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ABSTRACT Members of the widespread bacterial phylum Chloroflexi can dominate
high-microbial-abundance (HMA) sponge microbiomes. In the Sponge Microbiome
Project, Chloroflexi sequences amounted to 20 to 30% of the total microbiome of
certain HMA sponge genera with the classes/clades SAR202, Caldilineae, and An-
aerolineae being the most prominent. We performed metagenomic and single-
cell genomic analyses to elucidate the functional gene repertoire of Chloroflexi
symbionts of Aplysina aerophoba. Eighteen draft genomes were reconstructed
and placed into phylogenetic context of which six were investigated in detail.
Common genomic features of Chloroflexi sponge symbionts were related to central
energy and carbon converting pathways, amino acid and fatty acid metabolism,
and respiration. Clade-specific metabolic features included a massively expanded
genomic repertoire for carbohydrate degradation in Anaerolineae and Caldilineae ge-
nomes, but only amino acid utilization by SAR202. While Anaerolineae and Caldilin-
eae import cofactors and vitamins, SAR202 genomes harbor genes encoding compo-
nents involved in cofactor biosynthesis. A number of features relevant to symbiosis
were further identified, including CRISPR-Cas systems, eukaryote-like repeat proteins,
and secondary metabolite gene clusters. Chloroflexi symbionts were visualized in the
sponge extracellular matrix at ultrastructural resolution by the fluorescence in situ
hybridization-correlative light and electron microscopy (FISH-CLEM) method. Carbo-
hydrate degradation potential was reported previously for “Candidatus Poribacteria”
and SAUL, typical symbionts of HMA sponges, and we propose here that HMA
sponge symbionts collectively engage in degradation of dissolved organic matter,
both labile and recalcitrant. Thus, sponge microbes may not only provide nutrients
to the sponge host, but they may also contribute to dissolved organic matter (DOM)
recycling and primary productivity in reef ecosystems via a pathway termed the
sponge loop.

IMPORTANCE Chloroflexi represent a widespread, yet enigmatic bacterial phylum
with few cultivated members. We used metagenomic and single-cell genomic ap-
proaches to characterize the functional gene repertoire of Chloroflexi symbionts in
marine sponges. The results of this study suggest clade-specific metabolic specializa-
tion and that Chloroflexi symbionts have the genomic potential for dissolved organic
matter (DOM) degradation from seawater. Considering the abundance and domi-
nance of sponges in many benthic environments, we predict that the role of sponge
symbionts in biogeochemical cycles is larger than previously thought.
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Sponges (Porifera) represent one of the oldest, still extant animal phyla. Fossil
evidence shows their existence in the Precambrian long before the radiation of all

other animal phyla (1, 2). Nowadays, sponges are globally distributed in all aquatic
habitats from warm tropical reefs to the cold deep sea and are even present in
freshwater lakes and streams (3). Sponges are increasingly recognized as important
components of marine environments due to their immense filter-feeding capacities and
consequent impacts upon coastal food webs and biogeochemical (e.g., carbon, nitro-
gen) cycles (4, 5). Many marine sponges contain dense and diverse microbial consortia
within their extracellular mesohyl matrix. To date, 41 bacterial phyla (among them
many candidate phyla) have been recorded from sponges, with recent amplicon
sequencing studies suggesting up to 14,000 operational taxonomic units (OTUs) per
sponge individual (6, 7). Sponges also constitute one of the most abundant natural
sources of secondary metabolites, which are of commercial interest for the develop-
ment of pharmaceuticals and new drugs (8) and are often produced by the microbial
symbionts (9, 10).

Sponges can be classified into the so-called high-microbial-abundance (HMA)
sponges harboring dense and diverse microbial consortia within their mesohyl tissues
and the low-microbial-abundance (LMA) sponges containing microbial numbers on the
order of those found in seawater (11–13). While HMA sponges are enriched in Chloro-
flexi, Acidobacteria, and “Candidatus Poribacteria,” the LMA sponges are dominated by
Gamma- and Betaproteobacteria as well as Cyanobacteria, while Chloroflexi are typically
absent. Differences have also been observed with respect to functional gene content
(14), pumping rates (15), and exchange of carbon and nitrogen compounds (16). There
is mounting evidence that HMA sponges are specialized to feed on dissolved organic
matter (DOM), while the LMA sponges preferably feed on particulate organic matter
(POM) (7, 17, 18). It is thus tempting to speculate that the symbiotic microbiota of HMA
sponges is involved in DOM degradation, and indeed, the microbiomes analyzed so far
encode a diverse repertoire for carbon metabolism pathways and transporters for
low-molecular-weight compounds (10, 19–21). However, the precise fluxes and mech-
anisms how DOM and POM are taken up and processed within the sponge holobiont
remain unknown. Recently, it was proposed that members of the phylum Chloroflexi are
involved in recalcitrant DOM recycling in the water column (22, 23).

In the present study, we focused our metagenomic analyses on Chloroflexi as
abundant and characteristic, yet understudied members of HMA sponge microbiota.
The phylum Chloroflexi comprises taxonomically and physiologically highly diverse
lineages that populate a wide range of habitats (24–27) including the deep sea (22),
uranium-contaminated aquifers (28), and the human oral cavity and gut (29, 30).
Chloroflexi metabolism is very diverse, ranging from anoxygenic photosynthesizers,
obligate aerobic/anaerobic heterotrophs, thermophiles, halophiles, clades capable of
reductive halogenation, and even predators with gliding motility. Because only a few
Chloroflexi lineages have been cultivated (87) and because draft genomes are limited in
number (22, 23, 32), the specific functions of Chloroflexi within the marine ecosystem
but especially in the symbiont context remain largely unknown.

Chloroflexi are members of HMA sponge microbiota, with representatives of classes/
clades SAR202, Anaerolineae, and Caldilineae being the most abundant (31). Visualiza-
tion of Chloroflexi by fluorescence in situ hybridization (FISH) revealed bright and
abundant signals (32, 33). Because Chloroflexi likely play an important role in the HMA
sponge holobiont, we had the following aims: (i) to assess their relative abundances
and distributions in diverse HMA sponge species by using the largest data set currently
available (Earth Microbiome Project [EMP] sponge microbiome [31]), (ii) to provide their
phylogenetic affiliation, (iii) to characterize the functional gene repertoire with a
particular focus on carbon degradation and symbiotic lifestyle, and (iv) to visualize
Chloroflexi in mesohyl tissues at ultrastructural resolution by FISH-correlative light and
electron microscopy (CLEM) methodology. We applied a broad range of state-of-the-art
methods, from global sponge surveys to single-cell genomics and microscopy, to
acquire comprehensive insights into the lifestyle of Chloroflexi symbionts.
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RESULTS AND DISCUSSION
Chloroflexi abundance in HMA sponges. Recently, members of the phylum Chlo-

roflexi were shown to be present in much higher abundance and diversity in HMA
sponges than in LMA sponges, which is why they were termed indicator species for
HMA sponges (12). Here, we provide further details for the presence and abundance of
Chloroflexi in HMA sponges (12) (Fig. 1; see also Tables S2A and S2B in the supplemental
material). The recently compiled Sponge Microbiome Project (6, 31) was used as a
reference database. In these 63 investigated sponge species, Chloroflexi abundances
ranged from 4.39% � 3.02% (Chondrilla caribensis) to 31.89% � 5.27% (Aplysina spp.)
(Fig. 1, right panel, and Table S2A). With respect to the Chloroflexi classes, the SAR202
clade was the most abundant, contributing on average to 47.74% � 22.00% of the
phylum total abundance (Fig. 1, top panel, and Table S2B). Members of the classes
Caldilineae (22.35% � 17.93%) and Anaerolineae (11.64% � 12.30%) were also abun-
dant in some sponges but not others. Unclassified OTUs at the class level represented
14.50% � 10.77% of Chloroflexi sequences, indicating that there is phylogenetic novelty
still to be discovered. Despite some variability (Fig. 1, heatmap), the classes/clades
SAR202, Caldilineae, and Anaerolineae as well as diverse hitherto unclassified OTUs
dominated the Chloroflexi population in the HMA sponges. The remaining classes/
clades amounted to 3.78% of total phylum abundance. At the OTU level, there was a
significant effect of geographical location [F (15, 725) � 15.9, P � 0.001] and of sponge
taxonomy [F(9, 725) � 18.6, P � 0.001] on beta diversity (Table S2C). For example, a
Mediterranean cluster and several Caribbean clusters become visible as shown by
Bray-Curtis cluster analysis. In addition, a host taxonomic signature was revealed for
example for the sponge genera Aplysina and Agelas. However, there were also excep-
tions (i.e., Neopetrosia species from the Caribbean did not cluster together, and Stelletta
maori from New Zealand fell into the Mediterranean cluster). Altogether, this analysis
showed the high abundance and consistency of the three above-mentioned main
clades of Chloroflexi in HMA sponges and revealed a geographic and host taxonomic
signature for the Chloroflexi community.

Phylogeny of Chloroflexi metagenome bins and single amplified genomes. In
total, 260 single amplified genomes (SAGs) were screened for the presence of the
phylogenetic marker. A total of 125 16S rRNA genes were identified in 112 SAGs, of
which some were duplicates per well. Sequencing revealed that 39 genes (31.2%) were
affiliated with the phylum Chloroflexi (33). We randomly chose 13 SAGs for genome
sequencing. Phylogenetic analysis of 16S rRNA genes revealed that one SAG (3D), four
SAGs (1B, 1G, 1H, and 4H), and eight SAGs (2D, 3B, 3H, 4A, 5H, 6B, 6C, and 6F) belonged
to the classes/clades SAR202, Anaerolineae, and Caldilineae, respectively, forming a
well-supported sequence cluster (bootstrap, 100) with other sponge-derived sequences
(Fig. S2). The binning of metagenomic sequence data (21) resulted in additional five
high-quality bins (Table 1). The only metagenome bin containing a 16S rRNA gene
(S156) belonged to SAR202. The SAR202 sequences formed a well-supported cluster
(bootstrap value, 98) with other sponge-derived 16S rRNA gene sequences (Fig. S1). To
elucidate the clade affiliation of the remaining four metagenome bins lacking 16S rRNA
genes of appropriate length, a concatenated genome tree based on nine ribosomal
genes was calculated (Fig. 2). One bin (A154) was affiliated with the class Anaerolineae,
two metagenome bins were associated with the Caldilineae (C141 and C174), and two
bins were associated with the SAR202 clade (S152 and S156) within the phylum
Chloroflexi. The phylogenetic affiliation of metagenome bin S156 was congruent with
the 16S rRNA gene analysis. SAGs were included in the protein-based phylogenetic
analysis when they encoded at least three of the nine ribosomal genes. Due to the lack
of more-complete reference genomes from SAR202 microorganisms, the most com-
plete one (ca. 25%, SAR202 cluster bacterium sp. strain SCGC AAA240-N13, IMG Gold
Study ID Gs0017605 [22]) was included in this analysis, although only one ribosomal
protein could be used for tree construction. Both analyses showed a stable phylogeny
of all SAGs and metagenome bins to above-described classes or clades within the
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FIG 1 Heatmap showing the relative abundance of Chloroflexi classes/clades in 63 HMA sponges extracted
from Earth Microbiome Project (EMP) data (31). The top panel shows the mean relative abundance of

(Continued on next page)
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phylum Chloroflexi. All three classes/clades were visualized in the A. aerophoba sponge
mesohyl matrix by fluorescence in situ cohybridization (FISH) on ultrathin tissue sec-
tions using class/clade-specific probes. The Chloroflexi cell signal was abundant as
judged by the stained versus unstained bacterial signal, and SAR202 (green) seemed to
dominate over either Anaerolineae (red) or Caldilineae (orange). The cells were meta-
bolically active as judged by the brightness of the FISH probe (Fig. 3). These visual
observations are consistent with the relative abundance of the phylum Chloroflexi
within sponge microbiomes (24% � 6% within A. aerophoba sponge microbiome; Fig. 1
and Table S2A) and the representation of Chloroflexi cells among SAGs (31%).

General description of genomes. The final genome assembly sizes for the sponge-
associated Chloroflexi single cells (SAGs) ranged from 0.16 to 4.25 Mbp, representing up
to 66.85% of genome completeness derived from IMG-based estimations (Table 1). The
guanine-cytosine (GC) content ranged from 58.08 to 59.32%, 58.36 to 62.98%, and 56.93
to 65.59% for Anaerolineae, Caldilineae, and SAR202, respectively. The numbers of
identified genes were highly variable, ranging from 3,358 genes for Anaerolineae
genome bin A154 to 5,448 for the SAR202 bin S152 and 5,662 genes for the Caldilineae
bin C174 (Table 1). The five metagenome bins (two for Caldilineae [C141 and C174], two
for SAR202 [S152 and S156], and one for Anaerolineae [A154]) which had �90%
coverage were chosen for detailed metabolic analysis and inner-phylum comparison.
The letters of the bins were chosen to reflect their phylogenetic identity (A for
Anaerolineae, C for Caldilineae, and S for SAR202). Additionally, the most complete
Anaerolineae SAG 1B (55.76% genome completeness estimation) was included in the

FIG 1 Legend (Continued)
Chloroflexi classes/clades in all sponges (means � standard deviations [error bars]). The right panel displays
the mean relative abundance of the phylum Chloroflexi in predicted (light green names and medium green
bars) and classified (dark green names and bars) HMA sponges (means � standard deviations) determined
by machine learning (12). Results of cluster analysis based on Bray-Curtis dissimilarities on mean relative
abundances of OTUs within the phylum are presented on the left side. Sponges are marked with stars when
all species samples came from one of the three major sample locations.

TABLE 1 Genomic features overview of single amplified genomes (SAGs) and metagenome bins of A. aerophoba associated Chloroflexi
and closest relative reference genomes analyzed in this study

Class/clade
and SAG/bina

Taxon
ID

Genome
size
(Mbp)

No. of
scaffolds

N50
(kbp)

GC
(%)

Contamination
(CheckM)

% completeness
estimation
(IMG)

No. of genes

Total CDS RNA tRNA
Without
function

Anaerolineae
SAG 1B 2617270794 2.78 325 46.4 58.9 8.64 55.8 2,714 2,679 35 24 639
SAG 1G 2617270795 1.69 307 22.6 58.1 0.91 32.0 1,694 1,676 18 14 438
SAG 1H 2617270796 1.73 352 16.6 59.1 0.00 31.9 1,774 1,752 22 17 458
SAG 4H 2617270812 0.16 51 4.0 58.4 0.00 0.0 175 168 7 4 43
A154* 2619619053 3.73 107 63.9 59.3 1.82 91.8 3,358 3,307 51 47 613

Caldilineae
SAG 2D 2617270806 3.51 489 17.8 58.4 0.91 65.5 3,207 3,177 30 24 855
SAG 3B 2617270807 2.02 310 15.3 59.2 0.00 38.7 1,844 1,823 21 17 444
SAG 3H 2617270810 2.47 290 31.1 58.9 0.00 50.9 2,271 2,242 29 24 641
SAG 4A 2617270811 3.35 437 31.3 59.4 0.00 64.8 3,024 2,994 30 26 777
SAG 5H 2617270814 1.26 183 17.5 58.4 0.00 17.2 1,132 1,112 20 17 288
SAG 6B 2617270816 4.25 685 14.6 58.7 3.18 66.8 3,943 3,901 42 35 1,154
SAG 6C 2617270818 2.75 414 18.6 58.5 1.82 45.9 2,579 2,544 35 28 703
SAG 6F 2617270820 3.66 839 8.4 58.4 0.91 56.5 3,594 3,561 33 25 1,063
C141* 2619619051 4.59 507 13.3 63.0 0.91 90.9 4,288 4,236 52 46 1,246
C174* 2619619055 6.36 647 13.0 58.4 10.20 96.3 5,662 5,601 61 55 1,472

SAR202
SAG 3D 2617270809 0.58 106 22.8 60.5 0.00 25.4 622 608 14 13 145
S152* 2619619052 5.03 890 6.9 56.9 16.31 91.1 5,448 5,378 70 60 1,938
S156* 2619619054 3.35 334 15.2 65.6 2.97 98.0 3,463 3,402 61 52 964

aIMG Gold Study IDs are Gs0114494 and Gs0099546 (marked with an asterisk). The letters of the bins reflect the phylogenetic identity of the bin (A for Anaerolineae, C
for Caldilineae, and S for SAR202). The gray shaded bins/SAGs were used for further detailed metabolic analysis.
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analysis. Due to the lack of complete genomes of marine representatives of the
Anaerolineae, Caldilineae, and SAR202 available at the time of analysis, sponge-derived
Chloroflexi genomes could not be fully assessed. Taking the pitfalls inherent to metag-
enome sequencing into account (i.e., fragmented assemblies, unresolved ambiguities),

FIG 2 Concatenated protein tree. Maximum likelihood phylogenetic analysis of Chloroflexi metagenome bins and SAGs (in red) from 1,914
positions of 60 sequences using ribosomal proteins. The percentage of replicate trees in which the associated taxa clustered together in the
bootstrap test (100 replicates) are shown. The initial tree for the heuristic search was obtained automatically by applying neighbor-joining and
BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model. Multiple sequences are included in the collapsed branches
representing Chloroflexi classes/clades (bold). To root the tree, three representative genomes from the phylum Actinobacteria were used.
Reference genomes with accession numbers can be found in Table S1 in the supplemental material.

FIG 3 Distribution of Chloroflexi clades in Aplysina aerophoba mesohyl using fluorescence in situ
hybridization (FISH). The image shows the overlay of all probes. SAR202 cells are displayed in green,
Caldilineae cells in orange, and Anaerolineae cells in red. The nucleotide stain DAPI (white/gray) served
as a reference for the localization of unstained cells. Bar, 10 �m.
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we have opted for a presence/absence approach: a gene or enzyme was considered
present when it was identified in both bins of the corresponding clade. For Anaerolin-
eae, we consider an enzyme or gene present when identified in bin A154, and the SAG
1B was taken as additional support.

Central metabolism of sponge-associated Chloroflexi. Metabolic reconstruction
suggests that Chloroflexi are aerobic and heterotrophic bacteria including glycolysis,
tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP) (see Text S1 and
Fig. S3A to C for details), and the respiratory chain as energy-producing pathways in all
three clades.

With respect to autotrophic carbon fixation, the reductive citrate acid cycle (Arnon-
Buchanan cycle), which is largely present, and the Wood-Ljungdahl pathway, which was
partially identified (Fig. S2D) might be functional in times when sponges are not
pumping and the mesohyl turns anoxic (34). Genes encoding components involved in
ammonia import and assimilation are carried on all investigated genomes, but SAR202
and Caldilineae have additional genes for glutamate synthesis from glutamine and
directly from ammonia. The transport of nitrite (and possibly also nitrate) is encoded on
all investigated genomes, while the reduction to ammonia is encoded only by SAR202
(Fig. S3E). The incorporation of sulfur (with, e.g., thiosulfate as donor) into S-containing
amino acids might be possible in all clades, whereas the assimilatory reduction of
sulfate is restricted to Anaerolineae and Caldilineae genomes (Fig. S3F).

These processes additionally provide precursors for further metabolic pathways
such as biosynthesis of purines and pyrimidines, amino acids, and cofactors, or struc-
tural compounds. Machinery for transcription, translation, and purine and pyrimidine
metabolism are largely present. Fatty acid (FA) biosynthesis and degradation pathways
were detected in all six genomes. All genomes encode a high number of different ABC
transporters compared to genomes of free-living bacteria (22, 35) to supplement for
nutrition and cell growth-related compounds [including oligopeptides, phosphate, L-
and branched-chain amino acids, minerals such as iron(III) and molybdate, metal ions
such as zinc, manganese, and iron(II)]. Additionally, all six genomes largely encode
enzymes needed for biosynthesis of most amino acids (Text S1). We could not identify
any of the typical phosphotransferase systems, as was the case for Ca. Poribacteria
described previously (19).

We found genomic potential for aromatic degradation in Chloroflexi genomes, but
pathways remain incomplete (Text S1). Several genes encoding components involved
in phenylpropionate and cinnamate degradation, terephthalate degradation, catechol
degradation, and xylene degradation were identified in Chloroflexi genomes. Also,
genes encoding enzymes involved in ring cleavage by Baeyer-Villinger oxidation and
beta oxidation as well as ring-hydroxylating dioxygenases and isomerases were iden-
tified which could be involved in degradation of aromatic compounds possibly syn-
thesized by the sponge host or other microbes. This finding is interesting in the context
that many sponge species contain secondary metabolites that often contain aromatic
ring structures that serve as a defense strategy against predators and biofouling (36).
Sponge symbionts may be able to degrade such substances, enabling them to a life
within sponge hosts. These findings fit with the potential degradation of organic
compounds which was suggested for Chloroflexi bacteria of the class SAR202 by
(meta)genomic studies (22, 23, 35). The highest (20 to 30% relative to the total
microbiome) and most consistent presence of Chloroflexi within a sponge genus was
found in the sponge genera Plakortis, Agelas (with the exception of Agelas dispar), and
Aplysina and sister taxon Aiolochroia. Interestingly, all of them contain characteristic
natural products with aromatic ring structures. It is therefore tempting to speculate that
the presence and abundance of Chloroflexi and especially SAR202 are shaped, at least
to some extent, by the natural products present in the corresponding host sponges.

With respect to cell wall structure, the Anaerolineae and Caldilineae genomes carry
the gene repertoire for peptidoglycan biosynthesis. The noticeable lack of peptidogly-
can biosynthesis genes in the SAR202 genomes (Text S1) is consistent with previous
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analyses of three Chloroflexi genomes derived from uranium-contaminated aquifers (28)
and hyperoxic zones from the Gulf of Mexico (37). Additionally, consistent with previous
observations (38), none of the six genomes contained flagellar or chemotaxis genes.

Metabolic specialization: extensive carbohydrate uptake and degradation in
Anaerolineae and Caldilineae. The following features are metabolic specialties of
Anaerolineae and Caldilineae and appear to be missing in SAR202, unless otherwise men-
tioned (Fig. 4). We found a number of ABC transporters for the import of diverse mono-
saccharides (ribose/xylose, inositol, glycerol-3-phosphate [glycerol-3P], and rhamnose) and
oligosaccharides (sorbitol, raffinose/stachyose/melibiose, maltose, N-acetylglucosamine,
and arabinosaccharide) into Anaerolineae and Caldilineae cells. Xylose can be processed to
xylulose which may enter the pentose phosphate cycle finally leading into glycolysis.
Ribose can be converted to 5-phosphoribosyl 1-pyrophosphate (PRPP), which is a precursor
for the biosynthesis of the amino acid histidine or it may fuel purine and pyrimidine
synthesis (Text S1). Both groups may also be able to import glycerol-3P, which is a
phosphoric ester of glycerol (a component of glycerophospholipids) which can be con-
verted to fatty acids. Additionally, we found evidence for arabinose and rhamnose import
and degradation; however, annotation was incomplete (Text S1).

Arabinooligosaccharides (such as �-L-arabinofuranosides, �-L-arabinans, arabinoxy-
lans, and arabinogalactans) result from degradation of plant-like cell material entering

FIG 4 Summarized metabolic features which were found only in Anaerolineae and Caldilineae (left side, blue and green arrows, respectively) or in SAR202
genomes (right side, red arrows). The central metabolic pathways (glycolysis, TCA cycle, purine, pyrimidine histidine biosynthesis) located in the middle of the
figure are general features found in all genomes. Lines are dashed when pathways or transporter could not be annotated completely (single enzymes of the
pathway or single genes from the transporter were missing) or could not be annotated in both genomes of one clade. Gray dashed arrows indicate that those
transporters were not identified.
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the sponge by filtration. These substances may be imported by the almost completely
annotated AraNPQ and MsmX transporters and be utilized to L-arabian and L-arabinose
by the enzyme �-N-arabinofuranosidase (EC 3.2.1.55, GH3). The enzyme L-arabinose
isomerase (EC 5.3.1.4, AraA) is present in all four genomes of Anaerolineae and Caldi-
lineae and converts L-arabinose to L-ribulose, which can further be converted by
reactions of PPP to glucose-6P suitable for entering glycolysis. Additionally, other
oligosaccharides such as stachyose, raffinose, melibiose, and galactose can be imported
and used in central metabolism (Fig. 4 and Text S1).

The utilization of myo-inositol as a carbon source and possibly as a regulatory agent
was hypothesized previously for sponge-associated Ca. Poribacteria (19). Similarly,
sponge-associated Anaerolineae and Caldilineae genes encode almost all the compo-
nents involved in the inositol degradation pathway (Text S1). myo-Inositol is likely
degraded to glyceraldehyde-3-phosphate and acetyl-CoA, which are further used in the
central metabolism. Inositol phosphates are found as part of eukaryotic and archaeal
cell wall components (39). Phosphorylated inositol is a precursor for several lipid
molecules, including sphingolipids, ceramides, and glycosylphosphatidylinositol an-
chors (40), as well as many stress-protective solutes of eukaryotes (39), and it might be
part of the signal transduction in sponges (41). Therefore, the sponge itself or eukary-
otic microorganisms can probably provide inositol as a carbon source or regulatory
agent for the microbial symbionts.

Uronic acids are sugar acids that can be found in biopolymers of plants, animals, and
bacteria (42, 43) and are known to occur in glycosaminoglycans (GAGs). GAGs in
sponges are mainly composed of fucose, glucuronic acid (glucoronate), mannose,
galactose, N-acetylglucosamine, and sulfate (44–46). Genes encoding enzymes involved
in degradation of uronic acids were found in Anaerolineae and Caldilineae genomes.
The possibility of galacturonate and glucuronate catabolism is supported by the
conversion of 2-dehydro-3-deoxy-D-gluconate by the enzymes glucoronate isomerase
(EC 5.3.1.12), tagaturonate reductase (EC 1.1.1.58), and altronate hydrolase (EC 4.2.1.7).
Furthermore, the presence of genes encoding oligogalacturonide lyase (EC 4.2.2.6),
2-deoxy-D-gluconate 3-dehydrogenase (EC 1.1.1.125), and 2-dehydro-3-desoxy-D-gluco-
kinase (EC 2.7.1.45) supports possible 4(4-�-D-gluc-4-enuronosyl)-D-galacturonate deg-
radation activity. The products could then enter the Entner-Doudoroff (ED) pathway via
2-dehydro-3-desoxyphophogluconate aldolase (EC 4.1.2.14). Uronic acid degradation
could principally be connected to the inositol degradation pathway via D-galacturonate
even though additional genome evidence, such as genes encoding the enzyme inositol
oxidase (EC 1.13.99.1), remain wanting (Fig. 4 and Text S1). A number of transporters for
N-acetylglucosamine, digalacturonate, mannose, and galactose (Fig. 4 and Text S1)
were identified in Anaerolineae and Caldilineae genomes. Digalacturonate can be
utilized by the uronic acid degradation pathway (Text S1), and N-acetylglucosamine can
be used directly in amino sugar and nucleotide sugar synthesis. The presence of uronic
acid degradation pathways provides strong support that Anaerolineae and Caldilineae,
similar to the previously described Ca. Poribacteria, degrade glycosaminoglycan chains
of proteoglycans, which are important components of the sponge host matrix (19). In
that line, Anaerolineae and Caldilineae genomes were enriched in arylsulfatases A
(Fig. S4A), which are thought to be involved in metabolization of sulfated polysaccha-
rides from the sponge extracellular matrix (19, 21) and in the heterotrophic ability of
symbionts to use sponge components for nutritional purposes.

Expanded carbohydrate-active enzyme (CAZymes) repertoire in Caldilineae
and Anaerolineae. In order to search for CAZymes, we screened the Chloroflexi
genome data against dbCAN (47) and classified the enzymes according to the CAZy
database (48). Most Chloroflexi hits were against glycosyl hydrolases (GH), glycosyl-
transferases (GT), and carbohydrate-binding modules (CBM). Consistent with the above-
described metabolic specializations, these enzyme classes were present in larger
amounts in Caldilineae and Anaerolineae than in SAR202 (Fig. S4B and Table S3).
Altogether, 40 GH families were identified in all Chloroflexi genomes (Table S3). Glycosyl
hydrolase family 109 was the most abundant family of GHs and was identified in all six
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genomes. GH109 family proteins are predicted as �-N-acetylgalactosaminidases (EC
3.2.1.49) with putative substrates such as glycolipids, glycopeptides, and glycoproteins,
all of which are common constituents of sponge mesohyl as well as dissolved organic
matter from seawater. The GH74 family is the second most abundant and is also
present in all six genomes. These appear to be xyloglucan-hydrolyzing enzymes, that
act on �-1,4 linkages and might help degrade various oligo- and polysaccharides. The
previously reported glycosylhydrolases GH33 and GH32 (19, 20) were the third most
abundant, but they were restricted to Caldilineae bin C174. This enzyme family is
annotated as sialidase (EC 3.2.1.18), capable of hydrolyzing glycosidic linkages of
terminal sialic acid residues, which are present in sponge mesohyl (49). Altogether, 17
glycosyltransferases were identified on Chloroflexi genomes with families GT2, GT4, and
GT83 being the most abundant. Among the 11 CBM families identified on Chloroflexi
genomes, CBM50 was the most abundant, but it was restricted to Caldilineae and
Anaerolineae. CMB50 modules, also known as LysM domains, attach to various GH
enzymes which are involved in the cleavage of chitin or peptidoglycan. The numbers
of carbohydrate-active enzymes on Chloroflexi symbiont genomes reflect their exten-
sive potential to degrade complex carbohydrates as reported previously for Ca. Porib-
acteria and the sponge-associated unidentified lineage SAUL (19, 20).

Metabolic specialization: cofactor biosynthesis in SAR202 genomes. There is
mounting evidence that vitamins and cofactors produced by diverse symbiont lineages
could be beneficial to the sponge host (50–53). Parallel transcriptional activity profiling
of the symbionts and the sponge showed that the symbionts had the capacity for
vitamin B biosynthesis, whereas the host transcripts displayed the capacity for vitamin
catabolism (54). It is thus tempting to speculate that the sponges’ nutrition is aug-
mented by symbiont-derived vitamins and cofactors. In the present study, at least two
biosynthetic pathways for cofactor biosynthesis were identified on SAR202 genomes,
which were absent in Anaerolineae and Caldilineae (Fig. 5). Thiamine is an essential
cofactor which is involved in central metabolism. The biosynthesis of the biologically
active form thiamine diphosphate (TPP) from L-cysteine, glycine, pyruvate, and
glyceraldehyde-3P is encoded on the SAR202 genomes (Fig. 4 and 5A). Although the
pathway is incomplete, the data strongly suggest that the synthesis of TPP is restricted
to SAR202 bacteria. Instead, Anaerolineae and Caldilineae appear to import thiamine via
an ABC transporter (TbpA, ThiPQ) and convert it to TPP by using thiamine pyrophos-
phokinase (EC 2.7.6.2). Additionally, thiamine synthesis might be a symbiosis-related
feature, since free-living SAR202 members lack the synthesis ability (22, 37).

Second, riboflavin (vitamin B2) is required by enzymes and proteins to perform
certain physiological functions. Specifically, the active forms, flavin mononucleotide
(FMN) and flavin adenine dinucleotide (FAD), serve as cofactors for a variety of
flavoprotein enzyme reactions. Most genomes carry genes encoding the enzymes FMN
adenylyltransferase (EC 2.7.7.2) and FAD riboflavin kinase (EC 2.7.1.26) which activate
riboflavin into FMN. However, only the SAR202 genomes contain genes encoding the
riboflavin biosynthesis enzymes which rely on GTP and ribulose-5P (Fig. 4 and 5B). Both
substrates can be provided by pathways of the central metabolism (purine metabolism
and PPP). Only one free-living SAR202 bacterium (unclassified Chloroflexi bin 43) (37)
has genes encoding components involved in riboflavin synthesis.

Potential for degradation of recalcitrant DOM in SAR202. The uptake of the
amino acid L-Asp was shown before in subtropical Atlantic waters (35), and the possible
participation of deep sea SAR202 bacteria in degradation of recalcitrant or refractory
DOM was recently postulated by Landry et al. (22). Even though the exact composition
of DOM in the world’s oceans remains to be elucidated, refractory DOM is an important
component of the global carbon budget in terms of sheer mass. Landry et al. (22) argue
that SAR202 genomes have an expanded repertoire of oxidative enzymes that may help
in the oxidation of recalcitrant compounds. Interestingly, some of the described
enzymes were also found to be enriched in SAR202 symbionts of sponges (Table S4).
Among them are genes encoding proteins from the CaiB/BaiF family as well as related
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family III transferases. While the enrichment of CaiB was previously interpreted as
carnitine being a carbon and nitrogen source for sponge symbionts (21), an alternative
explanation may be that it serves to funnel substrates into degradation pathways
without consumption of energy by shuffling CoA, thus generating free electrons (Text

FIG 5 Pathway for synthesis of thiamine (A) and riboflavin (B) in both SAR202 genomes. (A) Members of classes Anaerolineae and Caldilineae carry genes encoding
components involved in the import of thiamine (see also Fig. 4). (B) The conversion of riboflavin into the biologically active forms (flavin mononucleotide [FMN]
and flavin adenine dinucleotide [FAD]) was encoded by genes in the genomes of all three classes (filled pies compared to empty pies). The colors represent the
genomes. The numbers are KEGG identifiers. PPP, pentose phosphate pathway. Gray arrows and numbers indicate unidentified enzymes.
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S1). Even though the precise function of CaiB/BaiF family proteins cannot be elucidated
at this time, the enrichment in SAR202 genomes is noteworthy. Further, a total of 53
flavin-dependent, class C oxidoreductases of the luciferase family (flavin mononucle-
otide monooxygenases [FMNOs], COG2141) which include alkanesulfonate monooxy-
genase SsuD and methylene tetrahydromethanopterin reductase, were present and
enriched in SAR202 genomes compared to the genomes of Anaerolineae and Caldilin-
eae bacteria (Table S4). These enzymes are proposed to participate in the oxidation of
(long-chain) aldehydes to carboxylic acids and/or cleavage of carbon-sulfur bonds in a
variety of sulfonated alkanes (55). The SAR202 genomes contained 22 genes encoding
short-chain alcohol dehydrogenases (COG0300) which might be involved in canaliza-
tion of ketone body derivate release. Some of these genes from bin S152 showed
homologies to cyclopentanol and 3-� (or 20-�)-hydroxysteroid dehydrogenases which
convert alicyclic-bound alcohol groups to ketones (22, 56). The combination of the
enzymes described above could allow sponge-associated Chloroflexi to convert recal-
citrant alicyclic ring structures to more labile carboxylic acid, as proposed recently for
SAR202 bacteria from deep sea (22).

Additionally, a number of genes encoding oxidative enzymes were identified on the
Chloroflexi genomes but were not enriched in SAR202 (Table S4). These enzymes
include a 2-oxoglutarate:ferrodoxin oxidoreductase (EC 1.2.7.11) which oxidizes acetyl-
CoA, carbon monoxide dehydrogenase (EC 1.2.99.2) which might allow the bacteria to
oxidize CO as described for some members of the Ktedonobacteria (57), CO- or
xanthine dehydrogenases (COG1529) which are possibly involved in oxidation of a
broad range of complex substrates (22), choline dehydrogenase (EC 1.1.99.1) being
possibly involved in the oxidation of alcohols to aldehydes, sarcosine oxidase (EC
1.5.3.1), the serine hydroxymethyltransferase (2.1.2.1) with predicted function in choline
degradation, formaldehyde dehydrogenase (EC 1.2.1.46), and subunits of formate
dehydrogenase (EC 1.2.1.2/43) which oxidize formaldehyde and formate and might be
involved in demethylation of various compounds. The overall presence and frequent
enrichment of enzymes with oxidative capacity in SAR202 would be consistent with
gene functions in degradation of recalcitrant DOM. However, owing to the sponges’
existence in shallow-water sun-lit benthic environments, it remains unclear whether the
sponge symbionts encounter recalcitrant DOM derived from seawater sources. Inter-
estingly, Colatriano et al. recently proposed the degradation of terrestrial DOM (tDOM)
by members of the SAR202 clade (23). Shallow-water sponges and associated symbi-
onts could be faced by tDOM via freshwater inflow in ocean waters they inhabit.
Alternatively, and similar to other high-diversity microbiota, for example, of ant, rumi-
nant, and human guts, the resident microbes were likely to specialize in certain
substrates, thus promoting maximum nutrient exploitation and also securing their
individual niche in the holobiont ecosystem.

Symbiosis-related features. Eukaryotic-like proteins (ELPs) seem to be a general
genomic feature of sponge symbionts (20, 38, 50, 51, 58–60). Ankyrin (ANK), tetratri-
copeptide (TPR), and leucine-rich (LRR) repeat proteins are postulated to be involved in
mediating host-microbe interactions (61, 62). Ankyrin and ankyrin repeat-containing
proteins were detected in all six genomes of sponge symbionts (Fig. S4C and
Table S5A) in higher numbers than in free-living bacteria (22, 37). It was recently
proposed that the expression of sponge symbiont-derived ankyrin protein prevents
phagocytosis by amoeba (63), and it is tempting to speculate that they protect the
symbionts from digestion by the sponge archaeocytes in vivo. TPRs, possibly
functioning as a module for protein-protein interaction involved in a variety of
cellular functions, including those that participate in bacterial pathogenesis (64)
were found in all six genomes. However, LRR genes were identified only in Caldi-
lineae and SAR202 genomes (Fig. S4C and Table S5A). Many LRR proteins are
involved in protein-ligand interactions; these interactions include plant immune
response and the mammalian innate immune response (for a review, see reference
65), such as the detection of pathogen-associated molecular patterns by recogni-
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tion receptors (66). Our findings are in good agreement with general patterns
previously found in the metagenomes of sponge symbionts (38, 51), in enriched
(mini)metagenomes of cyanobacterial sponge symbionts (59) and single amplified
genomes from members of SAUL (20) and Ca. Poribacteria (58).

Another example of sponge-symbiont enriched features are the clustered, regularly
interspaced, short, palindromic repeats (CRISPRs) and their associated proteins (Cas)
that have recently been reported from the genomes of sponge symbionts (20, 38, 50,
51, 59). Here, the investigated Caldilineae and SAR202 genomes contained CRISPR-Cas
systems, while the two most complete Anaerolineae genomes did not (Table 2). The
presence of CRISPRs can be explained by the extensive filter-feeding activity of sponge
hosts that result in high exposure of sponge symbionts to phages and other sources of
free DNA from ambient seawater.

The synthesis of secondary metabolites is an important defense mechanism of
sessile organisms such as sponges to protect themselves against predators or biofoul-
ing (36). Many of these compounds are in fact produced by the sponge microbiome (10,
36). In particular, genes for polyketide synthases (PKS), nonribosomal peptide synthe-
tases (NRPS), and halogenases are regularly enriched in sponge symbionts, often with
new structures and putatively novel activities (51, 67–72). Here, we assessed the
genomic repertoire of sponge-associated Chloroflexi for secondary metabolism using
antiSMASH (73). In both SAR202 genomes and in Caldilineae C141, we found up to three
polyketide synthase (PKS) gene clusters, all of which showed homologies to the
previously reported type I PKS gene cluster from other sponge symbionts. Additional
gene clusters for the production of terpenes and other yet to be identified substances
were identified in the two SAR202 genomes and in Caldilineae C174 (Table 2 and
Table S5B). Both Anaerolineae genomes did not contain any gene clusters for the
biosynthesis of secondary metabolites. While the exact functions of these gene clusters
putatively involved in defense remain unknown, it appears that at least SAR202 bacteria
and Caldilineae have the genomic repertoire for chemical defense within the sponge
holobiont.

Ultrastructural identification of sponge-specific Chloroflexi. The correlation of
probe-specific fluorescence with scanning electron microscopy (SEM) images allowed
taxon-specific identification of Chloroflexi cells at ultrastructural resolution. Overall,
distributions of all three Chloroflexi clades in Aplysina aerophoba indicate that SAR202
cells were more abundant than the other two Chloroflexi classes (Fig. 6). This is
consistent with the relative abundances of Chloroflexi classes in HMA sponges extracted
from EMP data (Fig. 1). Cells belonging to the SAR202 clade (green signals in Fig. 6A and

TABLE 2 Genomic characteristics of the six genomes investigated in detaila

Class/clade
and SAG/binb Taxon ID

CRISPR

ANK

Secondary metabolite gene cluster

CRISPRfinder total
(no. of repeats
per spacer)

IMG
total

Type 1
PKS Terpene Other

Anaerolineae
SAG 1B 2617270794 - - 1 - - -
A154* 2619619053 - - 2 - - -

Caldilineae
C141* 2619619051 7 (27, 24, 13, 7, 3, 30, 4) 9 9 2 - -
C174* 2619619055 5 (21, 24, 8, 32, 27) 8 1 - 1 -

SAR202
S152* 2619619052 5 (7, 34, 26, 7, 4) 9 5 3 4 1
S156* 2619619054 1 (13) 3 2 1 2 1

aThe absolute numbers of CRISPR arrays defined by CRISPRfinder and IMG, the number of ankyrins and ankyrin repeat-containing proteins (ANK), as well as the
number of secondary metabolite (antiSMASH) gene clusters per genome are shown. The IMG Gold Study IDs are Gs0114494 and Gs0099546. Secondary metabolite
clusters were found using antiSMASH 3.0; the values are total numbers of genes per genome.

bAsterisks on bins indicate extracted metagenome bins from IMG Gold Study ID Gs0099546. The letters of the bins reflect the phylogenetic identity of the bin (A for
Anaerolineae, C for Caldilineae, and S for SAR202).
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B) are generally rod shaped (0.8 �m by 1 to 2 �m) with a regular distribution of cell
cytosol content. The Anaerolineae-specific probe targeted rod-shaped cells (0.8 by 2.0
�m) (red signal in Fig. 6A). The characteristic feature of Caldilineae-positive cells (ca. 1
by 2 �m) was the presence of electron-dense capsules or mucus-like structures located
at the cell poles (orange signal in Fig. 6B). All cells that were stained positive with a
corresponding FISH probe showed a consistent morphology, which was taken as a
measure of probe specificity.

Conclusions. Owing to the lack of cultivation and difficult experimental access for
the majority of Chloroflexi clades, advancing knowledge has been limited to few
lineages (22, 28, 74). The present study provides a new experimental opportunity, as
HMA sponges were identified as true Chloroflexi hot spots, both in terms of biomass
and biodiversity. Metagenomic and single-cell genomic analyses revealed metabolic
specialization in that Anaerolineae and Caldilineae have an expanded gene repertoire
for carbohydrate degradation. SAR202 genomes lack transporter and degradation
pathways for carbohydrates, and we therefore speculate that they may gain the energy
needed by degradation of amino and fatty acids. Similarly, while Anaerolineae/Caldi-
lineae take up cofactors, SAR202 has the genomic repertoire for their synthesis. A
combination of FISH-CLEM allowed us, for the first time, to visualize Chloroflexi in the
host context and to identify characteristic cellular morphotypes. The results of this
study suggest that Chloroflexi symbionts have the genomic potential for DOM degra-
dation from seawater, both labile and recalcitrant. These findings are in line with
previous reports that have shown extensive carbohydrate degradation potential in
other HMA sponge symbionts (10, 19, 20). Thus, we hypothesize that collectively,
sponge microbes not only provide nutrients to the HMA sponge host but also contrib-
ute to DOM cycling and primary productivity in reef ecosystems via a pathway termed
the “sponge loop.” Considering the abundance and dominance of sponges in many
benthic environments, we predict that the role of sponge symbionts in biogeochemical
cycles is larger than previously thought.

FIG 6 Visualization of sponge-associated Chloroflexi in Aplysina aerophoba mesohyl using FISH-CLEM. (A
and B) SAR202 cells are displayed in green, Anaerolineae in red (A), and Caldilineae in orange (B). The
nucleotide stain DAPI (blue) served as reference for the localization of unstained cells. In both panels, the
picture on the right is the overlay of all probes and DAPI. Bars, 1 �m.

Bayer et al.

November/December 2018 Volume 3 Issue 6 e00150-18 msystems.asm.org 14

https://msystems.asm.org


MATERIALS AND METHODS
Relative abundance of Chloroflexi in high-microbial-abundance sponges. To investigate the

abundance of the bacterial phylum Chloroflexi on a global scale, microbiome data from HMA sponges,
classified and predicted (cluster 1), were obtained from Moitinho-Silva et al. (31). This data set is a rarefied
operational taxonomic unit (OTU) abundance matrix (23,455) from the mothur processed data of the
Sponge Microbiome Project (31). The abundance of Chloroflexi OTUs was grouped according to the class
level based on SILVA taxonomy (75). Relative abundances were calculated and displayed using the R
packages ggplot2 version 3.0.0 (76) and ggpubr version 0.1.8 (https://CRAN.R-project.org/package�
ggpubr). and complete-linkage hierarchical clustering was performed. For this purpose, Bray-Curtis
dissimilarities were calculated on relative abundance values of Chloroflexi classes/clades within the
phylum using the R package vegan version 2.4-5 (https://cran.r-project.org/package�vegan). To test the
effect of geography and sponge phylogenetic on the beta diversity of Chloroflexi communities, Bray-
Curtis dissimilarities were calculated on Chloroflexi abundances. Here, the rarified OTU abundance matrix
that contained only Chloroflexi OTUs from classified and predicted HMA species was used. Samples with
less than 100 sequences were excluded from the analysis. Type II permutation MANOVA using distance
matrices was performed with RVAideMemoire package version 0.9-69-3 (https://CRAN.R-project.org/
package�RVAideMemoire), using 999 permutations and an alpha level of 5%. For this test, each sample
was assigned to the geographic region according to their collection sites. Sponge taxonomic order
following NCBI taxonomy was used as a proxy of sponge phylogeny. Graphs and tests were performed
in R environment version 3.4.3 (https://www.R-project.org/).

Sponge sampling and cell separation and handling. Aplysina aerophoba was collected from Piran,
Slovenia (45.5099 N; 13.5600 E) in May 2013 and transported to the laboratory in Würzburg, Germany, in
ambient seawater. Sponge-associated prokaryotes (SAPs) were enriched from fresh sponge tissues within
1 week of collection, for mesohyl and pinacoderm separately, by differential centrifugation as described
previously (32). DNA was extracted from frozen SAP aliquots either from pinacoderm or mesohyl tissue
(three replicates each) using the FastDNA SPIN kit for Soil (MP Biomedicals, Illkich, France) by the method
of Slaby et al. (21). Briefly, different cell lysis protocols were applied for each triplicate to obtain
differential sequencing coverage: (i) bead beating, following the manufacturer’s protocol, (ii) freeze-thaw
cycling (three cycles of 20 min at �80°C and 20 min at 42°C), (iii) proteinase K digestion for 1 h at 37°C
(TE buffer with 0.5% SDS and proteinase K at a final concentration of 100 ng/ml). The quantity and quality
of the extracted DNA were assessed by Nanodrop, Qubit high-sensitivity assay, and agarose gel
electrophoresis. The DNA from two extraction rounds was pooled for each extraction approach sepa-
rately, and the six sets of metagenomic DNA were sequenced on an Illumina HiSeq2000 platform (150-bp
paired-end reads), quality filtered, and assembled at the DOE Joint Genome Institute (Walnut Creek, CA,
USA) within the JGI sequencing and data processing pipeline (77). Differential coverage binning was
performed with CONCOCT v. 0.2.1 (78) at default settings utilizing the coverage values from the six
metagenomic data sets differing in tissue type and/or cell lysis method. A fasta file for each bin was
created with the in-house python script mkBinFasta.py (https://github.com/bslaby/scripts/). Assembly
statistics were obtained from QUAST v. 3.1 (79).

Single cells from cell preparations which were freshly prepared from a sponge from Rovinj/Croatia
were sorted and their DNA was amplified by the method of Kamke et al. (19) and stored in 96-well plates
at �80°C. Single amplified genomes (SAGs) were PCR screened using the universal primers 27f and 1492r
to detect Chloroflexi 16S rRNA genes (67). SAGs that tested positive for the presence of a single Chloroflexi
16S rRNA gene were sequenced at GATC GmbH (Konstanz, Germany) on an Illumina MiSeq personal
sequencer (300 bp; paired end). Sequences were trimmed with Trimmomatic-0.32 (minlen 150, avgqual
25, slidingwindow 4:25) (80) and filtered against eukaryotic, archaeal, and Delftia reads (known betapro-
teobacterial contaminant of the single-cell amplification kit) using blastn (nt database). The SAGs were
assembled with SPAdes 3.5.0 (--sc, --careful, keep contigs �1000 bp) (81) decontaminated using the
IMG/MER (Integrated microbial genomes & environmental samples) web tools following the single-
cell data decontamination protocol provided at the JGI webpage (https://img.jgi.doe.gov/w/doc/
SingleCellDataDecontamination.pdf). Only contigs showing clearly different GC/kmer frequency profiles
from those of the bulk and that were not identified as Chloroflexi derived were filtered out. The SAGs
were named according to the columns and rows of the 96-well plate they were identified.

Phylogenetic tree construction. 16S rRNA genes from one metagenome bin (S165) and all 13 single
amplified genomes (SAGs) were manually quality checked and aligned with closely related sponge- and
non-sponge-derived environmental reference sequences obtained from the Silva database (SSU release
132) using the SINA aligner (82). The program MEGA 7.0.4 (83) was used to align the amino acid
sequences of 60 genomes, in total 1,914 positions from nine ribosomal proteins (L2, L4, L14, L15, L22, L24,
S3, S17, and S19). The determination of best tree construction model (JTT model), and final tree
construction (neighbor-joining method) was conducted in MEGA. As references for the protein tree,
sequences from publicly available genomes, basically from cultured Chloroflexi were included (see
Table S1 in the supplemental material). Due to low genome completeness, some of the proteins used
were missing in the relevant genomes. For the 16S rRNA gene-based tree, the neighbor-joining method
(GTR�G�I model) was also applied using 1,787 positions from 182 sequences. The trees were visualized
using iTOL (interactive tree of life; https://itol.embl.de/).

Fluorescence in situ hybridization and FISH-CLEM. FISH probes were designed based on the 16S
rRNA gene alignment for sponge-specific clades within the classes Anaerolineae and Caldilineae using the
probe design tool implemented in ARB (84). Candidate probes were tested in silico for their specific
hybridization conditions using different target and nontarget reference sequences using mathFISH
(http://mathfish.cee.wisc.edu/). The probes with the best performance were tested for hybridization
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specificity on fixed (4% paraformaldehyde) A. aerophoba microbial cell preparations by the method of
Fieseler et al. (32) using formamide (FA) concentration gradients. Finally, we used for the Caldilineae
probe Cal825 (5=-[Cy3]-ACACCGCCCACACCTCGT-[Cy3]-3=; E. coli binding positions, 825 to 843) and for
the Anaerolineae probe Ana1005 (5=-[Alexa Fluor 647]-TCCGCTTTCGCTTCCGTA-[Alexa Fluor 647]-3=; E. coli
binding positions, 1005 to 1023). Additionally, probe SAR202-104 (5=-[Alexa Fluor 488]-GTTACTCAGCCG
TCTGCC-[Alexa Fluor 488]-3=; E. coli binding positions, 104 to 122) was used to identify members of the
SAR202 group in sponges (85). All probes were double labeled at 5= and 3= ends (Sigma-Aldrich,
Steinheim, Germany). To test the efficiencies of the newly designed sponge-specific Chloroflexi probes
and the previously published SAR202-104R probe for the sponge microbiome, FISH conditions were
optimized using microbial cell preparations from A. aerophoba. The three probes did not colocalize using
10%, 20%, and 30% FA, demonstrating specific binding of the probes to the Chloroflexi classes/clades in
standard FISH experiments (Fig. S1).

For ultrastructural visualization of sponge Chloroflexi, we applied a recently established FISH-CLEM
(fluorescence in situ hybridization-correlative light and electron microscopy) protocol (86). Briefly, freshly
sampled A. aerophoba sponges were transported to the University of Wuerzburg where small mesohyl
discs (2-mm diameter, 200-�m thickness) were subjected to high-pressure freezing (HPF) and freeze
substitution. Samples were embedded in LR white, and 100-nm ultrathin sections were cut using a Histo
Jumbo Diamond knife (Diatome AG, Biel, Switzerland) on a Leica EM UC7 ultramicrotome (Leica
Microsystems, Wetzlar, Germany). The sections were placed on poly-L-lysine-coated slides and subjected
to fluorescence in situ hybridization with the Chloroflexi clade-specific probes at 10% FA concentration
(900 mM NaCl, 20 mM Tris-HCl [pH 7.4], 0.01% sodium dodecyl sulfate, 20% dextran sulfate). All three
class- or clade-specific probes were cohybridized, and fluorescence signals were detected using an Axio
Observer.Z1 microscope equipped with AxioCam 506 and Zen 2 version 2.0.0.0 software (Carl Zeiss
Microscopy GmbH, Göttingen, Germany). On the same sections that were used for fluorescence micros-
copy, scanning electron microscopy (SEM) was carried out using a field emission scanning electron
microscope JSM-7500F (JEOL, Japan) with LABE detector (for back scattered electron imaging at
extremely low acceleration voltages) directly on the microscope slides. FISH and SEM images of same
regions were computer correlated based on sponge heterochromatin pattern by the method of Jahn
et al. (86).

Functional genomic analysis. Genomic data from SAG sequences and the extracted metagenome
bins were loaded and analyzed in IMG (https://img.jgi.doe.gov/) using the KEGG Orthology (KO) terms
assigned to our data sets, and metabolic pathways (KEGG) were analyzed. To identify CRISPR-related
genes, CRISPRfinder (http://crispr.i2bc.paris-saclay.fr/Server/) was used. For the search of specific meta-
bolite gene clusters, antiSMASH was used (73). The genomic potential of investigated microbial symbi-
onts to degrade and transform complex carbohydrates was assessed by screening the IMG-predicted
open reading frames (ORFs) of the genome data against the dbCAN (47) and classified according to the
carbohydrate-active enzymes (CAZymes) database (48).

Data availability. Data sets for SAGs and the metagenomic bins are available at the NCBI Sequence
Read Archive under the BioProject accession numbers or identifiers (IDs) PRJNA506133 and PRJNA366444
to PRJNA366449, respectively. Complete assembled and annotated data are available from IMG (https://
img.jgi.doe.gov/) under the Gold Study IDs Gs0114494 and Gs0099546 (for more details, see Table 1).
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