant at all levels for F1 (Voiced: β = –.455, p 
< .01; Emphatic: β = –.443, p < .05), but only in voiced stops for F0 (β = .508, p < .01) and SCG 
of burst (β = –.241, p < .01). These results indicate that categorization accuracy for the three stops 
varied differently when listeners used cues to identify coronal stops.

No pattern of categorical perception was observed for SCG of burst and F0 (see Figure 7C–D). 
Coefficients for these cues were positive indicating that accuracy increased as frequency values 
increased. This was consistent with the fact that listeners had higher accuracy rate for voiceless [t] 
and emphatic [t]̣ than for voiced [d]. The pattern was different for F1. The coefficient for F1 was 
negative indicating that more accuracy was achieved at lower frequencies of the first formant. An 
interaction with stop category revealed that the tendency was the opposite for emphatic stops: they 
had higher accuracy rate as F1 frequency was higher. In addition, listeners showed a categorical 
response to F1 when they were to distinguish the contrast between emphatic [t]̣ and voiced [d] (see 
Figure 7E). The categorical boundary was between 600 and 650 Hz; tokens with higher F1 were 
typically identified as emphatic. Interestingly, identification accuracy of voiceless stops was not 
sensitive to the changes in F1 values. Higher F1 values were associated with voiceless [t] in the 
whole range of frequencies, suggesting listeners were biased toward one of the ambiguous 
categories.
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4.4 Summary and discussion

To sum up, the results of the perception experiment suggest that the overlap on the VOT scale does 
not lead to complete neutralization of the three categories of coronal stops. When VOT values fall 
into the ambiguous range, the contrast is still maintained in spectral cues. Listeners can use both 
noisy and vocalic portions of stops to identify such tokens. Performance was predictably worse in 
the noise condition; however, consonantal cues were sufficient for categorization of voiceless plain 
[t] and emphatic [t]̣ stops. Successful identification may be due to differences in spectral cues dur-
ing the release and significantly shorter VOT of emphatic [t]̣. In addition, presence of formant 
frequencies in a stimulus primarily affects performance in the emphatic [t]̣, as the contrast in 
emphasis is largely maintained on the adjacent vowel. Better performance on voiced [d] in the 
vocalic condition may also be due to a significant effect of F0 and F1 on categorization of voicing 
in coronal stops. The findings suggest that listeners use a complex pattern of categorization, which 
includes some compensation for phonological context, that is, preference toward a particular pho-
nological category of a stop with a short-lag VOT.

5 Modeling cue integration and compensation for voice and 
emphasis

5.1 Background: Current models of perception

Results of the acoustic study and perception/identification study were used to create a computa-
tional model that could integrate acoustic cues for three categories of stops along the two phono-
logical dimensions and account for phonological compensation observed in human listeners. 
Several models have been proposed to explain mechanisms of cue integration and parsing. The 
Fuzzy Logical Model of Perception (FLMP, Massaro & Oden, 1980; Oden & Massaro, 1978) is 
based on the assumption that listeners use unweighted integrated cues for “quick and dirty” analy-
sis. The model emphasizes a holistic approach to speech recognition and assumes listeners com-
pare the information from the acoustic signal with the characteristics of prototypes stored in 
long-term memory. The prototype that matches the information from an acoustic signal best is then 
used for categorization. Oden and Massaro (1978) successfully tested the model to discriminate 
place and voicing of the English stops /b, p, d, t/ based on information from a limited number of 
cues: F2-F3 for place of articulation and VOT for stop voicing. Massaro and Oden (1980) demon-
strated that integration of cues occurred as an operation of “measuring” each acoustic feature 
against its value in a prototype sound. The model can potentially account for compensation as it 
includes so-called “modifiers” that evaluate a token as being distant or close to the prototype, but 
the prototype approach to categorization and similar invariance theories (e.g., Stevens & Keyser, 
2010) do not typically require cue integration or compensation for context. Further studies (e.g., 
McMurray & Jongman, 2011) showed that the uncompensated model was not very successful in 
situations that required integration of multiple cues in a variable context, for example, categoriza-
tion of English fricatives.

The mechanism of evaluation of each cue to reflect its relative importance in identifying a cat-
egory was discussed in detail in the Normal A Posteriori Probability model (NAPP) (Nearey, 1990, 
1997). Under this theory, perception was modeled as a sort of weighted sum—the evidence for the 
category from each cue weighted by the reliability of that cue. The computational mechanism for 
the model is based on logistic regression that incorporates simple effects of vowel and consonant 
as well as terms for interactions of different cues. The model was developed to account for recogni-
tion of CV or VC diphones, for example, Vt/d (Nearey, 1990, 1997) or s/ʃV (Nearey, 1992). In each 
of these cases, the same cue contributes to categorization of both segments in a diphone. For 
instance, vowel duration in a Vt/d diphone is a primary cue to voicing of a stop and a secondary 
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cue to vowel height, as low vowels are longer than non-low vowels. Similarly, F1 is a primary cue 
to vowel height and a secondary cue to stop voicing. The model accounted for compensation in 
categorization. Vowel and consonant choices were not independent of each other: listeners not only 
used primary and secondary cues to categorize vowels and consonants, but also used vocalic cues 
to predict a consonant and vice versa.

The model also accounted for cases of coarticulation in a CV diphone. For example, categoriza-
tion of the syllables /si, su, ʃi, ʃu/ in English requires compensation for lip rounding, which lowers 
fricative mean frequency (center of gravity), but this gestural overlap is unidirectional in phonol-
ogy. The vowel affects the fricative, but the fricative does not affect the vowel. Nearey (1992) 
argues that recognition of the segments in a diphone does not have to be hierarchical, as the effect 
of coarticulation in this case is bidirectional: speakers of English typically round the palatal frica-
tive. This additional source of lip rounding affects the vowel articulation: not only the /s-ʃ/ bound-
ary is lower before /u/, but also the /i-u/ boundary is lower before /ʃ/. The model correctly accounts 
for it by allowing each cue to simultaneously predict a vowel and a consonant.

The Hierarchical Categorization model (HICAT) by Smits (2001) builds upon NAPP by incor-
porating the principle of hierarchical dependency when categorization of one segment depends on 
the results of categorization of the other segment. Similar to NAPP, HICAT utilizes the computa-
tional mechanism of logistic regression, but it requires the terms enter the model in a hierarchical 
fashion. The model was used to account for recognition of the syllables /si, sy, ʃi, ʃy/ in Dutch. 
Unlike in English, the palatal fricative /ʃ/ in Dutch is not rounded in production. Therefore, round-
ing can spread only from the vowel but not vice versa. Successful categorization of a syllable in 
this case largely depends on a vowel. According to Smits (2001, p.1113), a hierarchical model is 
necessary when “coarticulation is high” <and> . . . “performance seriously degrades.” Although 
both NAPP and HICAT would demonstrate similar performance in relatively simple cases, HICAT 
has an important advantage. It does not require a syllable/diphone as a recognition unit. Hierarchical 
processing can be viewed as a proxy of on-line processing of acoustic cues in spoken word recog-
nition (McMurray et al., 2003; McMurray et al., 2009). This condition is particularly important 
when complexity of contextual factors becomes a limitation factor for NAPP.

As the task of segment recognition is performed not only in monosyllables but also in polysyl-
labic words, it must include compensation for cues not only in adjacent segments but also in the 
segments in the following syllable. The Computing Cues Relative to Expectations (C-CuRE) model 
demonstrates how variation in the acoustic signal can be reduced by attributing portions of the vari-
ation to context (Cole et al., 2010; McMurray et al., 2011). Similar to HICAT, C-CuRE utilizes the 
computational mechanism of hierarchical regression, but it expands the regression model to deal 
with additional sources of variation, for example, talker variation or V-to-V coarticulation. The 
model was tested to recover underlying categories of the vowels [ɛ] and [ʌ] in disyllabic words by 
removing contextual variance of talker, adjacent consonant, and following vowel from overlapping 
distributions of raw F1 and F2 values. Step-by-step removal of all contextual effects resulted in 
well-separated distribution of the two vowels along both dimensions: height and backness.

McMurray and Jongman (2011) showed that C-CuRE could accurately explain compensation 
for variation in cues in English fricatives and categorized fricatives similar to human listeners. The 
model coped with a wide variety of cues (the authors reported 24 cues, each being a significant 
predictor of a fricative category) that were mapped on three phonological categories to distinguish 
English fricatives /f, v, θ, ð, s, z, ʃ, ʒ/: place, voice, and sibilance. Although C-CuRE did not have 
100% performance rate, it yielded an accuracy level similar to listeners and revealed the same error 
pattern shown by human listeners. When the model’s performance was compared with the perfor-
mance of FLMP and NAPP, C-CuRE substantially outperformed the two other models, especially 
when dealing with contextual factors. The model was significantly more accurate in predicting 
fricative categories as a function of talker and vowel. However, the model requires rich context to 
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predict correct categorization of a segment. It is not particularly clear how the model accounts for 
categorization when contextual information is insufficient.

All the models discussed above utilize the principle of cue integration, but they differ in how 
they treat relevance and reliability of individual cues. While FLPM represents integration of all 
available cues as a sum, NAPP (as well as HICAT, which departs from NAPP in that it uses hierar-
chical cue processing) distinguishes between primary and secondary cues by assuming the former 
are more important for categorization. Secondary cues can, nevertheless, also be relevant in ambig-
uous cases or serve as so-called “fudge factors” that boost performance (Nearey, 1997, p. 3248). 
Integration of cues and their relevance in these models is category-dependent, that is, listeners have 
to know the intended category in order to calculate relevance of each cue (see Toscano & McMurray, 
2010, for an in-depth discussion of the problem). In contrast, C-CuRE assumes that cue evaluation 
mechanism is based on listeners’ expectations, which emerge as a result of learning.

Toscano and McMurray (2010) developed a computational approach to evaluate weights for 
each cue from production data. Weights depend on reliability of a cue, which is the function of 
mean difference and the inverse function of variance. Smaller difference between distribution 
means and greater variance (hence, greater overlap between the categories) make a cue less relia-
ble. Greater difference between the means and smaller variance, in contrast, result in little or no 
overlap between two distinct categories and make a cue a reliable predictor of a category. The 
algorithm proposed in Toscano and McMurray (2010) was tested to learn to discriminate two voic-
ing categories in English word-initial stops using two cues: VOT (a strong, primary cue) and dura-
tion of the following vowel (a weak, secondary cue). The model with weighted cues correctly 
predicted effects of both cues and the trading relation between the two cues.

Further research has demonstrated that cue evaluation is an on-line process in which integration 
occurs relatively late because some cues, especially temporal ones, are simply not available at the 
same time (McMurray & Jongman, 2011). For example, listeners use vowel duration as secondary 
cue to voicing to adjust their interpretation of VOT in the ambiguous cases. Listeners are more 
likely to interpret the same positive VOT value as long-lag and thus categorize an English stop as 
voiceless before a shorter vowel, and as short-lag, that is, categorically voiced before a longer 
vowel (Allen & Miller, 1999). However, duration of vowel can only be assessed after assessment 
of VOT, so each parameter must be stored as an independent value in short-term memory (Toscano 
& McMurray, 2012). As a result, the effect of a secondary cue can change if listeners have enough 
information for categorization from other cues that covary  with VOT (p. 1296).

5.2 Computational model of cue integration and phonological compensation

The primary goal of the study was to propose the model of cue integration and phonological com-
pensation that can account for integration of cues to the two phonological contrasts. In line with the 
previous studies (Cole et al., 2010; McMurray & Jongman, 2011; Oden & Massaro, 1978; Nearey, 
1990; Smits, 2001), modeling was achieved by using a logistic regression as a tool to analyze pho-
neme categorization. A logistic regression model evaluates the probability of a particular response 
via the logistic function, which is a monotonically increasing function with asymptotes at 0 and 1. 
For example, probability of realization of a stop as voiced can be evaluated using a binary depend-
ent variable as shown in equation 1.

 P  voice
e x x xn n

( ) =
+ − + + …+⋅( )

1

1 0 1 1 2 2β β β β⋅  (1)

Here, x1 is a numerical value of a cue, and β is a weighted estimate of the cue.
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Logistic regression makes a prediction about a category by linearly weighting and combining 
each cue and then converting them to a probability. These estimated weights typically reflect two 
things. First, they serve as a sort of scaling on the cues, converting them to a more scale-free metric 
(e.g., a cue that scales in milliseconds will have a very different range, than a formant frequency 
that scales in Hertz). In this case, the cues were converted to z-scores so that there was no scaling 
problem to solve. Second, and more importantly, the weight determines reliability of a cue as a 
function of how well the category can be predicted from the cue. The model is trained by giving it 
the correct label for each token, along with all the cue values. It then adjusts the weights to maxi-
mize its accuracy. It is important to test the model on different data than the model was trained on 
in order not to “overfit” the data. Thus, the regression model was trained on the cases from the first 
trial excluding tokens used in the perception experiment.

Probabilities of three categories can be evaluated using multinomial logistic regression, which 
combines regression parameters of several categories. In this case, the model to distinguish [d] and 
[t]̣ from [t] will have two regression parameters, one for each category except the reference cate-
gory. Exponential of each category is shown in equation 2.
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They are combined to evaluate probability of any category:
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Then the probability of the reference category is
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When two categories are identified in a binary logistic model, each cue receives only one weight as an 
estimate of reliability. In a multinomial model, weights can differ depending on the reference category; 
however, the difference in weights represents how each category is different with respect to a reference 
category. Therefore, modeling cue integration must include some kind of justification of the choice of the 
reference category. In case of Arabic coronals, voiceless [t] was chosen as a reference category because 
it is the unmarked category among the three stops. It is minimally different from [d] in voicing ([d] is 
[+voice] while [t] is [-voice]) and from [t]̣ in emphasis ([t]̣ is [+emphatic while [t] is [-emphatic]).

Although this coding makes it possible to put the stops in the three models on the same scale in 
a singular dimension, it does not represent contrast-specific weighting of a cue. Recall that [d] is 
different in voicing not only from the reference category [t], but also from the emphatic category 
[t]̣, which is also [–voice]. Similarly, [d] is also different from [t]̣ as it is [-emphatic]. Contrast-
specific weighting should include evaluation of each contrast in a separate orthogonal dimension. 
Thus, in order to compare all models directly, the categories in the orthogonal model were con-
verted to be compared to the reference category on a single scale.

5.3 Models of cue integration: Overall data

Three models that represent common approaches to categorization and cue weighting were probed. 
Model 1 was designed following the logic of FLMP (Massaro & Oden, 1980; Oden & Massaro, 
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1978) and invariance theories (Stevens & Keyser, 2010). It used two major cues to voicing and 
emphasis—VOT and F2—that were unweighted for context and phonological contrasts. The model 
predicts that listeners should use salient and invariant acoustic cues and compare their values with 
prototypical values for “quick and dirty” categorization. While this may be sufficient for categori-
zation of unambiguous stops, it is not clear how the model deals with potentially ambiguous tokens.

Model 2 was designed in line with perception models that use weighted cues and compensate 
for context (NAPP, Nearey, 1990; HICAT, Smits, 2001; C-CuRE, Cole et al., 2010; McMurray & 
Jongman, 2011). The model predicts that listeners should adjust cues by assigning weights and 
removing talker and vowel contextual variance. But cues in this model are not weighted for par-
ticular phonological contrasts. They represent overall balanced reliability of cues to identify a set 
of categories. Also, the model is sensitive to richness of context, and it may not reliably predict 
ambiguous tokens in the absence of sufficient contextual information.

Model 3 was designed to utilize the principle of compensation for phonological contrasts. It used 
cues that were weighted for each phonological contrast separately. Although the model is expected to 
show similar accuracy of performance with Model 2 to categorize unambiguous stops, contrast-spe-
cific weighting should be beneficial for categorization of stops with potentially ambiguous VOT.

First, the three models were tested for their capacity to fit the production data. The model sum-
mary is shown in Table 10; the effects of the stop category on accuracy score are presented in 
Figure 8. Stop categories were represented in a continuous fashion using indices that summarized 
acoustic information from the cues. These indices were unweighted (Model 1) or weighted (Models 
2 and 3) sums of normalized values (z-scores) of the cues, as shown in equation (1). Each index 
showed how likely the token is to be identified as an intended category. When normalized indices 
were fit to the mixed-effects linear model with stop category as a fixed factor, and talker and item 
as random factors, the analysis revealed significant effects of stop category for all models. Each 
model distinguished the voiceless, voiced, and emphatic categories and differences between them.

5.3.1 Model 1: Major unweighted cues. Model 1 asked if a sum of several unweighted cues is sufficient 
to discriminate the three categories of coronal stops. Two major cues that were found best predictors for 
voice and emphasis–VOT and F2– were used in this model. When the model was fit to the data to pre-
dict the underlying category of a coronal stop, it achieved a relatively good fit, Log likelihood = 1842.9, 
χ2(2) = 769.8, p < .0001, averaging 57% correct. The model correctly predicted voiceless stops (87%), 
but it performed poorly to predict the voiced (36%) and emphatic (43%) categories.

Table 10. Summary of indices produced by the three categorization models.

Stop Parameter Model 1 Model 2 Model 3

 Unweighted, 
unadjusted

Weighted, adjusted 
for context

Weighted, adjusted 
for contrasts

Voiceless [t] Mean (SD) .881 (.82) .965 (.76) 1.007 (.36)
 Estimate (SE) .880 (.19)*** .964 (.14)*** 1.007 (.08)***
Voiced [d] Mean (SD) –.328 (.87) –.839 (.57) –1.002 (.79)
 Estimate (SE) –1.208 (.28)*** –1.803 (.22)*** –2.009 (.16)***
Emphatic [ṭ] Mean (SD) –.707 (.31) –.161 (.53) –.007 (.14)
 Estimate (SE) –1.587 (.27)*** –1.126 (.21)*** –1.014 (.10)***
 Log Likelihood 1842.9 1349.1 585.4
 Cues VOT, F2 All 5 All 5

Note: significance level: *** – p < .001.
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5.3.2 Model 2: Cues compensated for context. Model 2 used a sum of cues adjusted for context, such 
as talker and vowel in line with C-CuRE. Adjustment of each cue was performed in a hierarchical 
regression model. After dummy codes for talker (7) and vowel (2) were entered the model, the cues 
were recoded as standardized residuals. Although variables in a regression model are typically 
weighted as parameter estimates, these weights were not explicitly specified or evaluated for two 
different phonological contrasts. They were treated as a measure for each cue to discriminate the 
three categories in the same dimension. Model 2 showed better performance than Model 1. It 
achieved a good fit, Log likelihood = 1349.1, χ2(2) = 1124.7, p < .0001, averaging 71% correct. 
Similar to Model 1, it performed very well on voiceless (83%) and showed less accuracy on emphatic 
stops (43%), but it showed a significant improvement in categorization of voiced stops (80%).

5.3.3 Model 3: Cues compensated for phonological contrasts. Model 3 was based on the assumption 
that listeners can assign contrast-specific weights to the same acoustic cues and compensate for 
phonological contrasts. Following McMurray and Jongman (2011), the two logistic regression 
models were trained to predict the contrasts in each stop from the five cues. To distinguish voiced 
[d] from voiceless stops, the coefficients for VOT, SCG of burst, F0, and F1 were negative, mean-
ing that voiced stops had negative VOT, lower spectral mean, lower fundamental frequency, and 
lower frequency of the first formant than voiceless stops. The coefficient for F2 was positive, 
which was consistent with the fact that voiced stops had higher F2 frequencies. To distinguish 
emphatic [t]̣ from non-emphatic stops, the coefficients for VOT, SCG of burst, F0, and F2 were 
negative, meaning that emphatic stops had shorter VOT, lower spectral mean, lower fundamental 
frequency, and lower frequency of the second formant than non-emphatic stops. The coefficient for 
F1 was positive indicating that emphatic stops had higher F1 frequency.

When the model with cues adjusted for contrast was fit to the total pool of data to predict the 
underlying category of a coronal stop, it achieved a good fit, Log likelihood = – 585.4, χ2(2) = 
1881.9, p < .0001, averaging 89% correct. Unlike Model 1 and Model 2, this model performed 
very well on all three categories confusing mostly voiced and voiceless categories.

Figure 8. Performance of the three multinomial models to predict three coronal stops in Qatari Arabic 
across the complete data pool.
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5.4 Resolving ambiguity in stops overlapping on the VOT scale

Comparison of the models presented in the previous section showed that each of the three models 
distinguished three categories of coronal stop, although their predictive power was different. As 
expected, Models 1 and 2 with weighted cues outperformed Model 1 with unweighted cues indicat-
ing that adjusting cues for context and phonological contrast can improve categorization. At the 
next step, the three models were tested for their ability to resolve ambiguity in coronal stops over-
lapping on the VOT scale similar to human listeners. 360 tokens (n = 120 per category) were 
selected for the analysis. They were voiced [d]s and voiceless [t]s produced with VOT within the 
range between 0 and 40 ms in Experiment 1. In addition, emphatic stops were randomly selected 
from the production pool to match the number of non-emphatic stops. The pool of ambiguous 
tokens included all stops used in Experiment II to ensure the link between performance of the 
computational model and human listeners’ performance. The analysis of models replicated the 
design of the perception experiment. Each model was tested twice: first, with consonantal cues 
only (Figure 9A), which was analogous to the Noise condition in Experiment II, and then with both 
consonantal and vocalic cues (Figure 9B) similar to the Vocalic condition in Experiment II.

When Model 1 was fit to the set of ambiguous data in the Noise condition, it achieved a good 
fit, Log likelihood: 389.8; χ2(2) = 353.4, p < .0001, but it correctly identified only 44% of tokens. 
The model correctly predicted 83% of [t]s, 80% of [t]̣s, but only 31% of voiced [d]s were predicted 
correctly. 44% of them were confused with emphatic stops, and 25% with voiceless stops. The 
model achieved a slightly better fit when vocalic cues were added, Log likelihood: 325.9; χ2(2) = 
418.7, p < .0001. It correctly predicted 73% of tokens: 86% of [t]s and 98% of [t]̣s, but surpris-
ingly it showed less accuracy categorizing voiced [d]s (28%).

When Model 2 was fit to the set of ambiguous data in the Noise condition, it achieved a good fit, 
Log likelihood: –593.3; χ2(2) = 126.9, p < .0001, and outperformed Model 1. It correctly identified 
54% of tokens, and, importantly, it discriminated all three categories. It correctly predicted 59% of [t]
s, 65% of voiced [d]s and 39% of emphatic [[t]̣s. The model’s performance improved in the Vocalic 
condition, Log likelihood: –495.5, χ2(2) = 231.1, p < .0001, with identification rate averaging 59%. 
The model correctly predicted 81% of [t]s, 38% of voiced [d]s and 55% of emphatic [t]̣s. Most confu-
sions (62%) happened between the voiced and emphatic categories.

Model 3 also discriminated all three categories. It achieved a good fit, Log likelihood: 331.9, 
χ2(2) = 355.3, p < .0001, and outperformed Models 1 and 2. With consonantal cues, it correctly 

Figure 9. Performance of the three models and human listeners to predict coronal stops in Qatari Arabic 
overlapping on the VOT scale in A) Noise and B) Vocalic conditions.
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identified 72% of tokens. The model correctly predicted 86% of [t]s but performed less accurately 
on voiced [d]s (50%) and emphatic [t]̣s (77%). Most confusions occurred between the voiced and 
voiceless categories. In the vocalic condition, the performance improved considerably, Log likeli-
hood: –98.8, χ2(2) = 570.4, p < .0001, achieving 92% correct identifications. The model correctly 
predicted 93% of [t]s, 90% of voiced [d]s and 94% of emphatic [t]̣s.

5.5 Summary

The results showed that each model distinguished between the three categories of coronal stops 
and could predict ambiguous categories in some conditions similar to human listeners. But only 
Model 3 revealed performance similar to performance of human listeners in all conditions. The 
findings suggest that weighting cues with respect to both phonological dimensions is beneficial in 
a task that requires resolving ambiguity. Model 3 demonstrated overall accuracy similar to listen-
ers’ accuracy, as well as the same types or error and confusion patterns as human listeners. It failed 
to predict ambiguous [d]s and confused them mostly with voiceless [t]s.

Some results were surprising. For example, the model with unweighted and unadjusted cues 
(Model 1) could correctly predict voiceless [t]s and emphatic [t]̣s in the Noise condition similar to 
Model 3 and listeners. These findings suggest that VOT is indeed the most salient invariant conso-
nantal cue that can identify the three categories of stops. High accuracy rate for emphatic stops 
suggest that short-lag VOT is an important cue to emphasis in Qatari Arabic stops. Although the 
analysis of cues in section 3.3.2 suggested that VOT may not be associated with emphasis, listen-
ers’ performance indicated that this prediction was incorrect. Short-lag VOT was a very reliable 
predictor of the emphatic category in coronal stops. It is possible that the results of the analysis 
were confounded by the fact that the emphatic category falls between the voiced and voiceless 
categories on the VOT scale, which masked the effect of this cue in the acoustic analysis.

Despite high accuracy rate for voiceless [t] and [t]̣, Model 1 performed poorly on voiced [d]s 
with short-lag VOT, confusing them with voiceless categories that also had positive VOT values. 
Inadequate performance of the model in the vocalic condition suggests that the effect of F2 was 
insufficient. Model 2 showed a significantly better performance on average, but, unexpectedly, it 
showed a low accuracy rate on emphatic stops, especially in the vocalic condition, when only one 
vocalic context was used. These results seem to be counterintuitive because using additional cues 
should improve performance of the model. It is possible that Model 2 indeed requires rich context 
and cannot adequately deal with cases that involve insufficient contextual information.

6 General discussion and conclusion

The primary goal of the study was to determine how the phonological contrasts of voicing and 
emphasis in coronal stops in Qatari Arabic are distributed in the multidimensional acoustic space. 
To address this question, a corpus of production data was collected. The acoustic analysis of the 
cues showed that both contrasts were linked to essentially the same cues, and that every cue influ-
enced contrast identity. Therefore, proper mapping of the cues on the three categories of stops—
voiceless [t], voiced [d], and emphatic [t]̣—requires some kind of weighting and contrast-specific 
compensation. Compensation for phonological contrast is particularly important for correct cate-
gorization of stops that overlap on the VOT scale.

Listeners’ performance was used in this study to achieve a two-fold goal. First, the results of the 
perception study revealed that listeners are capable to resolve ambiguity even if the contrast is partially 
neutralized. Evaluation of the production data showed that the overlap in the potentially ambiguous 
range between 0 and 40 ms does not result in complete neutralization of the two contrasts. VOT values 
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in the three categories of coronal stops remained distinct, although the differences between voiced, 
voiceless and voiceless emphatic categories became very small. For example, short-lag positive VOT 
values in voiced [d]s were only 4 ms longer than short-lag positive VOT values in emphatic [t]̣s—a 
difference that may not be detected in perception (Abramson & Lisker, 1970). The findings suggest 
that listeners were able to discriminate two quasi-categories inside the short-lag range. Stops with 
longer VOT (35-40 ms) were categorized as a voiceless “aspirated” [t] but stops with shorter VOT 
(10-30 ms) consisting of tokens of voiced [d] that lacked prevoicing and of tokens of voiceless 
emphatic [t]̣ were categorized as an “unaspirated” category. Most importantly, categorization of 
“unaspirated” stops revealed a preference toward the emphatic category.

The response patterns observed in the study suggest that listeners may use compensation for pho-
nological contrast, showing preference toward one of the categories when cue values are largely neu-
tralized. For example, short-lag VOT was more often associated with emphatic [t]̣ than with unvoiced 
[d]. In the absence of other contextual factors, this preference must be derived from phonological 
knowledge. Speakers of Qatari Arabic use short-lag VOT as a cue to emphasis and tend to perceive 
voiceless unaspirated stops as emphatic. Longer VOT, in contrast, is associated with voiceless non-
emphatic [t]. A similar pattern was observed in F2 as well. Listeners typically associated higher F2 
values with non-emphatic stops, but they did it more often for voiceless [t] than for voiced [d].

Second, listeners’ accuracy rate on the set of ambiguous tokens was used to evaluate the perfor-
mance of the computational models. To investigate how listeners integrate multiple cues for two 
orthogonal contrasts in stops, three models of categorization were evaluated and compared to lis-
tener performance. The models were in line with three common assumptions of theoretical models 
of categorization and were used to test the following predictions: a) that a few uncompensated cues 
may be sufficient for categorization, b) that weighted cues compensated for context are sufficient, 
and c) that cues may as well be compensated for phonological contrasts.

The findings suggest that compensation for phonological contrasts observed in listeners’ categori-
zation tasks can be encoded as weighting of cues in computational models. Such weighting seems to 
be different from weighting previously reported in the literature (e.g., Nearey, 1990, 1992). Cue 
weights used in Model 3 in the current study are not just the result of adjustment for the immediate 
phonetic context. They are also the result of adjustment for the phonological contrasts in the language. 
Listeners showed preference for a particular category of a stop in the same phonetic context, assigning 
potentially ambiguous tokens with shorter VOT values to the emphatic category.

Previous studies (e.g., Cole et al., 2010; McMurray et al., 2011) reported that the models with 
weighted cues performed similar to human subjects. Although the current study revealed a similar 
pattern, some results deviate from the patterns observed in literature. For example, McMurray and 
Jongman (2011) report that performance of categorization models did not exceed performance of 
human subjects. In the current study, the model with cues compensated for phonological contrasts 
(Model 3) showed a higher accuracy rate than listeners. At least two explanations are possible. First, 
the high accuracy rate may be the result of over-saturation of the model. Recall that the weights were 
estimated by providing the model with correct labels for the contrasts, but listeners had to identify the 
type of contrast during the task before assigning the relevant weights. Although weights were esti-
mated on a subset of data and were applied to the rest of tokens (the technique typically used when 
model training is required, see McMurray & Jongman, 2011, or Toscano & McMurray, 2010, for 
details), this procedure was probably not sufficient to desaturate the model. High performance rate 
may also be viewed as a limitation of the model and the method. It suggests that the actual human 
listeners’ performance probably includes other factors that were not represented in the model. But in 
general, the results of the performance of the model can be treated as plausible because Model 3, 
unlike other models, also demonstrated the error pattern similar to human listeners. The lower perfor-
mance of the C-CuRE model in McMurray and Jongman (2011) could be due to the differences 
between stops and fricatives. Fricatives in general are more difficult in perception (see Jongman 
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et al., 2011, among others) and require a larger number of cues than stops (23 cues were used to test 
C-CuRE, none of which was invariant). It is possible, that stops were better identified by a computa-
tional model in the Noise condition in this study because Model 3 used salient cues (e.g., VOT, an 
invariant cue to voicing) that significantly contributed to categorization.

Next, the findings suggest that compensation for context and compensation for phonological 
contrast might be different tasks for listeners. Both models that used cue weighting—Model 2 and 
Model 3—showed good performance on coronal stops within the ambiguous VOT range, and they 
were able to differentiate between the three categories of stops approaching the results of human 
listeners. However, the two models had different predictions about the confusion patterns. Model 
2 (compensation for context) predicted confusion between voiced [d] and emphatic [t]̣ due to simi-
lar weights of the spectral cues for the two categories of stops. Model 3 (phonological compensa-
tion) predicted confusion between voiced [d] and voiceless [t]. In this task, weighting all available 
cues facilitated discrimination of the categories, but adjustment of cues for phonological contrast 
facilitated more accurate identification of each category. The results of identification test by human 
listeners support Model 3, as listeners were able to differentiate all three categories of stops that 
overlap on the VOT scale and demonstrated a similar confusion pattern performing poorly on 
voiced [d]s and confusing it mostly with voiceless stops.

Although the model with phonological compensation (Model 3) showed more accurate perfor-
mance than the model with compensation for context (Model 2), the results of the current study are not 
in conflict with predictions of C-CuRE. The difference between the two approaches lies in the sce-
narios where each model achieves its best results. The C-CuRE approach is aimed at dealing with rich 
contextual information. It ensures that listeners filter out contextual variation and adjust cues taking 
into account any contextual factors that can variably modify the acoustic signal, for example, speaker’s 
gender, category of adjacent segment(s), etc. Weights in C-CuRE are parameters that emerge as a 
measure to evaluate relevance of cues to discriminate contrastive categories. They indicate to what 
extent the cue is modified by context and, hence, to what extent it can be reliable in this context.

The approach proposed in this paper, in contrast, aims to deal with situations when context is 
scarce, the categories are ambiguous, and the phonological contrast is partially neutralized. The 
model with phonological compensation predicts that listeners would still weight cues, but such 
weighting can be viewed as their expectations that originate from listeners’ phonological knowl-
edge. This type of weighting may work as a “shortcut” in processing of an acoustic signal when 
contextual information is insufficient for categorization. This approach may be beneficial for lis-
teners as it allows them to categorize tokens successfully in situations when categories overlap.

Adjusting cues for phonological contrast is not incompatible with predictions of С-CuRE or 
HICAT. Listeners must identify speakers’ identity/gender and the categories of all adjacent seg-
ments “simultaneously and interactively” (McMurray & Jongman, 2011, p. 240). Such identifica-
tions occur in parallel, but since listeners have to wait until all cues become available, they “may 
be able to revise their initial decisions” (ibid.). Weighting and adjusting cues for phonological 
contrast can be part of this process. When more than one competitor is activated in parallel process-
ing, listeners may facilitate the decision process by excluding some of the candidates earlier than 
other candidates because they find them less relevant. In addition, parsing the acoustic signal to 
categorize a segment is a process that requires adjustments at the intermediate stage. Both C-CuRE 
and HICAT predict that partial parsing of cues will help to make a preliminary decision about an 
adjacent segment, and then this contextual information will help to identify the segment (McMurray 
& Jongman, 2011; Smits, 2001). Phonological compensation is not in conflict with this prediction. 
It simply adds an additional source of information when actual phonetic context is not rich enough.

To conclude, cue integration is an essential part of speech recognition, and any successful pars-
ing model must account for compensation and weighting of cues. Rich literature on the subject 
focuses primarily on various mechanisms that explain compensation of acoustic cues for phonetic 
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context. Less is known about the role of phonological context in cue weighting. The current study 
is an attempt to provide at least some answers to this question. The categorization model tested in 
the study uses cues weighted in relation to two phonological contrasts: voicing and emphasis. 
These contrasts in coronal stops are not symmetrical, and they and are linked essentially to the 
same set of acoustic cues. Thus, relevance of each cue to a particular phonological contrast is a 
vital problem for the parsing mechanism.

The findings suggest that in addition to adjustment and compensation for phonetic context, lis-
teners may adjust cues based on their expectations derived from knowledge of the phonological 
system of a language. The model with cues separately weighted for different phonological contrast 
could identify segments more accurately and demonstrated the confusion pattern similar to the pat-
tern observed in human subjects. Some findings of the study also suggest that cue weighting and 
decisions about phonological contrasts can be made in order that reflects a hierarchy of phonologi-
cal contrasts. However, particular details of this process and the directionality of such hierarchies 
require additional research.
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Appendix 1

Results of Experiment II

Table 4. Summary of the mixed-effects linear model examining human listeners’ categorical response 
pattern in stops overlapping on a VOT scale. The reference category is identification of voiceless stop [t].

Predictor Level Estimate Std. Error t value Pr (> |t|)

Fixed effects  
 (Intercept) .79 .04 19.31 < 0.0001
Condition Vocalic .07 .05 1.43 0.163
Stop Voiced –.32 .03 –9.44 < 0.001
 Emphatic –.14 .03 –4.07 < 0.001
Condition: Stop Vocalic: Voiced .11 .03 3.63 < 0.001
 Vocalic: Emphatic .20 .03 6.63 < 0.0001
Random effects  
Item (Intercept) .02  
Subject (Intercept) .02  
 Voiced .02  
 Emphatic .02  
Residual .15  

Table 5. Summary of the mixed-effects linear model examining human listeners’ response pattern as a 
function of VOT binned by 5 ms. The reference category is voiceless stop [t].

Effect Level Estimate Std. Error t value Pr(> |t|)

(Intercept) .616 .123 4.991 < .0001
VOT .004 .004 1.054 n.s.
Condition Vocalic .275 .175 1.575 n.s.
Stop Voiced .038 .161 .239 n.s.
 Emphatic .257 .153 1.681 n.s.
VOT: Condition Vocalic –.006 .006 –1.155 n.s.
VOT: Stop Voiced –.017 .007 –2.514 .013
 Emphatic –.019 .006 –3.418 .001
Condition: Stop Vocalic: Voiced –.194 .227 –.855 n.s.
 Vocalic: Emphatic –.217 .216 –1.003 n.s.
VOT: Condition: Stop Vocalic: Voiced .021 .010 2.213 .028
 Vocalic: Emphatic .021 .008 2.656 .008
Random effects  
Subject (Intercept) .012  
 Voiced .017  
 Emphatic .028  
Residual .053  
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Table 7. Summary of the mixed-effects linear model examining human listeners’ response pattern as a 
function of SCG of burst binned by 500 Hz. The reference category is voiceless stop [t].

Effect Level Estimate Std. Error t value Pr(> |t|)

(Intercept) .741 .041 18.284 < .0001
SCG of burst .00004 .00001 4.241 < .0001
Condition Vocalic .085 .057 1.482 n.s.
Stop Voiced –.241 .081 –2.993 .004
 Emphatic .003 .076 1.681 n.s.
SCG: Condition Vocalic –.00001 .00001 –.568 n.s.
SCG: Stop Voiced –.00008 .00003 –2.346 .019
 Emphatic –.00013 .00003 –3.724 < .001
Condition: Stop Vocalic: Voiced .099 .114 .873 n.s.
 Vocalic: Emphatic .068 .108 .634 n.s.
SCG: Condition: Stop Vocalic: Voiced .00000 .00005 .083 n.s.
 Vocalic: Emphatic .00012 .00005 2.433 .015
Random effects  
Subject (Intercept) .008  
 Voiced .035  
 Emphatic .026  
Residual .037  

Table 6. Summary of the mixed-effects linear model examining human listeners’ response pattern as a 
function of F2 binned by 200 Hz. The reference category is voiceless stop [t].

Effect Level Estimate Std. Error t value Pr(> |t|)

(Intercept) .091 .189 .479 n.s.
F2 .0004 .0001 3.617 < .0001
Condition Vocalic .108 .051 2.093 n.s.
Stop Voiced .642 .236 2.720 .007
 Emphatic .689 .265 2.595 .010
Stop : F2 Voiced –.0005 .0001 –3.914 < .0001
 Emphatic –.0004 .0002 –2.140 .033
Random effects  
Subject (Intercept) .014  
 Voiced .032  
 Emphatic .042  
Residual .054  
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Table 8. Summary of the mixed-effects linear model examining human listeners’ response pattern as a 
function of F0 binned by 5 Hz. The reference category is voiceless stop [t].

Effect Level Estimate Std. Error t value Pr(> |t|)

(Intercept) .403 .074 5.423 < .0001
F0 .002 .0003 5.744 < .0001
Condition Vocalic .131 .043 3.025 .006
Stop Voiced .508 .142 3.565 < .001
 Emphatic –.093 .168 –.552 n.s.
F0 : Stop Voiced –.003 .0006 –5.564 < .0001
 Emphatic .0003 .0007 .442 n.s.
Random effects  
Subject (Intercept) .015  
 Voiced .017  
 Emphatic .030  
Residual .052  

Table 9. Summary of the mixed-effects linear model examining human listeners’ response pattern as a 
function of F1 binned by 100 Hz. The reference category is voiceless stop [t].

Effect Level Estimate Std. Error t value Pr(> |t|)

(Intercept) 1.0 .082 12.177 < .0001
F1 –.0003 .0001 –2.800 .005
Condition Vocalic .106 .043 2.465 .021
Stop Voiced –.455 .149 –3.054 .002
 Emphatic –.443 .175 –2.538 .011
F1: Stop Voiced .0003 .0003 1.169 n.s.
 Emphatic .0006 .0002 2.336 .020
Random effects  
Subject (Intercept) .008  
 Voiced .029  
 Emphatic .046  
Residual .053  


