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Airborne observations reveal elevational gradient
in tropical forest isoprene emissions
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Isoprene dominates global non-methane volatile organic compound emissions, and impacts

tropospheric chemistry by influencing oxidants and aerosols. Isoprene emission rates vary

over several orders of magnitude for different plants, and characterizing this immense bio-

logical chemodiversity is a challenge for estimating isoprene emission from tropical forests.

Here we present the isoprene emission estimates from aircraft eddy covariance measure-

ments over the Amazonian forest. We report isoprene emission rates that are three times

higher than satellite top-down estimates and 35% higher than model predictions. The results

reveal strong correlations between observed isoprene emission rates and terrain elevations,

which are confirmed by similar correlations between satellite-derived isoprene emissions and

terrain elevations. We propose that the elevational gradient in the Amazonian forest isoprene

emission capacity is determined by plant species distributions and can substantially explain

isoprene emission variability in tropical forests, and use a model to demonstrate the resulting

impacts on regional air quality.
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T
errestrial vegetation emits vast quantities of volatile organic
compounds (VOCs) to the atmosphere1–3, which influence
oxidants and aerosols leading to complex feedbacks on air

quality and climate4–6. Isoprene is a short-lived (minutes to
hours) reactive VOC species, and the photo-oxidation of isoprene
affects the oxidation capacity of the atmosphere and can
contribute to the formation of ozone (O3) and secondary
organic aerosol5–8. The biogenic sources from terrestrial plant
foliage contribute more than 90% of atmospheric isoprene2. The
Amazonian forest has the richest assemblage and abundance of
vegetation species on Earth. Recent studies suggest that B1.4% of
the B16,000 tree species in the Amazon are hyperdominant and
account for half of all the Amazonian trees9, and only B1% of
tree species are responsible for half of all carbon storage and
productivity10. It is still not clear how many plant species can
emit substantial quantities of isoprene, how these isoprene
emitters are distributed across the Amazon basin, what is the
magnitude of the emission, and how it varies seasonally. Satellite
observations of isoprene oxidation products (for example,
formaldehyde, glyoxal) have given an initial view of the global
dynamic distribution of biogenic isoprene emission but there

remains a need to parametrize and evaluate the estimations with
regional measurements especially in the Amazon11. Driven by
land cover distributions, vegetation emission factors (EFs) and
environmental conditions, the Model of Emissions of Gases and
Aerosols from Nature (MEGAN) can estimate emission fluxes of
biogenic isoprene and other VOCs using simple mechanistic
algorithms to account for the major known processes controlling
biogenic emissions2,12. The model has estimated tropical trees to
be responsible for 80% of global terpenoid emissions12, but
emissions derived from satellite observations suggest those values
are overestimated13.

Here we report isoprene emission fluxes estimated from
airborne measurements around Manaus, Brazil (3�060S,
60�010W) in the central Amazon Basin during the Green Ocean
Amazon (GoAmazon) 2014/15 campaign14. Fast response
airborne proton transfer reaction-mass spectrometry (PTR-MS)
measurements of isoprene mixing ratios provide an opportunity
to estimate isoprene emissions from this tropical forest using
wavelet-based eddy covariance (EC) techniques. The EC
technique, which provides the most direct measurement of
fluxes, has recently been implemented for airborne VOC emission
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Figure 1 | Isoprene emission estimates and maps of vegetation distributions and terrain elevation. (a) Mean values of surface isoprene emissions from

MEGAN, EC and OMI for all available flights (black diamond), dry season (red triangle) and wet season (blue square), and their 25% quartile values (lower

bar), 50% quartile values (middle bar) and 75% quartile values (higher bar). (b) Fractional coverage of broadleaf evergreen tropical trees from MODIS PFT

land cover observation. (c) Distribution of LAI in September 2014 from MODIS observation. (d) Terrain elevation from ASTER Global Digital Elevation Map.
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measurements15,16. Eight research flights (RFs) in wet (January to
June) and dry (July to December) seasons are selected for
investigation based on flight maneuvers and environmental
factors to minimize the impacts from city plumes
(Supplementary Fig. 1). Utilizing the direct airborne
measurements, this work proposes to: (1) elucidate the spatial
heterogeneity of isoprene emission estimates from direct aircraft
measurements over the Amazonian forest compared with model
predictions based on satellite land cover and vegetation specific
EFs; (2) quantify the elevational gradient in the Amazonian forest
isoprene emission capacity with airborne observations and
satellite top-down estimates; (3) use a regional chemical
transport model to assess the impacts from the proposed
changes in isoprene EFs on the major radicals and air
pollutants. We observe isoprene emission rates that are three
times higher than satellite top-down estimates and 35% higher
than model predictions based on satellite land cover and
vegetation specific EFs. The results reveal strong correlations
between observed isoprene emission rates and terrain elevations
which are confirmed by similar correlations between satellite-
derived isoprene emissions and terrain elevations. By updating
the isoprene EFs based on the observed magnitude and the
relation between isoprene emissions and terrain elevations, there
are significant impacts on regional oxidants distributions
predicted by a regional model simulations.

Results
Observed and model simulated isoprene emission rates. The
average surface isoprene emission rates are 6.2, 12.9 and
10.7 mg m� 2 h� 1 from observations in wet, dry and both sea-
sons based on the EC technique (Fig. 1a). The observed isoprene
emission rates are about 3.5, 2.4 and 3 times higher than the
estimates from a satellite top-down approach based on the Ozone
Monitoring Instrument (OMI) measurements in wet, dry and
both seasons. Compared with the estimates from MEGAN model
simulations, the observed isoprene emission rates are 10%, 43%
and 35% higher in wet, dry and both seasons. We also estimated
emission estimates from the aircraft observations using an inde-
pendent approach, the Mixed Layer Variance technique17,18

(Supplementary Fig. 2), and the calculated isoprene emission
rates are comparable with the direct EC measurements and
estimates from previous studies17,19.

To accurately simulate the spatiotemporal distribution of
isoprene emissions with MEGAN, it is critical to drive the model
with representative land cover input data including EFs, plant
functional type (PFT) and leaf area index (LAI). In this study, we
use the MEGAN v2.1 model coupled with the Community Land
Model (CLM) v4.5 to simulate isoprene emissions over the
central Amazon forest in 2014. The MEGAN v2.1 model adopts
the 16 PFT scheme used by CLM to characterize spatial variations
of vegetation types, and specifies isoprene EFs based on PFT
categories12. Satellite observations have been widely used to
generate high-resolution land cover parameters for Earth system
modelling20. By using Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite data, we calculated
MEGAN PFT and LAI inputs for this study (Fig. 1b,c). Based
on the MODIS MCD12Q1 land cover type product, the study
region is dominated by only one PFT type, broadleaf evergreen
tropical trees, which results in a nearly homogeneous distribution
of EFs for model simulations. Although there are small
percentages of other PFT (for example, grass, crop) and water
(river) coverage dispersed throughout the region, their estimated
contributions to the overall isoprene emission are very small
(Supplementary Fig. 3). Comparing LAI data from the MODIS
MCD15A2 product in each month in 2014 (Supplementary
Fig. 4), the LAI in the dry season is significantly higher than in
the wet season, which contributes to higher isoprene emissions in
the dry season. The MEGAN model is also driven by
meteorological inputs (for example, temperature, radiation)
from simulations of meteorological forcing data from the
Weather Research and Forecasting (WRF) Model constrained
by National Center for Environmental Prediction FiNaL (NCEP
FNL) operational global analysis data. Vegetation temperature
and solar radiation in the dry season were higher than those in
the wet season (Supplementary Figs 5 and 6), which both tend to
contribute to higher isoprene emissions in the dry season. The 24-
hour monthly average isoprene emission is 4.3 mg m� 2 h� 1 in
September from MEGAN simulation, which is nearly twice the
emission of 2.1 mg m� 2 h� 1 in March (Supplementary Fig. 7).

By comparing the emissions estimated from airborne observa-
tions with those from MEGAN simulations, we evaluated the
average MEGAN emission and propose an approach for
improving the model estimates. As shown in Fig. 2, there are
discrepancies in the spatial distributions of isoprene emissions
between MEGAN model simulations and those derived from
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Figure 2 | Surface isoprene emission flux during flight RF 20140930. (a) Spatial distributions from airborne EC method (solid circles) compared with

MEGAN simulations (background colours); (b) scatter plot of the EC and MEGAN estimates, and their mean values and linear correlation coefficient are

shown in the figure..
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aircraft observations. Also shown in Supplementary Fig. 8, the
observed isoprene emission rates are 35% higher than average
model results, while the emissions from aircraft observations are
more variable indicating isoprene emission heterogeneity that is
not captured by the model.

Elevational gradient of isoprene emission. To exclude the
impacts from meteorological inputs, we calculated the isoprene
EFs from aircraft observations, and compared them with corre-
sponding MEGANv2.1 EFs. While the EFs in MEGANv2.1 are
dominated by one single–PFT-based MODIS land cover data, the
aircraft observed EFs are significantly more variable
(Supplementary Table 1), suggesting that there is greater het-
erogeneity in actual vegetation types and isoprene emissions.
While the Amazonian forest has the richest abundance of vege-
tation species on Earth, there remains much unknown about the
plant species distribution in the Amazon21. The emission rate
variability in this diverse ecosystem must be characterized by
more than one single PFT to adequately represent the entire
Amazon forest. While LAI can influence isoprene emission
because it represents the magnitude of the potential source, there
were no clear correlations between observed EF and LAI
(Supplementary Table 2). Therefore, we investigated other
variations in land characteristics that could explain this
variability.

Variations in ecosystem types, and their associated plant
species distributions, have been observed along elevational
gradients in many regions and are associated with altitude driven
changes in a variety of environmental factors (for example,
temperature, humidity, soil composition)22. Studies have shown
floristic compositions of tree23, shrub24 and palm25 are correlated
with terrain elevations in Amazonian forests. Therefore, we
compared aircraft-based isoprene EF with satellite-based
elevation data to investigate whether there are elevational
gradients in isoprene EFs. As shown in Fig. 3, by categorizing
the observed isoprene EFs using 30 m intervals in terrain
elevations, there are strong positive correlations (R¼ 0.98,
Po0.018) between isoprene EFs and elevations for the dry
season. This indicates that there is a notable elevational gradient
of isoprene emitters in the central Amazonian forest. We
hypothesize that an elevational gradient in Amazonian forest
isoprene emission capacity, determined by plant species
distributions, can explain a substantial degree of isoprene

emission variability in Amazonian tropical forests leading to
significantly improved isoprene emission estimates.

We also examined biogenic isoprene emissions from top-down
estimations based on the Global Ozone Monitoring Experiment–2
(GOME-2) (2007–2012) and OMI (2005–2014) satellite formalde-
hyde observations (Fig. 3). Similar to the EFs from aircraft
observations, there are also strong correlations (R¼ 0.96–0.99)
between top-down isoprene emissions and terrain elevation in the
central Amazon. The top-down emissions are impacted by the a
priori emission (MEGAN-MOHYCAN26) which has lower values
at lower elevations due to the combination of river, grassland with
trees in the low resolution (0.5 degree) grid. As a result, the
elevational variation of vegetation composition could be impacted
by the assumed land cover types. Based on aircraft observed
isoprene EF and terrain elevation data, the observed relationship
(EF¼ 0.091�Elevationþ 4.51) in dry season was used to modify
the isoprene EFs in the central Amazon. As shown in Fig. 4, the
revised EFs are consistently higher than the MEGANv2.1 EFs and
there is significant horizontal heterogeneity of EFs with higher
values in the northern part of the study domain. On average, the
revised EFs are 71% higher than the MEGANv2.1 EFs in the study
domain.

Model simulated regional impacts. To examine the impacts of
the revised isoprene emissions, we used the Weather Research
and Forecasting model coupled to Chemistry (WRF-Chem), to
simulate the impact of the improved isoprene EFs on regional
oxidants distributions as shown in Fig. 5. The hydroxyl radical
(OH), which is the primary oxidant for most tropospheric trace
gases (for example, nitrogen oxides (NOx), formaldehyde
(HCHO)), decreased by B19% after updating the isoprene EFs.
At the same time, two important photochemical oxidation pro-
ducts, O3 and peroxyacyl nitrates, decreased by B10% and B6%.
This suggests that the higher isoprene emission is currently
suppressing these compounds since the O3–NOx-VOC sensitivity
is NOx-limited in the Amazonian area. This will likely not be the
case if NOx emissions increase as a result of increased anthro-
pogenic activities in the Amazon27. As the elevational gradient of
the plant species distribution is also related to the height above
the nearest drainage in the Amazonian forest28, we may also see
future changes of biogenic isoprene emission and regional air
quality if the water table depth fluctuates as a consequence of
climate change or human activities.
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Figure 3 | Correlations of terrain elevations with observed isoprene EFs and top-down isoprene emissions. The median values of isoprene EFs estimated

from EC approach (red diamond), top-down biogenic isoprene emissions based on satellite data including GOME-2 (purple triangle) and OMI (blue

square), and their 25% quartile values (lower bar) and 75% quartile values (higher bar) during dry (a) and wet (b) seasons compared with terrain

elevations with an interval of 30 m. The black dot lines indicate the EF used in MEGAN v2.1. The colour dash lines show linear regressions for median values

from each approach, and their correlation coefficients (R) are shown in the figures.
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Discussion
Our study provides the first evidence of elevational gradients of
isoprene emissions in the Amazonian forest, indicates signifi-
cantly higher isoprene EFs compared with previous estimates,
and demonstrates the important implications for regional atmo-
spheric photochemistry and air quality. Furthermore, these
observations show that biogenic isoprene emissions are much
higher in the dry season than in the wet season, and the isoprene
EFs are higher than those assumed for previous MEGAN
simulations. The revised isoprene EFs based on aircraft observa-
tions and terrain elevation distributions account for the notable
heterogeneity of isoprene emission in the central Amazonian
forest, and lead to significant impacts on photochemistry and
regional air quality. This study provides an important initial
demonstration of the significance of elevational gradients in
biogenic isoprene emissions in the Amazon tropical rain forest.
Further measurements of leaf and canopy-scale isoprene emis-
sions at multiple sites along elevation gradients, particularly over
broader tropical regions, are needed to determine the cause and
the generality of the relationship in other geographic regions.

Methods
Airborne measurements. Isoprene was measured by a PTR-MS onboard the
Gulfstream-1 (G-1) research aircraft around Manaus, Brazil during the GoAma-
zon2014/5 campaign in both wet and dry seasons 2014. A detailed description of
the PTR-MS and other gas species (for example, carbon monoxide (CO), O3 and
NOx) measurements on the G-1 aircraft is provided in ref. 29. The observations
from four wet season flights and four dry season flights used in this study are
shown in Supplementary Note 1.

EC techniques. The EC technique based on wavelet analysis estimates the tur-
bulent flux F as the discrete covariance between the fluctuating terms of vertical
wind speed (w0) and concentrations (C0):

F ¼
X

w0�C0 ð1Þ

Using wavelet transformation, the EC technique computes instantaneous correla-
tions between w0 and C0 (that is, isoprene) to get flux estimates with high spatial
resolution (B2 km). Afterwards the surface emission flux is derived from the high-
resolution flux data of EC together with a vertical flux divergence correction.
A detailed description of the airborne EC technique is provided in refs 15,16.

MEGAN simulation within CLM 4.5 framework. MEGAN is a global biogenic
emission model that is used for both regional air quality modelling and global
climate and Earth system modelling studies and is driven by meteorology and land
cover data12. The MEGAN model has been embedded into land surface, chemical
transport and global climate models. In this study, we utilized MEGAN v2.1
integrated into CLM 4.5 with a resolution of B1 km for the study domain of 4�S to
2�S and 61.5�W to 59�W. The land cover inputs (for example, PFT, LAI) are
derived from satellite observations. The model ran for the entire year of 2014 using
meteorological forcing data derived from WRF simulations (constrained by NCEP
FNL data).

Satellite observations. MODIS satellite product MCD12Q1 land cover type
product with 500 m resolution was aggregated to 1 km grids to derive PFT dis-
tributions over the model domain. We used the latest MCD12Q1 data set for 2012
in this study. MODIS MCD15A2 LAI 8-day composite product with 1 km reso-
lution was used in this study for the entire year of 2014. The PFT and LAI mapping
into CLM classification follows ref. 20. The ASTER Global Digital Elevation Model
(ASTER GDEM) v2 in B30 m resolution was used to calculate the terrain elevation
for this study (Fig. 1d). The top-down biogenic isoprene emissions source inversion
using the adjoint of the IMAGESv2 global chemistry-transport model11 was
constrained by tropospheric HCHO column densities from the OMI and GOME-2
satellite instrument30.

WRF-Chem simulation. The WRF-Chem (v3.5.1) configuration is described in
ref. 31. The SAPRC-99 (Statewide Air Pollution Research Center 1999)
photochemical mechanism was selected to simulate gas-phase chemistry, and the
Fast-J parameterization for photolysis rates31. The model simulation is between 6
and 30 September 2014, when most of the dry season measurements were
conducted.

Code availability. The CLM 4.5 model code used in this study is available at
http://www.cesm.ucar.edu/models/cesm1.2/clm/. The WRF-Chem model code
used in this study can be found at http://ruc.noaa.gov/wrf/wrf-chem/.

Data availability. All of the airborne measurement data used to calculate the
isoprene emissions are available at http://www.arm.gov/campaigns/amf2014goa-
mazon. The MODIS PFT and LAI data can be found at https://lpdaac.usgs.gov/
dataset_discovery/modis/modis_products_table. The ASTER Global Digital Ele-
vation Map data is available at https://asterweb.jpl.nasa.gov/gdem.asp. The top-
down biogenic isoprene emission data is available at http://www.globemission.eu/
data.php.
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