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Abstract
Gene sequencing technology has been playing an important role in many aspects, such as life science, disease medicine 
and health medicine, particularly in the extremely tough process of fighting against 2019-novel coronavirus. Drawing DNA 
restriction map is a particularly important technology in genetic biology. The simplified partial digestion method (SPDP), a 
biological method, has been widely used to cut DNA molecules into DNA fragments and obtain the biological information 
of each fragment. In this work, we propose an algorithm based on 0–1 planning for the location of restriction sites on a DNA 
molecule, which is able to solve the problem of DNA fragment reconstruction just based on data of fragments’ length. Two 
specific examples are presented in detail. Furthermore, based on 1000 groups of original DNA sequences randomly generated, 
we define the coincidence rate and unique coincidence rate between the reconstructed DNA sequence and the original DNA 
sequence, and then analyze separately the effect of the number of fragments and the maximum length of DNA fragments on 
the coincidence rate and unique coincidence rate as defined. The effectiveness of the algorithm is proved. Besides, based on 
the existing optimization solution obtained, we simulate and discuss the influence of the error by computation method. It turns 
out that the error of position of one restriction site does not affect other restriction sites and errors of most restriction sites 
may lead to the failure of sequence reconstruction. Matlab 7.1 program is used to solve feasible solutions of the location of 
restriction sites, derive DNA fragment sequence and carry out the statistical analysis and error analysis. This paper focuses 
on basic computer algorithm implementation of rearrangement and sequencing rather than biochemical technology. The 
innovative application of the mathematical idea of 0–1 planning to DNA sequence mapping construction, to a certain extent, 
greatly simplifies the difficulty and complexity of calculation and accelerates the process of ’jigsaw’ of DNA fragments.
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Abbreviations
n	� The number of restriction sites on a 

certain DNA molecule
A	� The first set of data, consisting of all 

the length of fragments if the DNA 
molecule is cut into two fragments 
in each restriction site separately. 
The data size of A is 2n

B	� The second set of data, consisting 
of all the length of fragments if the 
DNA molecule is cut into fragments 
in each restriction site simultane-
ously. The data size of B is n + 1

M	� The total length of the DNA mol-
ecule, equal to the sum of elements 
in B

I
i
	� The i restriction site in the DNA 

molecule
x = [x1, x2, x3,⋯ x

n
]	� A permutation of the location of 

DNA restriction sites, where x
i
 can 

only be 0 or 1, while 1 means that 
I
i
 is closer to one end of the DNA 

molecule, and 0 means that I
i
 is 

closer to the other end
P and Q	� The two ends of the DNA molecule, 

respectively
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a
i
	� The shorter distance between I

i
 and 

the two ends of the DNA molecule, 
while aa

i
 is the longer distance. 

Obviously, a
i
 is less than or equal to 

aa
i
 and a

i
 plus aa

i
 is equal to M

C	� The set of distance from each I
i
 to 

one end of the DNA molecule (for 
example, P end) in ascending order, 
and CC is the set of distance from 
each I

i
 to the other end (for example, 

Q end correspondingly) in ascend-
ing order. Here we let the distance 
take 0 if I

i
 is further away from the 

end
l
i
	� The length of each fragment on the 

half of the DNA molecule near one 
end (for example, P end), and ll

i
 is 

the length of each fragment on the 
half of the DNA molecule near the 
other end (for example, Q end)

S	� A collection of the length of all the 
fragments obtained when the DNA 
molecule is cut by enzyme at all 
restriction sites simultaneously in 
the analysis. S is derived from A and 
x1, x2, x3,⋯ x

n
 . The data size of S is 

2n + 1 . Actually, there are n zeros in 
S

SS	� Consists of nonzero elements in the 
collection S . The data size of SS is 
n + 1

1  Introduction

It’s commonly accepted that drawing DNA restriction map 
is an extremely significant method for genetic and biologi-
cal analysis. In view of the high molecular weight of DNA 
and excessive number of base pairs, biochemical technol-
ogy is used to cut DNA into small molecular fragments in 
scientific experiments [1, 2]. Specifically, the PDP method 
and the simplified PDP method (SPDP) based on the dif-
ferent enzyme cutting sites have been proposed in a series 
of classic studies. The basic biological information of each 
segment is analyzed to obtain the relevant information of 
the whole DNA molecule [3, 4]. This sequencing method is 
the "shotgun method" invented by Craig Venter, founder of 
selera genetic company in the United States [5].

Quickness, simplicity of implementation, and low cost are 
regarded as the advantages of the shotgun method. However, 
the workload is large. If the shotgun method is used, the 
rearrangement of DNA fragments is not easy for computa-
tion at all. In the determination of large genomes, such as 

the human genome and drosophila genome and so on, the 
improved whole-genome "shotgun method" has been exten-
sively applied to complete the sequencing, which can suf-
ficiently demonstrate its feasibility and effectiveness [6, 7].

Scientists, researchers and scholars have developed many 
algorithms and tools for predicting the precise results based 
on some features of target objects [8–10]. Recently, the 
extensive application of these algorithms has been witnessed 
in genetic analysis. Genfrag, a set of tools, was developed 
to generate benchmark data sets for testing DNA sequence 
assembly algorithms and to quest for the range of data and 
corresponding performance of assembly tools on "shot-gun" 
sequencing projects by Engle and Burks [11]. An open-
source bioinformatic tool, called Grinder, was introduced 
by Angly et al., which could simulate amplicon and shot-
gun datasets from reference sequences [12]. In the detection 
of respiratory viruses in clinical specimens, four different 
bioinformatics algorithms were executed by Huang et al. 
to make the assessment of the performance of a metagen-
omic shot-gun sequencing method [13]. Based on Sanger 
methodology, a novel algorithm was applied by Shityakov 
et al. [14], which correctly predicted and stressed the per-
formance of DNA sequencing techniques and confirmed the 
statistical significance of results. Although many algorithms 
have recently been proposed to obtain the DNA fragment 
sequence, these algorithms are considerably complex and 
require much additional information apart from the lengths 
of DNA fragments, which may limit their application scopes.

In this paper, based on the biological information of each 
segment by SPDP and the mathematical thought of 0–1 plan-
ning, we propose the general basic algorithm to solve the 
feasible solutions from all permutations of the location of 
DNA restriction sites, and further restore the possible DNA 
sequence. Besides, we evaluate the efficiency of this algo-
rithm according to 1000 sets of DNA original sequences ran-
domly generated. Moreover, the influence of measurement 
error of fragments’ length on the algorithm is discussed. The 
proposed algorithm can be conducted just based on data of 
fragments’ length, and thus this algorithm is relatively easy 
to be applied in practice.

2 � Example Design

2.1 � Example 1

The first set of data is 2, 3, 7, 8, 8, 9, 13, 14.
The second set of data is 2, 1, 4, 3, 6.

2.2 � Example 2

The first set of data is 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
12, 13, 14.
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The second set of data is 1, 1, 2, 1, 2, 2, 1, 2, 3.

3 � Problem Analysis and Tentative Ideas

We need to find the correct sequence of DNA fragments 
represented by the second set of data, so that when the DNA 
molecule is cut at each restriction site respectively, the data 
obtained is consistent with the first set of data. Because of 
the specific data given in example 1, there are four restric-
tion enzyme cutting sites in this DNA molecule, and the first 
group of data (2, 14, 8, 8, 7, 9, 3, 13) is obtained when the 
DNA molecule is cut on a single site, while the second group 
of data is (1, 2, 3, 4, 6) after DNA molecule is cut on all the 
restriction enzyme cutting sites. In the first set of data, the 
minimum fragment length is 2, and only 2 in the second set 
of data can correspond to it, so the corresponding enzyme 
cutting site should be the closest site to the endpoint; while 
the number 3 in the first set of data can correspond to 1 plus 
2 or 3 in the second set of data. Obviously, the larger number 
is in the first set of data, the corresponding combination in 
the second set of data will be more.

Further analysis, we can get each number in the first 
group of data from one end according to each enzyme cut-
ting point, and then the rearrangement of the second set of 
data is correct. That is because numbers in pairs in the first 
set of data represent the same meaning, such as 2 and 14 or 
3 and 13, which only represent different restriction sites. We 
divide the first set of data into two groups, namely (2, 3, 7, 
8) and (14, 13, 9, 8). Only one set of data (2, 3, 7, 8) repre-
sents the shorter distance between each restriction site and 
two ends of the DNA molecule. Therefore, we only need to 
analyze a half of the first data to express each restriction site. 
If the data of the length of DNA fragments obtained after the 
DNA molecule is cut on each restriction site at the same time 
can be the same as the second data (1, 2, 3, 4, 6), then the 
sequence is meaningful. Based on the above analysis, we use 
0–1 planning to calibrate the shear point position and finally 
get the result. Specific implementation of the algorithm is 
as follows [15].

4 � 0–1 Planning Method

4.1 � The Establishment of 0–1 Equation Algorithm

Suppose: the data of fragments’ length measured when the 
DNA molecule is cut at each restriction site separately is the 
first set of data:

where a
i
, aa

i
 are two data from the same cutting experiment 

and a
i
≤ aa

i
 while      n is the number of restriction sites on 

DNA;
The data of fragments’ length measured when the DNA 

molecule is cut at each restriction site simultaneously is the 
second set of data B =

[
b1, b2, b3,⋯ b

n+1

]
.

The total length of the sequenced DNA molecule is 
M = a

i
+ aa

i
= b1 + b2 + b3 +⋯ + b

n+1.
After processing, the first set of data becomes 

A =

{
a1 a2 a3 ⋯ a

n

aa1 aa2 aa3 ⋯ aa
n

}
 ,  w h e r e  a

i
≤

M

2
 a n d 

a
i
+ aa

i
= M, i = 1, 2, ..., n . Therefore, just one between a

i
 and 

aa
i
 can convey the meaning of the first group of data, then A 

can be expressed as: A =
[
a1,a2,a3,⋯ ,a

n

]
.

Each of a1,a2,a3,⋯ ,a
n
 is the distance from the correspond-

ing restriction site to the nearest endpoint. As shown in Fig. 1, 
obviously, each restriction site I

i
 is either on the half segment 

of DNA near the P endpoint or the half segment of DNA near 
the Q endpoint.

We suppose that the value of x1, x2, x3,⋯ x
n
 should only be 

0 or 1, and generate the sequences below:

If x
i
= 1 , it means that the restriction site I

i
 is on the half 

segment of DNA near the P endpoint. Otherwise, I
i
 is on the 

half segment of DNA near the Q endpoint.
Sort the numbers in the C and CC from small to large to get 

a new sequence.

A =
[
a1,aa1,a2,aa2,a3,aa3,⋯ ,a

n
, aa

n

]
,

C =
[
a1 ⋅ x1,a2 ⋅ x2,a3 ⋅ x3,⋯ ,a

n
⋅ x

n

]
,

CC =
[
a1 ⋅ (1 − x1), a2 ⋅ (1 − x2), a3 ⋅ (1 − x3),⋯ , a

n
⋅ (1 − x

n
)
]
.

Fig. 1   Each restriction site I
i
 

on the DNA molecule and cor-
responding a

i
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w h e r e  C  i s  t h e  a s c e n d i n g  o r d e r  o f 
a1 ⋅ x1,a2 ⋅ x2,a3 ⋅ x3,⋯ ,a

n
⋅ x

n
 , and CC is the ascending order 

of a1 ⋅ (1 − x1), a2 ⋅ (1 − x2), a3 ⋅ (1 − x3),⋯ , a
n
⋅ (1 − x

n
).

The length of fragments between the adjacent restric-
tion sites (including the two ends of DNA) on the DNA 
can be expressed as follows.

1. The length of each segment on the half segment of 
DNA near the P endpoint is:

2. The length of each segment on the half segment DNA 
near the Q endpoint is:

3. The length of the middle segment is:

A value of 0 indicates no fragment here.
Use the length of the fragments above to build a 

sequence:

Then the elements in the sequence are sorted from small 
to large.

Because the point I
i
 is either on the half of DNA near 

the P endpoint or on the half of DNA near the Q end-
point (that is, x

i
 is equal to 0 or 1), there are n zeros in 2n 

numbers in C and CC . The n zeros in the sequence S are 
removed to get the sequence SS representing the length of 
the segments between the restriction sites (including the 
two ends of DNA) on DNA.

Sort the elements in the sequence B from small to large, 
and get:

bb1, bb2, bb3,⋯ bb
n+1 i s  a s c e n d i n g  o r d e r  fo r 

b1, b2, b3,⋯ b
n+1.

C =
[
c1,c2,c3,⋯ ,c

n

]
,

CC =
[
cc1, cc2, cc3,⋯ , cc

n

]
.

{
i = 1 l

i
= c1

1 < i ≤ n l
i
= c

i
− c

i−1

{
i = 1 ll

i
= cc1

1 < i ≤ n ll
i
= cc

i
− c

i−1

M − (c
n
+ cc

n
)

S =
[
l1, l2, l3,⋯ , l

n
, ll1, ll2, ll3,⋯ , ll

n
,M − (c

n
+ cc

n
)
]
.

S =
[
s1, s2, s3,⋯ , s2n+1

]

SS =
[
s
n+1, sn+2, sn+3,⋯ , s2n+1

]
.

B =
[
bb1, bb2, bb3,⋯ bb

n+1

]

Therefore, assuming that SS and B are exactly the same 
sequences (that is, SS = B ), and we can establish equations 
as follows:

By programming on Matlab7.1, we can get the position 
of each restriction site on the original DNA molecule by 
solving x1, x2, x3,⋯ x

n
 , and then calculate the sequence of 

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

s
n+1 = bb1

s
n+2 = bb2

s
n+3 = bb3

⋯⋯

s2n+1 = bb
n+1

a DNA molecule with

n restriction sites 

SPDP

obtain A and B

input x

define and calculate M, C and CC

calculate S

arrange S in ascending order 

define and obtain SS

Is SS the same as B?

yes

x is a possible solution of

restriction sites's position

deduce a feasible solution of

sequence of DNA fragments

no

x is not a possible

solution 

input another x

Fig. 2   Flow chart of the proposed algorithm
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the original DNA molecule. The flow chart of the proposed 
algorithm is shown in Fig. 2.

To clarify the algorithm, part of the solution process of 
example 1 is shown as in Fig. 3.

For example, we input x =
[
1 0 0 0

]
 here, and then the 

process of calculation is as follows.

M = 1 + 2 + 3 + 4 + 6 = 16

C =
[
2 0 0 0

] sort ascending
⟶ C =

[
0 0 0 2

]

CC =
[
0 3 7 8

] sort ascending
⟶ CC =

[
0 3 7 8

]

{
i = 1 l

i
= c1

1 < i ≤ n l
i
= c

i
− c

i−1

l1 = 0, l2 = 0, l3 = 0, l4 = 2.

Because SS is the same as B , x1, x2, x3,⋯ x
n
 is the pos-

sible permutation of the location of DNA restriction sites 
and a feasible solution of DNA fragments’ sequence 
[2,6, 1, 4, 3] can be restored. The reconstructed sequence 
is exactly the same as Fig. 3a.

{
i = 1 ll

i
= cc1

1 < i ≤ n ll
i
= cc

i
− c

i−1

ll1 = 0, ll2 = 3, ll3 = 4, ll4 = 1.

M − (c
n
+ cc

n
) = 16 − 2 − 8 = 6

S =
[
l1, l2, l3,⋯ , l

n
, ll1, ll2, ll3,⋯ , ll

n
,M − (c

n
+ cc

n
)
] sort ascending

⟶

S =
[
s1, s2, s3,⋯ , s2n+1

]
= [0, 0, 0, 0, 1, 2, 3, 4, 6]

SS =
[
s
n+1, sn+2, sn+3,⋯ , s2n+1

]
= [1, 2, 3, 4, 6]

Fig. 3   a An instance of the 
original DNA sequence (that is, 
the true sequence that we try to 
reconstruct). b The first set of 
data A = [2,3,7, 8] . c The sec-
ond set of data B = [1, 2,3,4, 6]

(a)
2 6 1 4 3

P Q

(b)
2 14

8 8

7 9

3 13

(c)
1 2 3

4 6
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5 � Implementation

First, we build a general 0–1 algorithm for the general 
situation, and then apply this algorithm to solve example 
1 and example 2.

5.1 � Example 1

The first set of data is 2, 3, 7, 8, 8, 9, 13, 14, then: 
A = [2,3,7,8].

The second set of data is 2, 1, 4, 3, 6, then: 
B = [2, 1, 4, 3, 6][2, 1, 4, 3, 6].

Total DNA length: M = 2 + 1 + 4 + 3 + 6 = 16.
By Matlab7.1 (see Appendix procedure 1), we solve out 

x =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

1 0 0 1

0 1 1 0

0 1 1 1

⎤⎥⎥⎥⎥⎦
.

The possible sequences of fragments represented by the 
second set of data are as follows:

If there is no difference between the two ends of P and Q, 
there is only one solution:

(or 3 4 1 6 2).
If P and Q are different in order, there are two solutions:

5.2 � Example 2

The first set of data is 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
12, 13, 14, then:

The second set of data is 1, 1, 1, 1, 2, 2, 2, 2, 3, then: 
B = [1, 1, 1, 1, 2, 2, 2, 2, 3].

T o t a l  D N A  l e n g t h : 
M = 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 = 15.

By Matlab7.1 (see Appendix procedure 2), we obtain 
that:

2 6 1 4 3

2 6 1 4 3

3 4 1 6 2

3 4 1 6 2

2 6 1 4 3

2 6 1 4 3

3 4 1 6 2

A = [1,2,3,3,4,5,6,7]

The possible sequences of fragments represented by the 
second set of data are as follows:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0 1 0

0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0

0 0 0 1 0 1 0 1

1 0 1 0 0 1 0 0

1 0 1 0 0 0 1 0

1 0 1 0 1 0 0 1

1 0 1 0 0 1 1 0

1 0 1 0 1 1 0 1

1 0 1 0 1 0 1 1

1 0 0 1 0 1 0 0

1 0 0 1 0 0 1 0

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0

1 0 0 1 1 1 0 1

1 0 0 1 1 0 1 1

0 1 1 0 0 1 0 0

0 1 1 0 0 0 1 0

0 1 1 0 1 0 0 1

0 1 1 0 0 1 1 0

0 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1

0 1 0 1 0 1 0 0

0 1 0 1 0 0 1 0

0 1 0 1 1 0 0 1

0 1 0 1 0 1 1 0

0 1 0 1 1 1 0 1

0 1 0 1 1 0 1 1

1 1 1 0 1 0 1 0

1 1 1 0 0 1 0 1

1

1

1

1

0

0

1

1

1

0

0

1

1

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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If there is no difference between P and Q, there are 8 
groups of solutions:

3 1 2 2 2 2 1 1 1

3 2 2 2 2 1 1 1 1

3 1 2 2 2 2 1 1 1

3 2 2 2 2 1 1 1 1

1 2 2 3 1 2 1 1 2

1 2 3 2 2 1 1 1 2

1 2 1 3 2 1 2 1 2

1 2 2 1 2 3 1 1 2

1 2 1 1 2 2 3 1 2

1 2 1 2 1 3 2 1 2

1 2 2 3 1 2 1 1 2

1 2 3 2 2 1 1 1 2

1 2 1 3 2 1 2 1 2

1 2 2 1 2 3 1 1 2

1 2 1 1 2 2 3 1 2

1 2 1 2 1 3 2 1 2

2 1 2 3 1 2 1 2 1

2 1 3 2 2 1 1 2 1

2 1 1 3 2 1 2 2 1

2 1 2 1 2 3 1 2 1

2 1 1 1 2 2 3 2 1

2 1 1 2 1 3 2 2 1

2 1 2 3 1 2 1 2 1

2 1 3 2 2 1 1 2 1

2 1 1 3 2 1 2 2 1

2 1 2 1 2 3 1 2 1

2 1 1 1 2 2 3 2 1

2 1 1 2 1 3 2 2 1

1 1 1 1 2 2 2 2 3

1 1 1 2 2 2 2 1 3

1 1 1 1 2 2 2 2 3

If P and Q are different in order, there are 16 groups of 
solutions:

To further illustrate the practical significance of our solu-
tion, a set of solution is extracted from the result of example 
2 for instance.

The solution above reconstructs a DNA sequence as in 
Fig. 4.

3 1 2 2 2 2 1 1 1

(or1 1 1 2 2 2 2 1 3)

3 2 2 2 2 1 1 1 1

(or1 1 1 1 2 2 2 2 3)

1 2 2 3 1 2 1 1 2

(or2 1 1 2 1 3 2 2 1)

1 2 3 2 2 1 1 1 2

(or2 1 1 1 2 2 3 2 1)

1 2 1 3 2 1 2 1 2

(or2 1 2 1 2 3 1 2 1)

1 2 2 1 2 3 1 1 2

(or2 1 1 3 2 1 2 2 1)

1 2 1 2 1 3 2 1 2

(or2 1 2 3 1 2 1 2 1)

1 2 1 1 2 2 3 1 2

(or2 1 3 2 2 1 1 2 1)

3 1 2 2 2 2 1 1 1

3 2 2 2 2 1 1 1 1

1 2 2 3 1 2 1 1 2

1 2 3 2 2 1 1 1 2

1 2 1 3 2 1 2 1 2

1 2 2 1 2 3 1 1 2

1 2 1 2 1 3 2 1 2

1 2 1 1 2 2 3 1 2

1 1 1 2 2 2 2 1 3

1 1 1 1 2 2 2 2 3

2 1 2 3 1 2 1 2 1

2 1 3 2 2 1 1 2 1

2 1 1 3 2 1 2 2 1

2 1 2 1 2 3 1 2 1

2 1 1 1 2 2 3 2 1

2 1 1 2 1 3 2 2 1

1 2 2 3 1 2 1 1 2

Fig. 4   A possible sequence of 
example 2

1 2 2 3 1 2 1 1 2
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6 � Error Analysis

Considering all kinds of factors, we think that the measurement 
of the length of the fragments is the main cause of the error. 
Assuming that there is no error in the total length of DNA, 
then the sum of the two data obtained when the DNA molecule 
is cut on each restriction site separately and the sum of all data 
obtained when the DNA molecule is cut on each restriction 
sites at the same time are the same and equal to the total length 
of DNA. According to the problem analysis, we briefly discuss 
the impact of the error on the results in two cases:

1. When the same error occurs in the measurement of 
fragments in the first set of data and corresponding frag-
ments in the second set of data, the data change is equivalent 
to the data change caused by the change of the position of 
the corresponding restriction site in DNA. At this time, the 
result of the reconstruction of the restriction map will show 
the change of those restriction sites corresponding to the 
error data in DNA molecule. The determination of other 
restriction sites will not be affected. For example:

Suppose the real data of example 1 is:
The first set of data: 2, 14, 8, 8, 9, 7, 13, 3.
The second set of data: 2, 1, 4, 3, 6.
Assume that the data obtained due to the measurement 

error are:
The first data: 2, 14, 7, 9, 9, 7, 13, 3.
The second set of data: 2, 2, 4, 3, 5.
The x of the error data is solved by Matlab 7.1 program 

(see Appendix program 3):

The possible sequences of fragments represented by the 
second set of data are as follows:

If there is no difference between P and Q, the final result 
can be expressed as follows:

The results from real data are as follows:

It can be seen that the data error only leads to the change 
of the position of the restrictive sites that produce the error, 
and has no effect on the reconstruction of the position of 
other restrictive sites.

x =

⎡⎢⎢⎢⎣

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

⎤⎥⎥⎥⎦

2 5 2 4 3

2 5 2 4 3

3 4 2 5 2

3 4 2 5 2

2 5 2 4 3

2 6 1 4 3

2. When the error only appears in the first set or the sec-
ond set of data, or the first set and the second set of data 
produce unrelated errors at the same time, there may be a 
variety of results: most of the restrictive site changes, that is, 
the calculation results can be regarded as invalid, or recon-
struction cannot be carried out. For example: Suppose the 
real data of example 1 is:

The first set of data: 2, 14, 8, 8, 9, 7, 13, 3.
The second set of data: 2, 1, 4, 3, 6.
Assume that the data obtained due to the measurement 

error are:
The first data: 2, 14, 7, 9, 9, 7, 13, 3.
The second set of data: 2, 1, 4, 3, 6.
The x of the error data is solved out by Matlab 7.1 pro-

gram (see Appendix program 4): x = �.
The reconstruction cannot proceed due to the error.

7 � Evaluation of the Model

The function (randi) of Matlab 7.1 software is used to ran-
domly generate 1000 groups of original DNA sequences. We 
try to reconstruct the original DNA sequence based on data 
of fragments’ length by SPDP using 0–1 algorithm.

The coincidence rate (including multiple solutions or 
unique solutions) and the unique coincidence rate (that is, 
reconstruction solution is unique and exact compared with 
the original DNA sequence) between the reconstructed DNA 
sequence and the original DNA sequence are defined.

First, 1000 sets of DNA sequences are randomly gener-
ated, and the second set of data consists of a set of random 
numbers (DNA fragments’ length) between 1 and 30. The 
effect of the number of DNA fragments on the coincidence 
rate and the unique coincidence rate was studied.

It can be seen from Fig. 5 that the curve of coincidence 
rate is above 90%, and the curve of unique coincidence rate 
is above 80%. Especially when the number of fragments is 
greater than 6, the coincidence rate reaches 100%. With the 
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Fig. 5   Statistical analysis of the influence of different numbers of 
DNA fragments on the effectiveness of the algorithm



126	 Interdisciplinary Sciences: Computational Life Sciences (2021) 13:118–127

1 3

increase of the number of fragments, however, the unique 
coincidence rate will decrease (that is, multiple solutions 
will appear more).

Second, 1000 sets of DNA sequences are randomly gen-
erated, while the number of DNA fragments of the second 
set of data is 5, and the length of each fragment is a random 
number between 1 and M, where M is the maximum length 
of DNA fragments. We study the effect of the magnitude 
of M on the coincidence rate and unique coincidence rate.

It can be seen from Fig.  6 that the coincidence rate 
between the DNA sequence calculated by this algorithm and 
the original DNA sequence is above 98%, and the unique 
coincidence rate is above 80%. As the maximum length of 
DNA fragments becomes larger, the unique coincidence rate 
increases.

As shown in Figs. 5 and 6, the high coincidence rate and 
unique coincidence rate are observed, validating the effec-
tiveness of the proposed algorithm.

8 � Conclusions and Remarks

Our data and analysis support the advantages of the algo-
rithm: (1) The algorithm makes full use of the search method 
and 0–1 planning knowledge, and optimizes the arrangement 
of different DNA fragments to find the most satisfactory 
solution; (2) In terms of operation, it simplifies the difficulty 
of artificial combination and pure mathematical reasoning, 
and provides a relatively fast and accurate method for high-
throughput and large-scale DNA sequencing; 3. We try to 
simplify the variables of the data, gradually approach the 
length of each segment, arrange them in ascending order, 
and finally use different sorting results to set up equations 
with the data related.

However, this is an algorithm related to biological back-
ground, which means that there exists the uniqueness of 
objective facts. Due to the limitations of the conditions 

given, we are not able to determine which group of solu-
tions is exactly the sequence of the original DNA in the 
face of multiple groups of solutions. For example, there are 
fragments with the same length in example 2. This algorithm 
starts from the length of the DNA fragments, but the possi-
ble situation where DNA fragments of the same length may 
represent different sequences is ignored inevitably, and thus 
the result of this solution is one-sided.

Our algorithm can not only analyze genetic samples and 
DNA sequencing, integrate biological information of each 
segment but also be extended to other related life science 
fields like synthetic biology. In addition, if we can integrate 
biological knowledge and consider all kinds of variation 
factors, for instance, insertion, deletion and replacement of 
base pairs under experimental conditions, the algorithm will 
have a broader application prospect and solve more practical 
problems of biological genetic analysis.
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