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Background: Little is known about how the gut microbiota and metabolic profiles are related to cognitive 
outcomes in young children until now. It was hypothesized that the gut microbiota, the plasma and fecal 
metabolites significantly correlated with intelligence quotient (IQ) in school-age children in current study.
Methods: This cross-sectional study enrolled 452 children aged 6–9 years old. IQ was measured using the 
Wechsler Intelligence Scale for Children-Fourth Edition. Fecal microbiota, plasma and fecal metabolites 
were analyzed using 16S rRNA amplicon sequencing and targeted metabolomic technologies, respectively.
Results: Restricted maximum likelihood (REML) analyses showed that microbiota composition and fecal 
metabolites were associated with neither subscale nor full-scale IQ (P: 0.059–0.500). However, plasma 
metabolites were significantly correlated with the processing speed (P=0.008). In multiple regression analysis 
after adjusting for confounders and multiple test correction, benzoic acid, azelaic acid, adipic acid, suberic 
acid and malonic acid selected by the multivariate methods with unbiased variable selection were positively 
associated with processing speed index (PSI) [Pfalse discovery rate (FDR): 0.006–0.024], whereas pyruvic acid was 
negatively associated with the PSI and full-scale IQ (PFDR: 0.014–0.030). 
Conclusions: In normal school-age children, certain plasma metabolites concentrations but not the gut 
microbiota composition nor fecal metabolites are correlated with intelligence.
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Introduction

The number of microbes inhabiting in the human 
gastrointestinal tract has been estimated to exceed 
1014 and the types include bacteria, fungi, viruses, and 
protozoa. These bacterial cells can reach a density of up to  
1012 per mL, which is the highest bacterial density of any 
known microbial ecosystem (1). Observational findings 
from the past two decades have suggested that the intestinal 
microbiota may play a vital role in regulating human 
health (2). A growing body of evidence has suggested a 
role for the microbiota in the etiology of mental disorders. 
The microbiota-gut-brain axis has been shown to be a 
bidirectional communication system that is connected via 
neural, immune, endocrine, and metabolic pathways (3).

Intellectual development in children plays a significant 
role in shaping later life and is inversely associated with 
several somatic health outcomes in middle and later life  
(4-6). Animal studies have revealed that the gut microbiota 
influences brain development and cognitive function (7,8). 
Moreover, human studies have linked altered microbiome 
composition to changes in cognitive function. Several factors 
that influence the development and composition of the 
intestinal microbiota and brain development and function 
have been identified, including gestational age at birth and 
feeding method (breast milk or formula) (9). Cohort studies 
have reported that the infant microbiome is correlated 
with cognitive function and brain volume at 2–3 years of 
age (10-12), at which most bacterial groups have reached 
a stable population size. However, some microbial groups 
can take a longer period to reach such a steady state (13).  
Despite these findings, few studies have assessed the 

relationship between the microbiota and cognitive function 
in young children, whose cognitive outcomes are more 
advanced and easier to evaluate than those of infants and 
whose gut microbiota is more stable. The role of blood 
metabolomics, which can be used to characterize many 
small molecules in the context of physiological stimuli 
or in disease states (14,15), in brain function has been 
previously established in the context of Alzheimer’s disease, 
mild cognitive impairment, and cognitive decline (16-18). 
Meanwhile, gut bacterial metabolite groups are suggested 
to have potential protective or aggravating effect on brain 
function (19). However, little is currently known about 
the association of specific blood or fecal metabolites with 
childhood intelligence.

This current study explored the association of the gut 
microbiota, plasma and fecal metabolites with intelligence 
assessed by the Wechsler Intelligence Scale for Children-
Fourth Edition (WISC-IV) in Chinese children aged 
6–9 years. We present this article in accordance with 
the STROBE reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-22-610/rc).

Methods

Participant selection

This cross-sectional study enrolled healthy, typically 
developing children aged 6–9 years in urban Guangzhou, 
China from 2015 to 2017, as reported previously (20). 
Five hundred and twenty-one children who met the 
inclusion criteria were recruited through invitation letters, 
advertisements, and referrals. The exclusion criteria were: 
(I) twin and preterm births, (II) history of serious disease 
or mental or physical disability, (III) receiving any dietary 
intervention or medical treatment, and (IV) history of 
receiving antibiotic, probiotic, or prebiotic treatment or 
any other medical treatment within the 3 months prior to 
the study. Children lacking intelligence test data and gut 
microbiota or plasma/fecal metabolite measurements data 
were not included. A total of 452 children were included 
after applying the exclusion criteria. Furthermore, 410, 446 
and 401 participants were included in the final analyses of 
microbial and plasma/fecal metabolic profiles, respectively 
(Figure S1). This study was conducted in accordance to 
the Declaration of Helsinki (as revised in 2013) and was 
approved by the ethics committee of the School of Public 
Health at Sun Yat-sen University (No. 201549). Written 
informed consent was obtained from parents or legal 
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guardians of the participants.

Data collection

Plasma and fecal sample collection
Stool specimens from 90% of the participants were 
collected during the assessment of intelligence. The samples 
were stored at −80 ℃ within 10 min of collection until 
DNA extraction as described previously (21). Stool samples 
from the remaining 10% of the participants were collected 
at home with the assistance of the guardians and delivered 
to research facility in coolers with ice packs within 12 hours.

Fasting blood samples were collected by registered nurses 
into a tube with anticoagulant and delivered to laboratories 
on ice within 2 hours of collection. Plasma samples were 
collected after centrifugation and frozen at −80 ℃ until used 
for testing.

Measurement of gut microbiota
Gut microbial data were obtained from fecal samples using 
previously described DNA extraction and high-throughput 
sequencing methods (20). First, DNA was extracted from 
250-mg stool samples using a QIAamp Fast DNA Stool 
Mini kit (Qiagen, Hilden, Germany). Next, the DNA was 
amplified by a two-step polymerase chain reaction (PCR) 
using the 16S rRNA gene primers 341F (5'-CCT AYG 
GGR BGC ASC AG-3') and 806R (5'-GGA CTA CNN 
GGG TAT CTA AT-3'), targeting the bacterial V3-V4 
region. Thermal cycling conditions: 1 min at 98 ℃; 30 cycles 
of 10 s at 98 ℃, 30 s at 50 ℃, and 60 s at 72 ℃; and 5 min at 
7 ℃. Each sample was randomly fragmented and libraries 
were constructed using the TruSeq DNA PCR-Free Sample 
Preparation Kit with dual indexing and sequenced on the 
HiSeq 2500 platform (Illumina, USA) to produce 250-bp  
paired-end reads. After filtering with FLASH (v1.2.7, 
http://ccb.jhu.edu/software/FLASH/), paired-end reads 
were assigned to each sample using their unique barcodes. 
Chimeric sequences were detected and putative sequences 
were removed. Operational taxonomic unit (OTU) 
grouping was performed using the UPARSE package 
(v7.0.1001, http://drive5.com/uparse/) with a standard 
similarity threshold of 97%. OTUs were taxonomically 
assigned by the Mothur classifier at a confidence threshold 
of 80%, based on the Ribosomal Database Project  
database (22). Taxonomic information was annotated for 
each representative sequence against the SILVA database 
(version 128, https://www.arb-silva.de). Alpha-diversity 
measures were calculated based on the rarefied OTU 

counts. The indicators of alpha-diversity included the 
abundance-based coverage estimator (ACE), Chao1 index, 
Simpson and Shannon index. All samples were sequenced 
together and at the same laboratory. Bioinformatics analysis 
was performed by Novogene Bioinformatics Technology 
Co., Ltd. (Tianjin, China).

Measurement of plasma and fecal metabolomic
Targeted metabolomic analysis was conducted using 
the Q300 Metabolite Assay Kit (Human Metabolomics 
Institute, Inc., Shenzhen, China) in accordance with the 
published method (23), with minor modifications. Details 
for chemicals, reagents and steps of targeted metabolomics 
analysis were described in Appendix 1. In brief, 25 μL 
plasma or fecal extract was added to a 96-well plate and 
transferred to the Biomek 4000 workstation (Beckman 
Coulter, Inc., Brea, CA, USA) for partial internal standards 
adding and vortex. Derivatization was carried out (60 min,  
30 ℃) for supernatant obtained after centrifuging (Allegra 
X-15R, Beckman Coulter, Inc., Indianapolis, IN, USA). 
Then, internal standards for each well were added after 
diluting by methanol solution. Serial dilutions of the 
derivatized stock standards were added to the remaining 
wells. Finally, plasma and fecal metabolites were measured 
using ultra-performance liquid chromatography coupled 
with tandem mass spectrometry (UPLC-MS/MS; 
ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, 
MA, USA). MassLynx 4.1 software was used to controlled 
the entire LC-MS system. All chromatographic separations 
were performed with an ACQUITY BEH C18 column 
(1.7 μm, 100 mm × 2.1 mm internal dimensions) (Waters 
Corp.). TMBQ (v1.0, Human Metabolomics Institute, Inc.) 
was used to process the raw data files generated by UPLC-
MS/MS and perform peak integration, calibration, and 
quantification for each metabolite.

Assessment of intelligence in children
The Chinese version of the WISC-IV was used to assess 
cognitive development outcomes in children. The WISC-
IV has 15 subtests, 10 of which are core subtests used in 
this study. Raw scores were converted into scaled scores 
based on an age group-specific metric with a mean of 10 
and standard deviation of 3, as described in the WISC-IV 
manual (24). The scaled scores were then used to derive 
four composite scores: Verbal Comprehension Index (VCI), 
Perceptual Reasoning Index (PRI), Working Memory Index 
(WMI), and Processing Speed Index (PSI). These four 
indexes were summed to calculate the composite Full-Scale 
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Intelligence Quotient (FSIQ).

Covariates
Participant characteristics, such as household income, 
parental education level, use of calcium and multivitamin 
supplements, and method of delivery were collected through 
face-to-face interviews conducted by trained interviewers. A 
quantitative food frequency questionnaire (FFQ), in which 
79 food items were classified into 20 food groups, was used 
to assess the diets of the children over the year preceding 
the study, as described previously (20). The China Food 
Composition Table [2009] (25) was used to calculate dietary 
energy and fiber intake. Physical activity level was assessed 
using a 3-day physical activity questionnaire and calculated 
by combining the metabolic equivalent scores (MET;  
Kcal/kg/h) for each type of physical activity after multiplying 
each by its duration per day (h/d).

Statistical analysis

Basic descriptive characteristics were presented as the 
median and interquartile range for continuous variables 
and count and percentage for categorical variables. Analysis 
of variance (ANOVA) was used for continuous data. 
Categorical data was analyzed by Pearson’s Chi-square 
test and Fisher’s exact test. For the microbial sequencing 
data, low-abundance microbiota compositions (<0.01%) 
were filtered out, leaving genera and species in >10% of 
the samples. Restricted maximum likelihood (REML) 
models implemented in the software package omics-
data-based complex trait analysis (OSCA v.0.45, https://
yanglab.westlake.edu.cn/software/osca) were used to assess 
the association of the overall microbial and metabolic 
profiles with the cognitive measures (26). REML evaluates 
whether the microbial or metabolic profile is related to 
the test variables in terms of the proportion of explained 
variance. Covariates that were potential confounders for 
these analyses were assessed using a separate REML model 
for each potential confounding variable: age and sex of the 
child, type of birth (vaginal delivery vs. caesarean section), 
calcium supplement use, multivitamin use, maternal and 
paternal education level, household income, physical 
activity level, and energy and fiber intake. Participants with 
incomplete data mentioned above were not included in the 
REML model. Next, the cognition REML models were 
rerun to account for the identified confounding variables.

The multivariate methods with unbiased variable 
selection in R (MUVR) algorithm was used to identify 

key gut microbiota genera and species, plasma and fecal 
metabolites for significant relationships (27). Read counts 
of microbiota data were normalized using the variance 
stabilizing transformation in the DESeq2 R package. 
For the metabolomic data, plasma and fecal metabolite 
concentrations were log10-transformed using MetaboAnalyst 
5.0 (https://www.metaboanalyst.ca) (28). When running 
the MUVR models, partial least squares (PLS) regression 
was used with nRep=100, nOuter=8, and varRatio =0.8 for the 
repeated double cross-validation procedure. For each of 
the inner training models, variables were ranked by de 
facto standard techniques such as variable importance of 
projection for PLS analysis. Then, the top 10 variables 
associated with intelligence were identified and spearman 
correlation analysis was conducted. Subsequently, multiple 
linear analyses were carried out after adjusting for age, sex, 
covariates identified using REML models (P<0.05) and 
controlling for the false discovery rate (FDR) using the 
Benjamini-Hochberg method (29).

All statistical analyses were carried out using R software 
(v4.0.4) and IBM SPSS Statistics software (v26, SPSS Inc., 
Chicago, IL, USA). All P values were calculated using two-
sided tests and P values <0.05 were considered statistically 
significant.

Results

Participant characteristics

A total of 452 participants (410 for microbiota composition 
analysis, 446 and 401 for plasma and fecal metabolites 
analyses) were included in this study. Demographic 
characteristics are summarized in Table 1. The median 
[interquartile range] age at WISC-IV assessment was 8.1 
[1.5] years. Energy intake and physical activity level were 
higher for males than for females (P<0.001). Females 
scored higher in PSI than males (P=0.002). No significant 
differences were observed in age, fiber intake, delivery 
mode, household income, parental education level, use of 
calcium and multivitamin supplements, or other intelligence 
test scores (P: 0.088–0.984).

Correlation between microbiota composition and 
intelligence scores

After quality and content filtering, 114 genera and  
97 species were retained for downstream analyses. After 
adding covariates significant associated with microbiota 
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Table 1 Characteristics of the participants in the cross-sectional study

Characteristics Total (n=452) Males (n=257) Females (n=195) P†

Age (years) 8.1 [1.5] 8.0 [1.5] 8.2 [1.4] 0.428

Energy intake (Kcal/day)‡ 1,363 [556] 1,436 [563] 1,268 [552] <0.001*

MET (Kcal/day/kg)‡ 39.1 [4.9] 40.0 [5.4] 38.2 [4.6] <0.001*

Fiber intake (g)‡ 6.9 [4.0] 7.0 [3.9] 6.6 [4.1] 0.777

Delivery mode 

Vaginal 229 (50.7) 121 (47.1) 108 (55.4) 0.088

Cesarean 223 (49.3) 136 (52.9) 87 (44.6)

Household income

<8,000 Yuan/month 77 (17.0) 44 (17.1) 33 (16.9) 0.984

8,000–15,000 Yuan/month 141 (31.2) 82 (31.9) 59 (30.3)

>15,000 Yuan/month 154 (34.1) 86 (33.5) 68 (34.9)

No response 80 (17.7) 45 (17.5) 35 (17.9)

Maternal education level

Secondary or less 173 (38.3) 97 (37.7) 76 (39.0) 0.126

University 238 (52.7) 130 (50.6) 108 (55.4)

Postgraduate or above 39 (8.6) 28 (10.9) 11 (5.6)

No response 2 (0.4) 2 (0.8) 0 (0.0)

Paternal education level

Secondary or less 180 (39.8) 101 (39.3) 79 (40.5) 0.703

University 209 (46.2) 116 (45.1) 93 (47.7)

Postgraduate or above 59 (13.1) 37 (14.4) 22 (11.3)

No response 4 (0.9) 3 (1.2) 1 (0.5)

Use of calcium supplement

Yes 183 (40.5) 111 (43.2) 72 (36.9) 0.209

No 269 (59.5) 146 (56.8) 123 (63.1)

Use of multivitamin supplement

Yes 78 (17.3) 45 (17.5) 33 (16.9) 0.901

No 374 (82.7) 212 (82.5) 162 (83.1)

VCI 108 [22] 108 [20] 108 [20] 0.471

PRI 106 [16] 108 [15] 106 [16] 0.648

WMI 100 [16] 100 [18] 100 [15] 0.967

PSI 102 [15] 102 [15] 104 [15] 0.002*

FSIQ 106 [15] 106 [15] 106 [16] 0.737

Data are given as median [interquartile range] or number (percentage). Physical activity level is represented by MET. *, P<0.05. †, 
comparison between males and females. ‡, n=451 (nmissing=1). MET, metabolic equivalent; VCI, Verbal Comprehension Index; PRI, 
Perceptual Reasoning Index; WMI, Working Memory Index; PSI, Processing Speed Index; FSIQ, Full-Scale Intelligence Quotient. 
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composition (Table S1), cognition REML models showed 
that the overall microbiota composition was not associated 
with either subscale or total cognitive function [V(O)/Vp: 
0–4.86%, P: 0.059–0.500, Table 2] at genus and species 
level. Among the 28 genera and 18 species identified using 
MUVR, spearman correlation and multiple linear analysis 
were carried out (Figures S2,S3). No significant correlation 
was found between intelligence scores with selected 
microbiota counts at genus and species level after adjusting 
for age, covariates identified in REML models and FDR 
correction (β =−0.14 to 0.16, PFDR=0.058–0.993). As shown 
in Figure S4, no significant correlations were identified 
between the Shannon, Simpson, ACE, and Chao1 indexes 
and intelligence test scores (β =−0.09 to 0.02, PFDR=0.720–
0.898) after adjusting for confounders.

Correlation of plasma metabolites with intelligence scores

A total of 200 plasma metabolites were identified. Of the 
assessed covariates, age, sex, energy intake, parental education 
level and household income showed a significant association 
with the plasma metabolite in REML models (Table S1) 
and were added in further analysis as covariates. Only one 
subscale of intelligence test, PSI was found to be associated 
with overall plasma metabolite concentrations [V(O)/
Vp: 8.64%, P=0.008, Table 2]. Among the 34 metabolites 
identified using MUVR (Figure 1), 24 metabolites, including 
three kinds of carnitines, four amino acids, one benzenoid, 
one carbohydrate, seven fatty acids (FAs), and eight organic 
acids were significantly correlated with intelligence scores 
(r=−0.17 to 0.15, P: <0.001–0.042, Figure 2A). After adjusting 
for covariates selected in REML models and correcting for 
FDR, the plasma concentrations of benzoic acid, azelaic 
acid, adipic acid, suberic acid, and malonic acid were 
found to be positively associated with PSI (β =0.16–0.19, 
PFDR=0.006–0.024, Figure 2B), whereas pyruvic acid was 
negatively associated with both PSI and FSIQ (β =−0.17 to 
−0.14, PFDR=0.014–0.030). The co-occurrence network of 
metabolites demonstrated that malonic acid, linoleic acid, 
azelaic acid and adipic acid were the core nodes in key plasma 
metabolites (Figure 3).

Correlation of fecal metabolites with intelligence scores

We identified a total of 212 fecal metabolites. None of 
the covariates assessed in REML models were found 
to be significantly associated with the fecal metabolites 
and included in cognition REML model (Table S1). No 

Table 2 Explained variance of cognition phenotypes by variation in 
the microbiota and metabolite

Phenotype V(O)/Vp (% ) SE (%) P

Microbiota at genus level

VCI 2.85 3.64 0.188

PRI 0.18 1.40 0.438

WMI 0.00 1.40 0.500

PSI 0.00 1.89 0.500

FSIQ 1.20 2.13 0.207

Microbiota at species level

VCI 1.16 3.10 0.339

PRI 4.64 3.88 0.087

WMI 0.00 3.42 0.500

PSI 4.86 3.78 0.059

FSIQ 1.67 3.47 0.310

Alpha-diversity

VCI 0.06 0.66 0.475

PRI 0.00 0.45 0.500

WMI 0.00 0.53 0.500

PSI 0.00 0.76 0.500

FSIQ 0.18 0.74 0.396

Plasma metabolite†

VCI 0.00 2.09 0.500

PRI 8.09 5.29 0.060

WMI 0.00 2.09 0.500

PSI 8.64 5.07 0.008*

FSIQ 0.00 1.94 0.500

Fecal metabolite

VCI 2.12 2.90 0.121

PRI 2.04 3.64 0.290

WMI 0.00 2.27 0.500

PSI 1.12 1.92 0.177

FSIQ 0.00 1.56 0.500

Model of microbiota at genus level composition adjusted for 
sex, maternal education level, physical activity level. Model 
of microbiota at species level composition adjusted for sex, 
fiber intake. Model of alpha-diversity adjusted for fiber intake. 
Model of plasma metabolite adjusted for age, sex, maternal 
and paternal education level, household income, energy intake. 
Explained variance estimated using REML models. *, P<0.05. 
†, N=444 in model of plasma metabolite. V(O)/Vp, explained 
variance; SE, standard error; VCI, Verbal Comprehension Index; 
PRI, Perceptual Reasoning Index; WMI, Working Memory Index; 
PSI, Processing Speed Index; FSIQ, Full-Scale Intelligence 
Quotient; REML, restricted maximum likelihood. 

https://cdn.amegroups.cn/static/public/TP-22-610-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-22-610-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-22-610-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-22-610-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-22-610-Supplementary.pdf


Zhou et al. Microbiota, metabolites and child intelligence1298

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(7):1292-1304 | https://dx.doi.org/10.21037/tp-22-610

Figure 1 MUVR validation plots for identification of the minimal-optimal variables in plasma metabolites. The boxplot shows that plasma 
metabolites are reproducibly selected with low rank (lower is better) in PLS models, which may be the strongest predictors of intelligence 
scores. (A) VCI. (B) PRI. (C) WMI. (D) PSI. (E) FSIQ. MUVR, multivariate methods with unbiased variable selection in R; PLS, 
multivariate partial least squares; VCI, Verbal Comprehension Index; PRI, Perceptual Reasoning Index; WMI, Working Memory Index; 
PSI, Processing Speed Index; FSIQ, Full-Scale Intelligence Quotient. 
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Figure 2 Spearman correlation and multiple linear regression analysis of the association of plasma metabolite concentrations with 
intelligence scores. (A) Spearman correlation analysis of the association of plasma metabolite concentrations with intelligence scores. 
(B) Multiple linear regression analysis of the associations of plasma metabolite concentrations with intelligence scores after adjusting for 
age, sex, maternal and paternal education level, energy intake and household income and correction for multiple testing. The Spearman’s 
rank correlation coefficient and β coefficient are indicated by the color of the cells. Positive or negative correlations and β coefficient are 
represented by shades of yellow or blue respectively. *, P<0.05; **, P<0.01; ***, P<0.001. VCI, Verbal Comprehension Index; PRI, Perceptual 
Reasoning Index; WMI, Working Memory Index; PSI, Processing Speed Index; FSIQ, Full-Scale Intelligence Quotient. 

subscale and total scores of intelligence test were found to 
be associated with overall fecal metabolite concentrations 
[V(O)/Vp: 0–2.12%, P: 0.121–0.500, Table 2] in cognition 
REML model. Among the 35 metabolites identified using 
MUVR, 23 metabolites, including four kinds of amino 
acids, one benzenoids, four bile acids, one carbohydrate, 
one carnitine, eight FAs, one imidazole, and three organic 
acids were significantly correlated with intelligence scores 
(r=−0.13 to 0.16, P: <0.001–0.039, Figure S5A). No 
significant correlation remained after adjusting for age, sex 

and correcting for FDR as shown in Figure S5B (β =−0.14 
to 0.16, PFDR=0.096–0.996).

Discussion

The current study suggests that the concentrations of 
several metabolites in blood (e.g., adipic acid and suberic 
acid), but not the overall microbiota composition and fecal 
metabolites, are associated with intellectual development in 
children aged 6–9 years.
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Association of gut microbiota composition with intelligence 
in children

Numerous animal model studies have identified significant 
interactions between an altered gut microbiota and changes 
in cognitive behavior (8). Germ-free rodents have displayed 
impaired short-term recognition and working memory 
and altered social behavior (30). Despite an increasing 
interest in the influence of gut microbiota on human 
brain development, most previous studies have focused 
on adults, infants, and young children. A correlational 
study of 20 obese and 19 non-obese adults showed 
significant correlations between the Shannon index and 
brain microstructure, as shown by magnetic resonance 
imaging (31). In a cohort study by Carlson et al. that 
included 89 typically developing children, higher alpha-
diversity, as assessed by the Chao1 index, the total number 
of observed species, and Faith’s phylogenetic diversity of 
gut microbiota at 1 year of age were associated with lower 
overall composite, visual reception, and expressive language 
scores at 2 years of age (12). Streit et al. similarly reported 
significantly negative correlations between alpha-diversity 
metrics (e.g., Shannon index and Faith’s phylogenetic 
diversity index) and cognition as assessed by the Wechsler 
Preschool and Primary Scale of Intelligence in 308 children 

aged 45 months (11). However, a study conducted by 
Sordillo et al. did not observe any statistically significant 
associations between the Ages & Stages Questionnaire 
(ASQ-3) score and gut microbial diversity in 3-year-old 
children (32). Similarly, no associations were observed 
between cognitive performance and gut microbiota diversity 
in this current study.

In terms of microbial abundance, a greater relative 
abundance of specific microbes such as Actinobacteria, 
Prevotella, Verrucomicrobia, and Lentisphaerae have been 
reported to be associated with enhanced cognitive flexibility 
and executive function in adults (33). Interventional 
studies to improve cognition or brain function in adults 
have generally resulted in improved visuospatial memory, 
verbal learning, memory, and attentional vigilance (33). 
A cross-sectional study of 89 1-year-old infants reported 
that infants with a greater relative abundance of Bacteroides 
demonstrated improved subsequent neurodevelopmental 
performance in early learning and cognition (12). Similarly, 
a cohort study of 309 children showed that a decreased 
abundance of Bacteroides at 3–6 months of age was 
associated with reduced communication, personal, and 
social scores as assessed by the ASQ-3 at 3 years of age (32). 
Additionally, taxa within the order Clostridiales were found 

Figure 3 The co-occurrence network of key plasma metabolites. Only significant connections with r>0.4 and P<0.05 were presented. 
The blue and red edges stand for the negative and positive correlations, respectively. The size of the circle is proportional to the relative 
abundance.
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to have lower abundance in normally developing children. 
A recent study of 308 children aged 45 months identified 
a strong negative association between cognitive function 
and the relative abundance of an unidentified genus of the 
family Enterobacteriaceae (11). Several observational and 
clinical studies in elderly individuals have also reported 
a significant relationship between altered proportions of 
certain bacteria (e.g., Firmicutes and Proteobacteria) and mild 
cognitive impairment (34,35). However, this study did not 
identify any significant correlations between intelligence 
scores and specific gut microbes on genus and species level. 
Differences in the participants’ age and ethnicity, method 
of brain function evaluation, type of gene sequencing used 
for microbiota composition assessment, study design, and 
the covariates applied for adjustment may collectively 
contribute to the heterogeneity of these studies.

Association of circulating metabolites with  
intelligence in children

This study identified specific circulating metabolites that 
are significantly correlated with PSI in children. Processing 
speed is defined as the speed at which an individual perceives 
and reacts to stimuli with reasonable accuracy. Faster 
processing speed is thought to improve cognitive and 
academic progression by allowing for greater allocation of 
attention to higher-level tasks in the context of early skill 
and knowledge acquisition (36). Most of the metabolites 
identified are medium-chain FAs, which can permeate the 
blood-brain barrier and be oxidized within the brain (37). 
Higher plasma concentrations of adipic acid have been 
shown to be significantly associated with better PSI. Adipic 
acid is a dicarboxylic acid and has been shown to inhibit the 
activity of the enzyme gamma-amino butyric acid (GABA) 
transaminase in mouse brains, resulting in an increase in 
cerebral GABA concentrations in in vitro systems (38). 
GABA is the principal inhibitory neurotransmitter in the 
human nervous system and plays a fundamental functional 
role in the central nervous system (39). Previous studies 
have noted the importance of GABA as a modulator of 
memory encoding, suggesting that greater frontal GABA 
concentrations may be associated with superior cognitive 
performance in elderly population (40). However, no 
correlations were identified between GABA concentrations 
and intelligence scores in the present study while plasma 
levels of GABA may reflect GABA activity in brain. Another 
dicarboxylic acid, suberic acid, was found to be positively 
correlated with PSI in this study; the concentration 

of suberic acid has previously been reported as a good 
discriminator between children with autism spectrum 
disorder and neurotypical children (41). Organic acids are 
important metabolites and play a role in the major metabolic 
pathways of FAs, proteins, and neurotransmitters and in 
several pathways involved in energy production, oxidative 
damage, and intestinal dysbiosis (42). Organic acid metabolic 
disorders can lead to the accumulation of toxic metabolites, 
energy synthesis disorders, mitochondrial dysfunction, and 
neuronal cell apoptosis, resulting in structural damage to 
the brain and nerves and ganglioside and synaptic plasticity 
abnormalities. This can lead to decreased learning and 
memory abilities and even intellectual disabilities (43). 
An in vitro study showed that malonic acid exerts anti-
inflammatory effects and may protect against inflammatory 
reactions caused by the activation of microglia, which 
can lead to neurodegeneration and cause diseases such 
as Alzheimer’s and Parkinson’s disease (44). A positive 
correlation between malonic acid concentrations and PSI 
was also identified, suggesting that malonic acid may benefit 
cognitive development. Further studies are required to 
validate the role and mechanism of these metabolites in 
shaping neurobiological function.

Association of fecal metabolites with intelligence in children

Metabolites transformed by gut microbiota such as short-
chain FAs can act on the blood-brain barrier, directly on 
brain neurons. These microbial-derived metabolites with 
signaling functions are essential to brain function (45). 
Changes in fecal levels of short-chain FAs, amino acids, 
polyphenolic and other metabolites were reported in 
patients with neurodevelopmental and neurodegenerative 
disorders such as autism spectrum disorder, Alzheimer’s 
and Parkinson’s disease (19). For cognitive development, 
no significant correlations between specific gut microbes 
and intelligence scores were identified in this study. And no 
evidence has been found to indicate the fecal metabolites, 
which largely reflects gut microbial composition and 
its function (46), are related to children’s intelligence 
performance. Based on the theory of microbiota-gut-
brain axis, further research should investigate whether 
fecal metabolome is associated with brain function and 
intellectual development.

Strengths and limitations

In contrast to previous studies on the relationship between 
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the intestinal microbiota and cognitive development of 
1–3-year-old infants, this current study focused on children 
aged 6–9 years. Older children were chosen for the study as 
their microbiota composition is thought to be more stable 
and their cognitive outcomes are more advanced and easier 
to evaluate. However, there are several limitations in this 
study. First, the assessment of the infant gut microbiota at 
a single time-point in this study does not fully capture the 
early-life evolution of the dynamic microbiota, which could 
be an important factor that affects neurocognitive outcomes. 
Second, multimodal approaches using imaging and other 
tools might be better suited to exploring the relationship 
between gut microbes and intelligence than the single 
intelligence test used in this study (10). Third, although 
multiple confounders were adjusted, other factors that were 
not taken into account in the current study, such as allergic 
status, may also be associated with the gut microbiota 
composition or intelligence development (47). As such, 
certain confounding biases may have been overlooked. 
Fourth, our analyses only included children aged 6–9 years  
living in urban Guangzhou, China. Relatively high level 
of subjects’ homogeneity such as region and parental 
education level in the current study might play a role in 
the lack of associations. Therefore, the results of this study 
should be interpreted with caution when being considered 
for different populations. Increasing the diversity of the 
subjects in future research will be needed, including family 
education background and regions with different dietary 
habits, to enhance the extrapolation of the results in 
this study. Lastly, around 10% of fecal samples were not 
collected on site. However, sensitivity analysis excluding 
these samples revealed similar association (data not shown), 
which suggests that different methods of feces collection 
have no impact on our findings.

Conclusions

In conclusion, this study has demonstrated an association 
between specific plasma metabolites and IQ in children 
aged 6–9 years.
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