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Abstract

Dysfunction of hepatocyte nuclear factor 4a (HNF4a) has been linked to maturity onset diabetes of the young (MODY1),
diabetes type II and possibly to renal cell carcinoma (RCC). Whereas diabetes causing mutations are well known, there are
no HNF4A mutations found in RCC. Since so far analyses have been constricted to the promoter and open reading frame of
HNF4A, we performed a systematic analysis of the human HNF4A 39UTR. We identified a short (1724 nt) and long (3180 nt)
39UTR that are much longer than the open reading frame and conferred a repressive effect in luciferase reporter assays in
HEK293 and INS-1 cells. By dissecting the 39UTR into several pieces, we located two distinct elements of about 400 nt
conferring a highly repressive effect. These negative elements A and B are counteracted by a balancer element of 39 nt
located within the 59 end of the HNF4A 39UTR. Dicer knock-down experiments implied that the HNF4A 39UTR is regulated by
miRNAs. More detailed analysis showed that miR-34a and miR-21 both overexpressed in RCC cooperate in downregulation
of the HNF4A mRNA. One of the identified miR-34a binding sites is destroyed by SNP rs11574744. The identification of
several regulatory elements within the HNF4A 39UTR justifies the analysis of the 39UTR sequence to explore the dysfunction
of HNF4a in diabetes and RCC.

Citation: Wirsing A, Senkel S, Klein-Hitpass L, Ryffel GU (2011) A Systematic Analysis of the 39UTR of HNF4A mRNA Reveals an Interplay of Regulatory Elements
Including miRNA Target Sites. PLoS ONE 6(11): e27438. doi:10.1371/journal.pone.0027438

Editor: Bin Tian, UMDNJ-New Jersey Medical School, United States of America

Received June 23, 2011; Accepted October 17, 2011; Published November , 2011

Copyright: � 2011 Wirsing et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (Ry5/9-1). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gerhart.ryffel@uni-due.de

¤ Current address: Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Melbourne, Australia

Introduction

Hepatocyte nuclear factor 4a (HNF4a) is a highly conserved

transcription factor that is predominantly expressed in liver, kidney,

pancreas and intestine [1,2]. The impact of HNF4a on gene

regulation has been elucidated by identifying hundreds of functional

target genes involved in various processes such as homeostasis,

metabolism, immune and stress response, cell structure, apoptosis

and cancer [3–6]. Mutations in the HNF4A gene are linked to

diabetes type II [7,8] and maturity onset diabetes of the young type

1 (MODY1) [9,10]. Furthermore, several data indicate that HNF4a
might act as a tumor suppressor whose inactivation leads to

carcinogenesis. Thus, re-expression of HNF4a in murine hepato-

cellular carcinoma (HCC) retarded tumor growth of subcutaneous

transplanted cells [11,12]. In addition, human renal cell carcinomas

(RCC) show a 4.7 fold downregulation in HNF4A mRNA level [13]

and the abundance as well as DNA binding activity of its protein is

frequently reduced in tumors compared to normal tissue [14]. The

tumor repressive effect is supported by findings that HNF4a inhibits

cell proliferation in various cell types, including murine hepatocel-

lular carcinoma cells [11,12], endothelial lung and embryonal

carcinoma cells [15], insulinoma cells [4] as well as embryonic

kidney cells [5,16].

The transcriptional regulation of HNF4A is quite well

understood and involves two promoters, P1 and P2, which

mediate cell specific activity [17–19]. The importance of the P2

promoter in b-cells of the pancreas is revealed by five distinct

mutations that occur in various promoter elements and are linked

to maturity onset diabetes of the young 1 (MODY1) [20]. These

mutations in regulatory sequences of HNF4A complement the

numerous MODY1 mutations found in the open reading frame

(ORF) [21]. However, so far no mutation in the HNF4A gene has

been identified that may explain the downregulation of HNF4a in

RCC [22,23]. Clearly, regulation via the 39 untranslated region

(39UTR) of the mRNA is a possible option. In fact, the 39UTR of

the HNF4A mRNA based on RefSeq NM_000457.3 is about

1.7 kb in length and thus longer than the ORF with its 1.4 kb. So

far the function of the 39UTR has not been analyzed and this lack

of knowledge is typical for most other mRNAs as well. It reflects

the limited insight into functional elements in the 39UTR although

they are known to play an important role in translation,

localization as well as stability of mRNAs [24,25]. Whereas the

interaction of the 39UTR with specific RNA binding proteins has

been known for a long time [26,27], the binding of microRNA

(miRNA) as an important regulatory event has been recognized

more recently [28,29].

miRNAs are expressed in a cell-specific manner and have been

implicated in the posttranscriptional regulation of target mRNAs

resulting in decreased protein expression [28,29]. By modulating

oncogenic and tumor suppessor pathways, miRNAs have been
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shown to contribute to tumorigenesis [30–32]. miRNA expression

profiling in RCC has revealed a large number of miRNAs that are

either up- or downregulated in the tumors compared to normal

tissue [33–39]. Whether these misregulated miRNAs affect HNF4A

expression is not known. miRNAs also play a role in the

developing pancreas including the b-cells of the Langerhans

islands [40,41]. However, it is not known, whether they are

dysregulated in diabetes type II or MODY and affect mRNAs

such as HNF4A whose dysfunction leads to impaired insulin

secretion.

In the present study we elucidate the regulatory potential of the

39UTR of the HNF4A mRNA to expose the possible regulation of

HNF4A in RCC, MODY1 and diabetes type II. We performed a

systematic analysis of the entire HNF4A 39UTR to reveal distinct

regulatory elements controlling HNF4a expression.

Materials and Methods

Plasmid construction
All primers are listed in Table S1. The HNF4A 39UTR was

amplified using a human BAC clone (RPCIB753B08466Q;

imaGenes) as a template and primers containing flanking SpeI or

XbaI and NotI sites. The cleaved HNF4A 39UTR and all shortened

fragments were cloned into XbaI/NotI sites of the Renilla luciferase

reporter pRL-Con [42] and subsequently sequenced.

The sequence 631–3180 of the corresponding construct was

excised from construct 1–3180 with XbaI/NotI and ligated into the

same sites of the RL-Con plasmid. To delete the sequence

containing negative element A and B and obtain constructs 1–

844+1720–3180 and 631–844+1720–3180, we used two EcoRI

sites present in the HNF4A 39UTR sequence. The latter construct

was also used to generate construct 631–849+1718–850+1719–

3180, by re-introducing the excised EcoRI-fragment and selecting

for clones containing this sequence in 39-59 direction. To get

constructs 1–630+850–1207 and 1–630+1288–1666, we cleaved

the construct containing the 59 843 nt of the HNF4A 39UTR with

XbaI/NotI and inserted the XbaI/NotI cleaved PCR products from

850–1207 and 1288–1666, respectively. To determine if negative

element A and B function on RNA level, we introduced a XbaI/

SpeI cleaved PCR product containing the SV40 PAS into the XbaI

site upstream of negative element A and B constructs. Both

orientations of the insert were identified by sequencing, resulting

in construct 59-39 PAS + 850–1207, 39-59 PAS + 850–1207, 59-39

PAS + 1288–1666 and 39-59 PAS + 1288–1666. To locate the

balancer, PCR fragments with flanking SpeI and XbaI sites were

introduced in both orientations into the XbaI site of the construct

containing negative element A. For mutation analysis the balancer

oligonucleotides listed in Table S2 were inserted into the 850–

1207 construct whose XbaI site was replaced with the polylinker

oligonucleotide. For insertion of the mut2 mutation into the long

39UTR construct 1–3180, the ApaI/XbaI fragment of the 39UTR

(137–632) was cloned into pBluescript II SK+ and mutated with

the QuikChange II Site-Directed Mutagenesis Kit (Stratagene).

The sequence verified fragment was reinserted into the wild type

construct. The site directed mutation in the proximal miR-34a site

was made with the same mutagenesis kit. The most relevant DNA

constructs have been deposited at addgene.

Cell culture
Dicer-kd/2b2 cells [42] were grown in DMEM (Gibco-BRL)

supplemented with 10% heat-inactivated fetal calf serum (FCS),

penicillin/streptomycin (100 U/ml), 2 mM glutamine, 10 mg/ml

blasticidin and 250 mg/ml zeocin (Invitrogen). The INS-1#5.3-19

cell line [43] was cultured in RPMI-1640 medium supplemented

with 10% heat inactivated FCS, penicillin/streptomycin (100 U/

ml), 1 mM sodium pyruvate, 10 mM HEPES, 2 mM glutamine,

50 mM mercaptoethanol, 10 mg/ml blasticidin and 200 mg/ml

zeocin. HepG2 cells [22] were maintained in DMEM (Gibco-

BRL) supplemented with 10% heat-inactivated fetal calf serum

(FCS), penicillin/streptomycin (100 U/ml) and 2 mM glutamine.

The human kidney cell line HK120 was kindly provided by Stilla

Frede (Institut für Physiologie, Universität Duisburg-Essen, Essen,

Germany) and grown in RPMI-1640 medium supplemented with

10% heat inactivated FCS, penicillin/streptomycin (100 U/ml)

and 2 mM glutamine.

Transient transfection and luciferase assay
For each assay cells were seeded into a 96-well plate 24 h before

transfection. Cells were transiently transfected with 40 ng of DNA

comprised of Rc/CMV (Invitrogen), of 0.01 ng firefly luciferase

construct CMV-luc (Rc/CMV derivative containing the firefly

luciferase) for normalization of transfection efficiencies and of the

Renilla luciferase reporter constructs in pRL-Con [42] using 0.05–

0.08 ng to obtain equal molar amounts for the constructs with

various length inserts. 24 h after transfection using FuGeneHD

(Roche) Renilla and firefly luciferase activities were measured with

the Dual-Luciferase Reporter Assay Kit (Promega). Normalized

Renilla activity in cells transfected with pRL-Con was set to 100%

and used for standardization.

For Dicer knock-down experiments, expression of the short

hairpin targeting Dicer [42] was induced with 1 mg/ml of

doxycycline for three or seven days. Transfection assays were

performed as described above by using 0.08 ng of RL reporter

plasmids. Four hours later addition of doxycycline was repeated

and 48 h after transfection, luciferase activities were determined.

The normalized values for each construct obtained for uninduced

cells, which were treated with ethanol, was set to 100% and used

for standardization.

To determine the impact of miRNAs on the HNF4A 39UTR, we

co-transfected 0.08 ng of the pRL-Con reporter plasmids with

0.01 ng of the CMV-luc construct and 50 ng of pcDNA3.1 pri-

miR-34a [44] or pCMV-mir-21 [45] using either Rc/CMV

(Invitrogen) or pcDNA3.1 (Invitrogen) as a negative control.

Luciferase activities were determined 24 h after transfection as

described above.

3 9RACE and qRT-PCR
Total RNA was isolated from HepG2 and HK120 cells using

peqGold RNAPure (PeqLab) according to the manufacturer’s

instruction. cDNA was synthesized using the High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems) together

with an oligo-dT-adapter primer (59 GGCCACGCGTCGAC-

TAGTACTTTTTTTTTTTTTTTTT 39). PCR was performed

(FailSafe PCR System, EPICENTRE) using a sense gene specific

primer (proximal PA: 59 CGGGATCCGGCTGCACTAAAATT-

CACTTAGGGTCG 39; distal PA: 59 CGGGATCCTTCT-

TACTCTTCTGTGTTTTAACAAAA 39) and an antisense

adapter primer (59 CCACGCGTCGACTAGTACTTT 39).

PCR products were analyzed on an agarose gel and either cloned

into pBluescript and sequenced or sequenced directly.

SYBR-Green real time PCR was performed on a 7900HT

Sequence Detection System (Applied Biosystems) using Power-

SYBR Green Mix (Applied Biosystems). Templates were deter-

mined in triplicate and the housekeeping gene GAPDH served as a

reference. To check for DNA contamination, control reactions

without reverse transcriptase were performed. The primers used

were the same as described above.

Regulatory Elements in 39UTR of HNF4A mRNA
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miRNA expression profile
RNA was isolated from HEK293 cells [16] by using the

mirVanaTM RNA isolation kit (Ambion) according to the

manufacturer’s instruction. RNA samples (20 ng) were reverse

transcribed (384 TaqMan miRNA assay, beta version, Applied

Biosystems) using eight different 48plex stem-loop RT primer

pools. The cDNAs were quantified by real-time PCR using the

corresponding 8648 individual miRNA Taqman Assays in

duplicate reactions (10 ml) containing 0.1 ng of cDNA, 16
Universal Master Mix and 16 assay. Data were analyzed by the

DCT method using RNU48 as a normalization control.

In silico analyses
Target sites for 20 miRNAs (Table S3) were predicted within

the 3180 nt HNF4A 39UTR with RNA22 [46] using 1, 7, 14 and

220 for unpaired bases, seed/nucleus in nucleotides, minimum

number of paired-up bases and maximum folding energy in

heteroduplex, respectively. The proximal miR-34a target site in

the 59 449 nt of the HNF4A 39UTR was predicted with

TargetScan (http://targetscan.org/). The UTRdb database [47]

was used to identify regulatory motifs within the HNF4A 39UTR.

MIRb and MIRc were predicted using the RepeatMasker function

from the UCSC Genome Browser of Human Feb. 2009 Assembly

(http://www.genome.ucsc.edu/cgi-bin/hgGateway).

Results

Two alternative 39UTRs of the human HNF4A mRNA
The RefSeq sequences NM_000457.3 and NM_178849.1 of the

human HNF4A mRNA encode a 39UTR of 1724 nt that contains

the non-canonical polyadenylation signal (PAS) GATAAA [48]

15 nt upstream of the 39 end (Fig. 1A). However, this PAS and the

surrounding sequences are conserved in primates only, but not

among other mammals. In contrast, the 39UTR of murine Hnf4a

mRNA is 2816 nt in length (RefSeq NM_008261.2) and

encompasses the canonical PAS [48] AATAAA (Fig. 1A). This

PAS and the surrounding sequences are highly conserved among

different mammals including human. To determine which

polyadenylation site is functional in human cells, we performed

39 RACE with HNF4A mRNA isolated from the hepatoblastoma

cell line HepG2 and the kidney cell line HK120. Sequence

analyses of the cDNA revealed that in both cell lines the proximal

as well as the distal PAS are used resulting in cleavage of the

mRNA 15 nt and 19 nt downstream of the PAS at position

1724 nt and 3180 nt, respectively.

To determine the abundance of the short (1–1724) and long (1–

3180) 39UTR in the human HNF4A RNA of the HepG2 and

HK120 cell lines, we performed qRT-PCR using GAPDH as a

reference. The amount of the HNF4A 39UTR was about two-fold

higher in HepG2 than in HK120 cells (Fig. 1B). In both cell lines

Figure 1. Two distinct polyadenylation signals (PAS) in the human HNF4A mRNA. (A) Schematic representation of the HNF4A 39UTR. The
screen shot taken from the UCSC Genome Browser (assembly March 2006) depicts the known human HNF4A 39UTR with the RefSeq sequences
NM_000457.3 and NM_178849.1 and the genome position from 42,491,540 to 42,494,950 of chromosome 20. The degree of conservation across 17
species is indicated by black areas. The nucleotide sequence alignment of the region surrounding the proximal and distal PAS is shown below. Non-
conserved nucleotides in comparison to the human sequence are given for the different species, while dots represent conserved nucleotides. The
proximal and distal PAS are boxed and the corresponding cleavage sites, as determined by 39 RACE and subsequent sequencing, are indicated by a
vertical line. The last nucleotide of the short and long 39UTR is marked at position 1724 and 3180, respectively. (B) The relative abundance of the
short and long HNF4A 39UTRs was determined in comparison to the house keeping gene GAPDH. Two independent RNA samples were prepared from
each cell line and the qRT-PCR was performed in triplicates. Each column thus represents the mean6SD of six measurements.
doi:10.1371/journal.pone.0027438.g001

Regulatory Elements in 39UTR of HNF4A mRNA
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the distal PAS generating the long 39UTR (1–3180) was used

frequently, representing about 75% and 60% of the HNF4A

transcripts in the hepatoblastoma and kidney cell line, respectively.

These data reveal that in human cells in addition to the predicted

HNF4A 39UTR of 1724 nt, a much longer 39UTR of 3180 nt is

expressed predominantly.

Repressive effect of the HNF4A 39UTR
To gain insight into the mode of regulation of HNF4A via its

39UTR, we performed an in silico search for regulatory elements.

Since we found only few potential cis-elements of RNA binding

proteins, but several hundred possible target sites for miRNAs, we

decided to systematically use a set of functional assays to locate

regulatory elements. We cloned the short (1–1746) and long (1–

3180) 39UTR downstream of the Renilla luciferase ORF into the

reporter plasmid RL-Con [42] and analyzed the effect in human

embryonic kidney (HEK293) cells using a firefly luciferase reporter

as reference (Fig. 2, middle panel). The Renilla luciferase activity

was significantly reduced to about 60% by insertion of the long (1–

3180) or short (1–1746) 39UTR implying the existence of elements

conferring a repressive effect.

To locate these negative acting elements, we dissected the

39UTR and located a repressive activity in the 59 part (1–630),

whereas the 39 part (2771–3180) had no influence. Furthermore,

we observed a distinct activity located in fragment 631–3180 that

surprisingly had a much higher repressive effect, while a construct

containing the sequence from 1–2769 resulted in a decrease in

luciferase activity similar to the one observed for the long 39UTR.

To narrow down the area within the HNF4A 39UTR which

confers the strong repressive effect, we generated short, mainly

overlapping constructs covering the entire 3180 nt of the 39UTR.

Whereas the majority of 39UTR fragments showed no or only

minor effects, the two constructs comprising the 39UTR sequences

A (850–1313) and B (1288–1746) repressed luciferase activity

down to 27% and 21%, respectively. Since in HEK293 cells the

HNF4A gene is silent [16], we measured the activity of the same

39UTR fragments in the rat insulinoma cell line INS-1 expressing

Hnf4a [43]. In this cell line a similar pattern of repression of the

individual constructs was observed, but the effect was even more

pronounced (Fig. 2, right panel). Taken together the HNF4A

39UTR contains several elements that negatively influence

luciferase reporter activity.

Identification of negative element A and B within the
HNF4A 39UTR

Using UCSC Genome Browser we identified the ‘‘mammalian

interspersed repetitive elements’’ MIRb and MIRc within

sequence A (850–1313) and B (1288–1746), respectively (Fig.

S1). However, we excluded that these repetitive elements mediate

the repressive effects, as fragments retaining the sequence for

MIRb (1208–1313) or MIRc (1392–1513) did not affect luciferase

reporter activity in HEK293 and INS-1 cells (Fig. S1, middle and

right panels).

To locate the functional sequences we gradually trimmed the

sequences from the 39 and 59 end (Fig. S1, left panel). Shortening

sequence A on the 39 end to position 1259 and even to 1207

amplified the repressive effect in HEK293 cells to 16% and 15%,

respectively (Fig. S1, middle panel). Further constriction on either

side revealed a gradual release of the repressive effect. Therefore,

we defined the fragment extending from 850–1207 as negative

element A. Similarly, shortening sequence B on the 39 and 59 end,

we defined negative element B (1288–1666), as it mediates the

highest repressive function and any truncation leads to a partial or

even total loss of the repressor activity (Fig. S1, left panel). A

corresponding analysis in INS-1 cells gave a most similar result

(Fig. S1, right panel).

Figure 2. Systematic reporter analyses of the human HNF4A 39UTR. The results of luciferase assays 24 h after transient transfection into
HEK293 and INS-1 cells are shown. The numbers of the construct names refer to the nucleotide position in the HNF4A 39UTR with 1 being the first
nucleotide after the stop codon. Each 39UTR fragment was cloned downstream of the Renilla luciferase ORF into the RL-Con plasmid. At least three
transfection assays were performed for each construct, involving two independent plasmid preparations. Each assay was performed in triplicate and
as indicated by RL/FL a CMV-driven firefly luciferase (FL) was used to control for transfection efficiency. The activity of the empty RL-Con plasmid was
used for standardization to 100%. p-values were determined using a one-sample t test. p-values of ,0.05 and of ,0.01 are indicated by * or **,
respectively.
doi:10.1371/journal.pone.0027438.g002

Regulatory Elements in 39UTR of HNF4A mRNA

PLoS ONE | www.plosone.org 4 November 2011 | Volume 6 | Issue 11 | e27438



Taken together we located two previously unknown negative

elements within the HNF4A 39UTR that are separated by about

80 nt. Their size of approximately 400 nt (357 nt and 378 nt) is

quite large and both are present in the short (1–1724) as well as the

long (1–3180) 39UTR of the HNF4A mRNA.

A balancer counteracting the negative elements
The strong activity of negative element A and B was only

observed when these elements were excised from the 39UTR

(Fig. 2). Deleting a sequence containing both negative elements

from the construct containing the long (1–3180) HNF4A 39UTR

did not change the luciferase activity in comparison to the entire

39UTR (Fig. 3). In contrast, the high repressive effect of construct

631–3180, was abolished upon deletion or inversion of the

sequence containing negative element A and B (Fig. 3). This

implied a counteracting element in the 59 part of the 39UTR (1–

630) we refer to as a balancer. Indeed, insertion of the sequence 1–

630 nt upstream of element A or B largely abolished the repressive

effect of the negative element A or B (Fig. 3). The observation that

the repressive effect of element A and B is lost upon inversion is

consistent with a regulatory element functioning on the RNA level.

To support this notion, we inserted the SV40 39UTR with its PAS

upstream of negative element A or B. In both cases the repressive

effect was lost, as expected if the transcript is polyadenylated at the

SV40 PAS and thus does not include negative element A or B

(Fig. 3). However, the abolishment of the repressive effect was not

seen, if the SV40 39UTR was inserted in opposite direction

leading to a PAS on the non-coding DNA (Fig. 3). Additionally,

this experiment excluded the possibility that any sequence

introduced upstream of element A or B would abrogate the effect.

All described effects were highly similar in HEK293 and INS-1

cells.

To define the sequence requirements of the balancer we further

truncated the 39UTR fragment 1–630 on both sides and measured

its activity to counteract the negative element A (Fig. 4A). As

inversion of the balancer sequence abolished its function (see

construct 1–449 in Fig. 4A), we evaluated the effect of the balancer

in each deletion construct by comparing the activity in forward

and reverse orientation. Using this criterion we defined the

sequence from 183–221, i.e. 39 nt, as the minimal balancer, as a

more than twofold difference between the forward and reverse

construct was measured. Since the balancer sequence is partially

conserved in mammals (Fig. 4B), we introduced four mutations

targeting the conserved sequence blocks and evaluated their

effects. Clearly, the mutations mut2 and mut3 impair the balancer

function indicating that the conserved CTTT and CTTG blocks

are crucial elements. The observation that the mutation mut1 does

not interfere with the function, is consistent with the residual

activity of the construct 192–221 (Fig. 4A). Surprisingly mutation

mut4 improves the balancer activity possibly due to the fact that

the 39 border of the balancer is already partially destroyed in the

39 nt sequence (compare constructs 1–449, 1–249 and 1–221 in

Fig. 4A).

To evaluate the significance of the balancer within the context

of the long (1–3180) 39UTR we inserted the mut2 mutation into

the full-length construct 1–3180 (Fig. 1). Comparing the activity of

the mutated construct to the wild type construct we measured a

significantly decreased luciferase activity (Fig. 4C). We conclude

that the balancer element is of functional relevance within the

entire 39 UTR of HNF4A.

The HNF4A 39UTR is regulated by miRNAs
To address the question, if HNF4A is regulated by miRNA, we

searched for binding sites using the RNA22 program [46].

Although we restricted our analysis to 20 miRNAs overexpressed

in RCC (Table S3), too many potential binding sites for miRNAs

were predicted within the HNF4A 39UTR. Therefore, we

evaluated experimentally, if any miRNA targets the 39UTR of

HNF4A by using a HEK293 cell line in which the Dicer protein

can be conditionally knocked-down by doxycycline [42]. Since

Dicer is required for miRNA biogenesis, the repressive effect of

miRNAs is relieved, if Dicer is downregulated. Using the Renilla

Figure 3. Balancer counteracting the negative elements A and B. The negative elements A and B are indicated by light grey and dark grey
boxes, respectively. The deletion of the negative elements is illustrated by a broken line, whereas the inversion of this element is marked by
backwards arrows. The insertion of the SV40 termination signal in sense and antisense is marked. The results of luciferase assays were derived and
evaluated as in Fig. 2. p-values were determined between two columns as indicated by brackets using an independent-samples t test. Non-significant
changes are marked by ns and refer to p-values.0.05 and ** refers to p-values,0.01.
doi:10.1371/journal.pone.0027438.g003

Regulatory Elements in 39UTR of HNF4A mRNA
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Figure 4. Mapping of the balancer element counteracting the negative elements. (A) The indicated 59 sequences of the HNF4A 39UTR were
cloned upstream of negative element A (850–1207, light grey box). The identified balancer is marked by a black box. Luciferase assays were
performed in INS-1 cells as described for Fig. 2. Grey and white bars represent results obtained with the constructs containing the 59 sequences in
front of negative element A in forward (59-39) and reverse orientation (39-59), respectively. The results of luciferase assays were derived and evaluated

Regulatory Elements in 39UTR of HNF4A mRNA
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luciferase reporter with the entire 3180 nt HNF4A 39UTR,

depletion of Dicer resulted in an increase in luciferase reporter

activity by 21% (Fig. 5). The effect was not as pronounced as for

the artificial reporters RL-Perf containing one perfect let-7a

binding site and RL-3xBulgeB containing three bulged let-7a sites

[42] that mediated under our conditions an increase of 55% and

89%, respectively. However, the significant increase indicates that

miRNAs target the HNF4A 39UTR.

To locate potential miRNA binding sites in the HNF4A 39UTR,

we analyzed several fragments of the 39UTR individually (Fig. 5).

Whereas miRNAs did not seem to target the 39 end of the 39UTR

(2574–3180), the remaining fragments mediated a slight increase

in reporter activity upon Dicer knock-down and the 59 fragment

1–449 nt showed a highly significant effect. In conclusion, our

data reveal potential functional miRNA target sites distributed

within 2.6 kb of the 3.2 kb 39UTR.

miR-34a and miR-21 downregulate HNF4A
To specify miRNAs that potentially target the HNF4A 39UTR

we first selected miR-34a that is overexpressed in RCC (Table S3)

and contains binding sites with seed sequences within the 59

449 nt. Although miR-34a is moderately expressed in HEK293

cells (Table S3), overexpression of pri-miR-34a downregulated the

validated miR-34a reporter plasmid pGL3-CDK6-BS2 (Fig. 6A)

containing one miR-34a target site [44]. An even more

pronounced decrease by miR-34a was observed by using reporters

including the 59 end construct 1–449 or 1–378 of the HNF4A

39UTR (Fig. 6A) that contains two potential miR-34a binding sites

with perfect seed sequences (Fig. 6B). Deletion of the seed

sequence of the distal miR-34a binding site in construct 1–249

clearly diminished the decrease, but did not entirely abrogate the

effect (Fig. 6B) suggesting that the proximal site is also functional.

Consistent with this assumption constructs 1–159 and 1–151 that

both lacked the proximal miR-34a target site were not affected by

miR-34a (Fig. 6B). Since construct 1–196 that retains the proximal

site was also not downregulated by miR-34a, we assume that

neighboring sequences are also required. Taken together it is

evident that the proximal (at 171 nt) and distal (at 261 nt) miR-

34a binding site within the 59 449 nt are functional and their effect

is additive (Fig. 6A and B).

Examination of the entire 3180 nt 39UTR revealed 13

additional potential miR-34a binding sites (Fig. 6C). Overexpres-

sion of miR-34a with the long 39UTR (1–3180) luciferase reporter

led to a decreased luciferase activity in HEK293 and INS-1 cells

similar to the one measured for pGL3-CDK6-BS2 reporter

construct. We ruled out that this decrease was based entirely on

the two identified miR-34a binding sites within the 59 449 nt

fragment, as we measured a miR-34a dependent drop in luciferase

activity with a construct (631–3180) lacking the 59 sequence

(Fig. 6C). Therefore, we tested several shortened constructs of the

HNF4A 39UTR, each containing at least one potential miR-34a

binding site. Since the construct 1288–1746 was affected by miR-

34a overexpression, we assume that this region contains several

cooperating miR-34a sites.

Figure 5. Dicer knock-down indicates that the HNF4A 39UTR is regulated by miRNAs. To knock-down the Dicer protein, doxycycline (1 mg/
ml) was added to the Dicer-kd/2b2 cell line [42] for three or seven days. Two days before luciferase activity was measured, the cells were transiently
transfected with reporter constructs. The nomenclature of the constructs is as in Fig. 2. At least three transfection assays were performed for each
construct, involving at least two independent plasmid preparations. Each assay was performed in triplicate and a CMV-driven firefly luciferase (FL) was
used to control for transfection efficiency. The activity of each construct measured in the presence of Dicer (ethanol added) was used for
standardization (100%) and is not shown. The 3xBulgeB and RL-Con reporter plasmids [42] harboring three bulged binding sites for let-7a and lacking
any binding sites, respectively, were included as a positive and negative control in each experiment (not shown). The negative elements A and B
identified in Fig. S1 are indicated. The p-values were determined using an independent-samples t test. p-values of,0.05 and of ,0.01 are indicated
by * or **, respectively.
doi:10.1371/journal.pone.0027438.g005

as in Fig. 2. p-values of,0.01 and of ,0.001, determined between the forward and reverse orientation of each construct, are indicated by * or **,
respectively. (B) The balancer sequence identified in the human 39UTR of HNF4A was aligned to the corresponding sequence of other mammals using
the UCSC Genome Browser (hg18, multiz alignments of 44 vertebrates). The four regions conserved are boxed. Below, the wild type balancer
sequence and the four mutants tested in front of the negative element A (850–1207) are given. Their performance in the luciferase assay in INS-1 cells
is summarized from at least three independent preparation of each construct. p-values of,1025 (***) are calculated in comparison to the wild type
sequence using an independent-samples t test. (C) The long (1–3180) 39UTR linked downstream of the Renilla luciferase (RL) and a corresponding
construct containing mut2 given in panel B were assayed in INS-1 cells. The balancer (grey box) and mut2 (black box) are not drawn to scale. Eight
and ten independent plasmid preparations were used for the wild type and mut2 construct, respectively. p-values of,1025 (***) are calculated in
comparison to the wild type sequence using an independent-samples t test.
doi:10.1371/journal.pone.0027438.g004
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In a similar analysis with expression vectors encoding miR-21

and miR-122 we observed a regulation of the HNF4A 39UTR by

miR-21 (Fig. S2), but not by miR-122 (data not shown). Based on in

silico analysis using RNA22 [46] we identified seven potential miR-

21 binding sites lacking a perfect seed sequence (Fig. S2).

Analyzing fragments of the 39UTR we failed to narrow down

the miR-21 regulation to a specific site (Fig. S2) indicating the

cooperation of several sites. Our observation that simultaneous

overexpression of miR-34a and miR-21 has an additive effect on the

long (1–3180) HNF4A 39UTR (Fig. 7) is most relevant, since both

miRNAs are upregulated in RCC (Table S3).

A SNP in the HNF4A 39UTR affects miR-34a function
The HNF4A mRNA contains 28 single nucleotide polymor-

phism (SNP) in the 3180 nt of the long 39UTR (dbSNP build 130).

One of them (rs11574744) alters the U to an A in the seed

sequence of the proximal miR-34a site (Fig. 8A). We inserted this

nucleotide change into the 1–249 construct that retains the

functional proximal miR-34a site (see Fig. 6A). Luciferase reporter

assays in INS-1 and HK120 cells revealed the functional relevance

of the U nucleotide in the seed sequence, as the SNP fully or

partially destroyed the function of the proximal miR-34a site in

INS-1 or HK120 cells, respectively (Fig. 8B).

Figure 6. Reporter analyses of miR-34a binding sites in the HNF4A 39UTR. (A) miR-34a targets two sites within the 59 449 nt of the HNF4A
39UTR. Reporter plasmids and pri-miR-34a expression plasmids were co-transfected 24 h before cell collection, into HEK293 (upper grey bars) and INS-
1 cells (lower white bars). At least one transfection assay was performed for each construct, involving two independent plasmid preparations in the
case of two or more assays. Each assay was performed in triplicate and a CMV-driven firefly luciferase was used to control for transfection efficiency.
The activity of each construct in the absence of the pri-miR-34a plasmid (replaced by Rc/CMV) was used for standardization (100%) and is not shown.
pGL3-CDK6-BS2 [44] and pRL-Con [42] served as positive and negative controls, respectively. Since pGL3-CDK6-BS2 expresses the firefly luciferase, the
RL-Con plasmid was used to control for transfection efficiency. The black boxes indicate miR-34a target sites with perfect seed sequence. To calculate
p-values the data of HEK293 and INS-1 cells were combined for each construct. p-values are,0.05 (*) and ,0.01 (**) using an independent-samples t
test. (B) Schematic diagram of the two potential miR-34a binding sites within the 59 449 nt of the HNF4A 39UTR. The numbering refers to the first
nucleotide after the stop codon as 1. The site extending from 149–171 nt was only predicted by TargetScan and is little conserved, while the distal
site located at 239–261 nt was predicted by RNA22 and TargetScan and is highly conserved among vertebrates. The two perfect seed matches are
indicated by vertical lines between the HNF4A 39UTR and miR-34a sequence. The arrows at position 151, 159 and 249 mark the last nucleotide of the
HNF4A 39UTR in the corresponding constructs. (C) Analyzing the performance of various 39UTR fragments upon miR-34a overexpression as performed
in panel A. The grey and black boxes indicate miR-34a target sites without and with a perfect seed sequence (CACUGCC), respectively, as
determined by RNA22 [46]. The number of target sites indicated by a box is given underneath the target site in case of more than one site. The
nucleotide positions of the 39 end of the target sites are given. The negative elements A and B identified in Fig. S1 are indicated.
doi:10.1371/journal.pone.0027438.g006
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Discussion

Gene regulation involves complex networks of cis-acting

elements and trans-acting factors that work on the transcriptional

and posttranscriptional level. Whereas on the transcriptional level

promoter and enhancer elements with their corresponding DNA

binding proteins have been well characterized [49,50], posttran-

scriptional control involving the 39UTR of mRNAs has been

largely neglected. This lack of knowledge is quite surprising, as in

many cases the 39UTR of a given mRNA exceeds the length of the

ORF substantially [51] as exemplified also by HNF4A (Fig. 1).

Furthermore, only 39 motifs recognized by RNA binding proteins

are deposited in the database UTRdb [47], whereas 457

transcription factor binding sites are available in JASPAR 2010

[52]. In fact, in silico analysis of the HNF4A 39UTR using UTRdb

[47] reveals the distal PAS and four potential regulatory sites (SXL

binding site, position 2680–2695; K-box, position 2940–2947;

Musashi binding element at position 910–914 and 2152–2157),

none of which explains the functional elements we have identified

in this study (Fig. 9).

Investigating the 39UTR of human HNF4A for its regulatory

potential we detected a proximal and distal PAS leading to a short

(1.7 kb) and long (3.2 kb) 39UTR, respectively (Fig. 9). This

finding is not surprising as about 29% of mRNAs contain more

than one PAS [48]. In accordance with data showing that non-

canonical signals are processed less efficiently than the canonical

PAS [48], the long 39UTR derived from the canonical PAS is

generated predominantly in HepG2 and HK120 cells (Fig. 1B).

Although our functional data show that all regulatory elements are

included in the short form (Fig. 9), we assume some functional

relevance for the long 39UTR (1–3180) that corresponds to the

39UTR of the murine Hnf4a mRNA.

In a systematic analysis of both 39UTRs by reporter assays we

observed significantly reduced luciferase reporter activity in

HEK293 and INS-1 cells, as described for other 39UTRs in

previous studies [53–56]. By deletion analysis we identified the

negative elements A (850–1207) and B (1288–1666) to confer the

highest repressive effect in both cell lines (Fig. 2 and S1). To

exclude that transcriptional elements located in the 39UTR

interfere in our assay, we showed that negative elements A and

B act on RNA level, as the antisense sequences are not functional

and an upstream SV40 transcriptional stop element destroys the

repressive function. The size of the negative elements A and B of

about 400 nt (Fig. S1) is much larger than a binding site of a RNA

binding protein or a miRNA. However, as overexpression of miR-

34a slightly impairs the activity of fragment 1288–1746 (Fig. 6C)

which includes negative element B (1288–1666), a contribution of

miR-34a cannot be excluded. We assume that the single-stranded

RNA containing negative elements A and B adopts a secondary

structure as postulated for instance for the 39UTRs of Vg1 [57] and

bicoid [58,59], that is involved in the cytoplasmic localization of the

mRNA.

The pronounced negative effect of element A and B is masked

within the HNF4A 39UTRs due to a balancer element located 59 of

Figure 7. miR-34a and miR-21 cooperate on the HNF4A 39UTR.
The reporter plasmid with the full-length HNF4A 39UTR (1–3180) was
cotransfected into INS-1 cells with expression vectors encoding pri-miR-
34a and/or a miR-21 as indicated. 24 h later Renilla luciferase activity
was measured and standardized using the cotransfected firefly
luciferase reporter. Each experiment involved three assays performed
in triplicate and the activity in the presence of the empty expression
vector was used for standardization (100%). By adding empty vector the
amount of DNA was kept constant. The specificity of the miR-21
expression vector pCMV-miR21 [45] was verified by using the bona fide
reporter Luc-TPM1-V1-UTR and its derivative Luc-TPM1-V4-UTR lacking a
miR-21 binding site (Fig. S2). p-values of .0.05 (ns), ,0.05 (*) and ,0.01
(**) are calculated as indicated by brackets using an independent-
samples t test.
doi:10.1371/journal.pone.0027438.g007

Figure 8. SNP rs11574744 destroys the proximal miR-34a
binding site. (A) The nucleotide change of the SNP rs11574744 in the
proximal miR-34a site 171 nt downstream of the stop codon of the
HNF4A mRNA is given. (B) Luciferase reporter assays were performed in
INS-1 and HK120 cells with the expression vector for miR-34a and either
the HNF4A 39UTR reporter construct 1–249 or the corresponding
construct carrying the A nucleotide variant. 100% refers to the activity
in the presence of an empty expression vector. ** denotes p-values of
,0.01 using an independent-samples t test. Experimental details are as
in Fig. 6.
doi:10.1371/journal.pone.0027438.g008

Figure 9. Regulatory elements identified in the 39UTR of the
HNF4A mRNA. A summary of the various functional elements
identified in our work is illustrated. The SNP rs11574744 located in
the proximal miR-34a site (171 nt) is given. The functional relevance of
the distal miR-34a site (271 nt) has been reported independently [65].
The numbering starts with the first nucleotide of the 39UTR after the
stop codon.
doi:10.1371/journal.pone.0027438.g009
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these two negative elements (Fig. 9). Although the balancer is

flanked by miR-34a binding sites (Fig. 9), it seems unlikely they are

relevant for balancer function, as the balancer activity of the

construct 1–249 (Fig. 4A) is not altered by the presence of the SNP

(data not shown) destroying the miR-34a binding site at 171

(Fig. 8). The balancer acts only in its forward orientation, as

expected for a RNA element (Fig. 4A). The 59 and 39 borders of

the balancer are not very sharp and we define a minimal sequence

of 39 nt as the balancer (Fig. 4A). The conserved blocks CTTT

and CTTG that are essential for balancer function (Fig. 4B) do not

correspond to any known RNA binding site and we found no

obvious secondary structure. None of the 28 SNP of the long

39UTR (1–3180) is located within the balancer (dbSNP build 130).

Importantly, we showed that the balancer is also functional within

the context of the long 39UTR of 3180 nucleotides (Fig. 4C). As

mutation of only four nucleotides within the 3180 nucleotides of

the 39UTR has a significant effect, sequencing of the 39UTR in

diabetes and RCC patients might be most relevant.

We postulate that regulation of HNF4A via its 39UTR could be

modified by an altered interplay of the negative elements A and B

with the balancer depending on the level of transacting proteins

that potentially target these distinct elements. A similar potential

complex regulation mediated by several, distinct functioning

39UTR elements has also been described in IGF-II [60], Cox-2

[53] and CDK5R1 [55] mRNAs. However, in all cases a clear

biological function is elusive and further examples have not been

described up to date.

Since too many potential miRNA targets can be found in the

HNF4A 39UTR, we restricted the analysis to 20 miRNAs

upregulated in RCC (Table S3) predicting 141 potential miRNA

binding sites within the long (1–3180) HNF4A 39UTR. Due to the

high false-positive rate of target prediction [61,62], we performed

functional assays. Using a HEK293 cell line with a conditional

Dicer knock-down [42] we could locate potential miRNA targets

within the 59 449 nt of the HNF4A 39UTR (Fig. 5). In accordance

with findings describing the effects of miRNAs on proteins as quite

modest [63,64], derepression upon Dicer knock-down was

moderate, but significant. In complementary experiments mea-

suring the effect of specific miRNAs we demonstrate the functional

relevance of miR-34a (Fig. 6) and miR-21 (Fig. S2). However, our

data do not prove an effect on the endogenous HNF4A mRNA or

HNF4a protein. An experimental link of miR-34a and endogenous

HNF4A mRNA has been verified recently in HepG2 cells where

overexpression of miR-34a decreased HNF4aprotein [65].

Even though several binding sites without a perfect seed

sequence have been proven to be functional, a perfect seed

sequence is crucial for miRNA function in most cases [63,66].

Furthermore, a high number of predicted binding sites for a given

miRNA is supposed to facilitate the regulation of a target gene

[67]. miR-34a fulfilled both criteria and we were able to validate

the two bindings sites within the 59 449 nt of the HNF4A 39UTR.

Both sites contributed equally to repression, a characteristic of

independent and non-cooperative action termed multiplicative

effect [68]. During preparation of this manuscript miR-34a

regulation of the HNF4A mRNA has been reported independently

in HepG2 cells [65]. Our data extend this report that described

only the distal miR-34a binding site at 261 nt of the 39UTR to be

involved in translational repression of HNF4A. In addition, we also

verified the miR-34a dependent repression of the long 3180 nt

HNF4A 39UTR (Fig. 6C) and by applying our assay in a renal and

pancreatic cell type we established miR-34a function in distinct

cofactor environments. Since the remaining 13 potential miR-34a

binding sites were functioning within construct 631–3180 and

three even in construct 1288–1746 (Fig. 6C), we deduce multiple

control elements in the 39UTR of HNF4A that are targeted by

miR-34a. Furthermore, we establish the significance of a single

nucleotide exchange in the CACUGCC seed sequence of the miR-

34a target site [69], as SNP rs11574744 in the seed sequence of the

proximal miR-34a target site at 171 nt destroys the function

(Fig. 8). This SNP contains an A instead of a T and has an allele

frequency of 0.020–0.025 (http://www.ncbi.nlm.nih.gov/pro-

jects/SNP/), but so far no phenotype has been associated with

this SNP. Since potentially 15 miR-34a sites are present in the

HNF4A 39UTR (Fig. 6C), the destruction of a single site may have

a minimal effect, unless each miR-34a site plays its unique role.

miR-34a has primarily been characterized as a tumor suppres-

sor, as it is inactivated in several tumors and transcriptionally

activated by p53. In addition, ectopic miR-34a expression induces

apoptosis, cell cycle arrest or senescence [69,70]. However, miR-

34a is upregulated in RCC (Table S3), hepatocellular carcinoma

[71], breast cancer [72], squamous cell lung carcinoma [73] and in

chronic lymphocytic leukemia [74]. Thus, it appears that miR-34a

acts as a tumor suppressor or an oncogene, depending on the cell

type specific targets and regulatory mechanisms. This observation

has been established for several other miRNAs [75]. In fact, miR-

34a was clearly increased in stress induced renal carcinogenesis of

the rat and inhibition of miR-34a significantly decreased cell

proliferation in a rat RCC cell line, but also in HeLa and MCF-7

cells [34]. Furthermore, the oncogenic potential of miR-34a was

implied by its upregulation in RCC and the correlated decrease of

the tumor suppressor SFRP1 whose loss has been observed in a

majority of RCC [76].

Our data also imply a regulation of the HNF4A 39UTR by miR-

21 (7), but we were unable to locate a specific target site (Fig. S2).

We assume that the regulation involves the cooperation of several

sites predicted in silico (Table S3). Since miR-21 is overexpressed in

many tumors [77], including RCC (Table S3), we propose that the

cooperation of miR-34a and miR-21 in the reporter assays (Fig. 7)

may also be operating in tumorigenesis. Therefore, we speculate

that the concerted upregulation of miR-34a and miR-21 potentially

causes the downregulation of HNF4A in RCC, resulting in

increased cell proliferation through misregulation of at least 15

HNF4atarget genes involved in proliferation control [5]. As loss of

HNF4A is linked to type II diabetes [7,8] and plays a crucial role in

MODY1 [9,10], it is most relevant to learn whether miR-34a and

miR-21 are dysregulated in pancreatic b-cells of patients.

Interestingly, for miR-34a an increased serum level has been

reported in type 2 diabetes patients [78], but it remains open

whether this reflects a corresponding increase in b-cells.

In conclusion, our experiments show that HNF4A is not only

regulated on the transcriptional level via its P1 [79] and P2 [20]

promoters and the enhancer [79], but also on the posttranscrip-

tional level via several distinct elements in the two 39UTRs (Fig. 9).
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