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Abstract

Background: Previous results showed that over-expression of the WTH3 gene in MDR cells
reduced MDRI gene expression and converted their resistance to sensitivity to various anticancer
drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and
primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted
and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the
apoptotic phenotype in various host cells.

Methods: To further confirm WTH3's drug resistant related characteristics, we recently employed
the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition,
since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by
methylation, we were interested in testing the possible effect this epigenetic modification had on
the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method
was utilized to examine the p53 transgene's influence on either the methylated or non-methylated
WTH3 promoter.

Results: The results generated from the gene knockdown strategy showed that reduction of
WTH3 expression increased MDRI| expression and elevated resistance to Doxorubicin as
compared to the original control cells. Data produced from the methylation studies demonstrated
that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity.

Conclusion: Taken together, our studies provided further evidence that WTH3 played an
important role in MDR development and revealed one of its transcription regulatory mechanisms,
DNA methylation, which antagonized p53's positive impact on WTH3 expression.

Background MDR development, we employed the Methylation Sensi-
Multidrug resistance (MDR) is a fatal event encountered  tive-Representational Difference Analysis (MS-RDA) tech-
during cancer chemotherapy [1-7]. To better understand  nique [8-10] to study DNA hypermethylation events in a

Page 1 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18992151
http://www.biomedcentral.com/1471-2407/8/327
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Cancer 2008, 8:327

human MDR breast cancer cell line, MCF7/AdrR, and its
parental line, MCF7/WT. As a result, the WTH3 gene was
discovered. WTH3 gene's product is homologous to the
Rab6 and Rab6e genes that encode small G proteins and
belong to the ras super family [9-14]. Similar to the Rab6s,
WTH3 is a house-keeping gene and its product is capable
of binding to GTP molecules [15]. However, unlike the
Rab6s that reside in the Golgi network, most of WTH3 is
located in the cytoplasm and to a lesser degree in the
nuclei. This disparity could be due to WTH3's lack of a
cysteine at its C-terminus for geranyl-geranylation, a nec-
essary post-translational modification for membrane
attachment [16]. Previous studies found that the WTH3
gene was down regulated in MDR cell lines, and by intro-
ducing it back into those lines caused down regulation of
MDR1 gene expression that reversed their MDR pheno-
types to various anti-cancer drugs [9,15]. Our research
revealed that hypermethylation (an epigenetic modifica-
tion event in mammals, which represses gene expression)
[17-22] of the WTH3 promoter and transcription factor
modulation were involved in its differential expression in
MCF7/Ad1R versus MCF7/WT cells [15]. Furthermore, the
hypermethylation event was also observed in primary
drug resistant breast cancer cells [23].

Recently, we identified a p53-binding motif (p53M) in
the WTH3 gene promoter, which was located in a CpG
island that was targeted by DNA methylation [15,23,24].
The p53 gene product is a transcription factor that func-
tions as a tumor suppressor and plays a pivotal role in
apoptosis and cell cycle arrest [25-27]. In addition, vari-
ous mutations of p53 were found to be associated with
human cancers and the onset of MDR in a broad field of
solid and hematological malignancies [28-34]. By per-
forming the electrophoretic mobility shift assay (EMSA)
and chromatin immunoprecipitation (ChIP) assays, we
demonstrated that the WTH3 gene was a direct target of
the p53 protein [24]. This relationship led us to evaluate
the possible participation of WTH3 in promoting apopto-
sis via different approaches. Our findings suggested that
over expression of WTH3 stimulated cell death [24]. As a
result, we believed that this gene played an important role
in MDR development.

To further understand WTH3's involvement in MDR, we
carried out shRNA knockdown experiments to see if
reduced WTH3 expression would increase tolerance of
host cells to the anti-cancer drug, Doxorubicin (Dox). In
addition, considering the physical interaction of p53 and
the sequences subjected to DNA methylation, and a cur-
rent observation that treating MCF7/AdrR cells with 5-
aza-2'-deoxycytidine (5-aza), a DNA methylation inhibi-
tor, further elevated p53 transgene activity, which in turn
increased endogenous WTH3 expression in host cells, we
explored the possible interplay between epigenetic modi-
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fication and the p53 transcription factor regarding their
influence on WTH3 gene expression.

Methods

Cell Lines and Treatment

MCF7/AdrR and MCF7/WT were grown at 37°C with 5%
CO, in DMEM medium with 10% FCS, 100 pg/ml strep-
tomycin and 100 U/ml penicillin. HEK293 (human pri-
mary embryonic kidney cells, ATCC.) and Hela cells were
grown at 37°C with 5% CO, in RPMI 1640 culture
medium with 10% FCS, 100 pg/ml streptomycin and 100
U/ml penicillin. To determine the influence of DNA
methylation on p53 activity as it pertains to endogenous
WTH3 gene expression, MCF7/AdrR cells were treated
with 5-aza at 50 uM (this high concentration used was due
to that the MCF7/Adr cell line was extremely drug resist-
ant, whose IC50 was 975 nM, while MCF7/WT's IC50 was
1.25 nM[10]) for 24 and 72 hours, while Hela cells were
treated with 5-aza at 5 uM for 24 hours.

Construction of Recombinant DNA

Detailed information about generating the full length
WTH3 promoter in pGL3 to obtain the pGL/WTH3P con-
struct and its deletion mutant with activity in pGL3 to
generate the pGL/WTH3d3 construct were previously
described [9,15]. Wild type p53 in pcDNA/P53 and the
mutated p53 gene in pcDNA/P53R249S, which did not
contain trans-element-activity, were gifts from Dr. Moll
M. Ute.

shRNA Knockdown
The WTH3 shRNA oligos, GATCCGTCAGGCAATAATTGG
CATTGATTCAAGAGATCAATGCCAATTATTGCCTGACTT

[TTTACGCGTG (sense) and
AATTCACGCGTAAAAAAGTCAGGCAATAATTGGCATT-
GATCTCTTGAATCAATGCCA

ATTATTGCCTGACG (anti-sense) ending with BamH I and
EcoR 1 restriction enzyme ends, were cloned into the
pPSIEN-RetroQ vector to obtain pSIEN-RetroQWTH3
according to the Clontech Knockout RNAi User Manual
(PT3739-1). The infection procedure was performed
based on the Clontech Retroviral Gene Transfer and
Expression User Manual (PT3132-1). Briefly, pSIEN-
RetroQWTH3 or pSIEN-RetroQ (negative control) along
with the envelope vector, pAmpho were co-transfected
into the GP2-293 packaging cell line via the phosphate
calcium method. Viral supernatant was collected and cen-
trifuged at 500 x g for 10 min to remove the cellular
debris. The supernatant was then used to infect HEK293
cells. The cells with integrated WTH3 shRNA sequences
were selected by adding 0.5 pg/ml puromycin into the
medium for 2 weeks. The limiting dilution procedure was
performed as previously described [9] to obtain individ-
ual HEK293 clones that were either integrated with
PSIEN-RetroQWTH3 or pSIEN-RetroQ.
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SQRT-PCR

Total RNAs were isolated from cell lines treated with 5-
aza, transfectants and the corresponding negative controls
by the High Pure RNA Isolation Kit (Roche). SQRT-PCR
was performed using the Titan One Tube RT-PCR system
based on the manufacturer's protocol (Roche). The sense
and anti-sense primers for WTH3, MDR1 and GAPDH
were previously described [9]. The sense and anti-sense
primers for WTH3 were 5'-GATGGAACAATCGGGCT-
TCG-3' and 5'-GCTGCTACACGTCGAAAGAGC-3'. The
sense and anti-sense primers for MDR1 were 5'-CCTAT-
CATTGCAATAGCAGG-3' and 5'-GTTCAAACITCTGCTC-
CTGA-3'. The length of the WTH3 and MDRI1 PCR
product was 341 and 167 bps, respectively. The SQRT-
PCR assay for each gene of interest was performed more
than three times. The PCR and quantification of PCR
products were performed as noted [9,10,15,23].

MTT Assay

MTT assays were carried out as described [9,10]. Briefly, 2
x 103 cells/well were seeded in a 96-well plate and grown
overnight. The cells were treated with serial concentra-
tions of Dox (0 to 1 pg). In 6 days, the cells were then
stained with 3- [4,5-dimethylthiazol-2-yl]-2,5-diphe-
nyltetrazolium bromide (MTT). IC50 (IC50 values repre-
sent Dox concentrations that cause 50% cell death) was
quantitatively measured at 595 nm by the program soft-
ware, EZ-ED50 Version 1.1 (Perrella Scientific Inc,) in a
micro-plate spectrophotometer (Benchmark Plus, BIO-
RAD).

In Vitro DNA Methylation

To methylate the CpG sites in pGL/WTH3P and pGL/
WTH3d3 plasmids, 2 pg of each construct was incubated
with 12 U CpG methylase Sss I and 640 uM of S-adenosyl-
methionine (SAM) (New England Biolab) at 37°C for 3
hr. The temperature was then increased to 65°C for 20
min to terminate the reactions. The methylated plasmids,
pGL/WTH3P™ and pGL/WTH3Pd3m, were purified with
the Qiaquick PCR Purification Kit (Qiagen). The success
of Sss I methylation was verified by methylation sensitive
restrictive enzymes, Hha I and Hpa 1.

Transient Transfection and Luciferase Assays

To determine whether the methylated WTH3 promoter
influenced p53 transcriptional activity, pGL/WTH3Pm ver-
sus pGL/WTH3P and pGL/WTH3Pd3™ versus pGL/
WTH3Pd3 were co-transfected with pcDNA/P53, pcDNA/
P53R249S (negative control) or pcDNA/3.1 (negative
control) into HEK293 cells. In brief, 0.2 ug of each con-
struct were transfected along with 0.1 pg of pCMV/p-
galactosidase when the cells (seeded onto 24-well plates)
reached 50-70% confluence. After 24 hrs, luciferase and
B-galactosidase activity was measured using the Luciferase
Assay System and Beta-Glo™Assay System (Promega)
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according to the manufacturer's instruction. Luciferase
activities of transfectants were compared after normaliz-
ing their B-galactosidase activities and protein concentra-
tions.

Results

The HEK293 cells with WTH3 knockdown resulted in
higher resistance to Dox and stimulated MDRI gene
expression

Earlier studies suggested that WTH3 was involved in MDR
development|9,23]. To further confirm this possibility,
we decided to knockdown the WTH3 gene in HEK293
cells to see if reduced gene expression could increase the
host cells' resistance to an anti-cancer drug, such as Dox.
To do so, we employed the Clontech Knockout RNAi sys-
tem to integrate a DNA sequence, which specifically inter-
fered with the endogenous WTH3 transcripts, into the
host cells' genome (see Materials and Methods for
details). After antibiotic selection, RNAs were extracted
from the cells infected with pSIEN-RetroQWTH3 or
PSIEN-RetroQ (negative control), and quantified by
SQRT-PCR. The results obtained from the three individual
measurements showed that WTH3 transcripts in the cells
infected with pSIEN-RetroQWTH3 (293/WTH3RNAi-P)
were about 2 times lower than that in the control cells
containing the empty vector (Fig. 1A, 1B). Therefore, the
WTH3 gene was successfully knockdown in the HEK293
cell population. We then selected several individual cell
clones via limiting dilution procedures. Consequently, we
obtained 7 clones whose WTH3 expression was signifi-
cantly lower due to the knockdown and 6 clones whose
genome was integrated with the empty vector, but did not
change WTH 3 expression levels (Fig. 1A, 1B). The popula-
tions and three cloned cell lines, 293/WTH3RNAi-2, -3, -
6, which were randomly picked, were used to perform
MTT assays to obtain IC50s (the concentration of a drug
that causes 50% cell death) to Dox. The results were an
average of three individual experiments for each group.
The IC50 value of the 293/WTH3RNAI-P cells was about
39 nM, while that of the control was about 13 nM.
Clearly, the reduction of WTH3 gene expression made the
host 3 times more resistance to Dox than its control, 293-
V (Fig. 2A, 2B). Next, IC50s of the three cloned lines, 293/
WTH3RNAI-2, -3 and -6 were also evaluated. The IC50
values to Dox were 44, 93, and 52 nM for 293/
WTH3RNAI-2, -3 and -6, respectively, which were approx-
imately 3.4, 7 and 4 times more resistance than the 293-V
control (Fig. 2A, 2B, Table 1). Moreover, due to past find-
ings that suggested a reverse correlation between WTH3
and MDR1 gene expression levels [23], we examined
MDRI1 gene expression levels in those cells by SQRT-PCR.
As we expected, the results showed that the MDR1 gene
was re-activated in the 293/WTH3RNAi-P, 293/
WTH3RNAI-2, -3 and -6 cells, while MDR1 transcripts
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SQRT-PCR results for WTH3 expression in the knockdown cells, population (293/WTH3RNA.I-P), 3 cloned cell
lines (293/WTH3RNAI-2, -3, and -6), and 293 control cells (293-V) that were integrated with the empty vector.
A. PCR products are displaced in an electrophoresis gel, while GAPDH served as positive control. B. Results of quantitative
analysis for WTH3 expression in the cells presented in A. GAPDH served as quantitative reference.
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MTT results obtained from the knockdown population and cloned cell lines, which were treated with Dox. A.
Pharmacologic responsive plot for the knockdown population, 293/WTH3RNAI-P, versus control 293-V. B. Pharmacologic
responsive plot for the cloned knockdown cell line, 293/WTH3RNAI-3 versus control 293-V. C. IC50 values of WTH3 knock-
down 293 cells versus 293-V control cells to Dox.
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Table I: IC50 values of 293 cells with WTH3 knockdown vs. were undetectable in the corresponding control cells (Fig.
control 3A 3B)
Cells 1C50 (nM) Degree of resistance
5-aza treatment promoted p53's positive impact on
293.V 13 | WTH3 expression
293/WTH3RNAI-P 39 3 Prior studies demonstrated that the CpG island found in
293/WTH3RNAI-2 44 3.4

the WTH3 gene promoter was targeted by DNA methyla-

293/WTH3RNAI-3 93 7 tion in MCF7/AdrR cells [15,23]. It was also discovered
293/WTH3RNA-6 52 4 that this island contained p53M, which was directly
bound by the p53 protein, a trans-element for activating
WTH3 gene expression [24]. Based on these facts we spec-
ulated that DNA methylation could play an antagonistic
role influencing the p53 transcription factor. To test this
hypothesis, we transfected the pcDNA/P53 or pcDNA3.1
(negative control) construct into MCF7/AdIR cells (whose
CpG island in the WTH3 promoter was methylated and
A 24h 72h c
(39} l ™ b ™ ! ™
- £ = B = g ' o N
[ap} = 39} (39} = ™ ™
< < <8 I8 <8 <Y < < <G
5 5 33 &% a3 &% 2 3 &3
3) 5 v Jv Qv Qv 3 3 F
o Q O+ 9o+ o+ QO+ o o o+
B 6+ D 25-
M pcDNA3.1 24h 72h M pcDNA3.1
o 5 -{00pcDNA/P53" Vi ' 220 | pcDNA/P|53
=5 pcDNA3. 1 5 0 pcDNA3.1
S5 4- +5.aza L | *5az
25 5 |@pcDNAPS3 25"
% +5-aza - 29
ok 00 1.0
25 2 oc
g3 G0
0 0
MCF7/AdrR Hela
Figure 4

SQRT-PCR results for endogenous WTH3 gene expression in MCF7/AdrR and Hela cells. A. Electrophoresis gel
display of the endogenous WTH3 gene expression in MCF7/AdrR cells that were transfected with pcDNA3.| or p53, and
transfected with pcDNA3.1 or p53 and treated with 5-aza for 24 or 72 hr. GAPDH served as positive control. B. Results of
quantitative analysis for MDR/ expression in the cells presented in A. GAPDH served as quantitative reference.
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p53 defective due to a mini-deletion) [32], and then
treated the transfectants with 5-aza to see if the p53 trans-
gene preferentially activated the WTH3 gene expression,
but not in the untreated cells. After 24 and 72 hours of
treatment, endogenous WTH3 transcript levels were eval-
uated by SQRT-PCR. We found that the p53 transgene's
positive effect on the WTH3 gene expression of the cells
treated with 5-aza was about 2 times stronger than that in
the control cells who either contained the transgene or the
empty vector, but were not treated with 5-aza (Fig. 4A,
4B). This suggested that DNA methylation could nega-
tively affect p53 transactivity. In addition, as we expected,
the 5-aza treat alone increased WTH3 transcript. Consid-
ering that Hela cells express a relatively low level of WTH3
and a relatively high IC50 value to Dox (data not shown),
we introduced p53 transgene into those cells or treated
them with 5-aza. It was observed that the p53 transgene
and 5-aza positively affected the WTH3 expression of the
cells compared to the untreated cells (Fig. 4C, 4D). These
results further indicated that epigenetic modification and
p53 regulated the WTH3 gene. To verify if DNA methyla-
tion could negatively affect p53 transactivity, the in vitro

N
)
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DNA methylation approach was employed to modify full
length and deleted WTH3 promoters to analyzed p53's
influence.

P53 failed to activate the methylated WTH3 promoter

To methylate full length and deleted WTH3 promoters,
pGL/WTH3P and pGL/WTH3d3 were incubated with Sss I
methylases and SAM. The resulting construct, pGL/
WTH3P™ and pGL/WTH3d3m, their non-methylated con-
trols, as well pCMV/B-galactosidase (transfection effi-
ciency control) were then introduced into HEK293 cells.
As we assumed, luciferase activities driven by both meth-
ylated promoters were 5 times lower than the correspond-
ing controls (Fig. 5). Clearly, DNA methylation inhibited
the promoters' function. We then co-transfected pGL/
WTH3Pm versus pGL/WTH3P and pGL/WTH3d3™ versus
pGL/WTH3d3 with pcDNA/P53, or pcDNA/P53R249S
(negative control), or pcDNA3.1 (negative control) into
HEK293 cells to see if DNA methylation could antagonize
p53 transactivity. The results showed that the p53 trans-
gene only activated the non-methylated WTH3P and
WTH3d3 promoters but had no effect on their methylated
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Luciferase activity driven by the methylated and non-methylated full length and deleted WTH3 promoters,
pGL/WTH3P™, pGL/WTH3P, pGL/WTH3Pd3™ and pGL/WTH3Pd3 when they were co-transfected with
pcDNA/P53, pcDNA/P53R249S, or pcDNA3.I into HEK293 cells.
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counterparts (Fig. 5). However, mutated p53, p53R249S,
was unable to influence non-methylated WTH3P and
WTH3d3 promoters. These findings indicated that there
was interplay between DNA methylation and the p53
transcription factor regarding WTH3 gene expression reg-
ulation.

Discussion

Earlier studies suggested that WTH3 could be an impor-
tant gene involved in the cellular MDR phenotype devel-
opment. This idea was based on three observations, 1) its
expression was reduced in cells exhibiting drug resistant
traits [9,15,23]; 2) its restoration in MDR cell lines not
only increased sensitivity to a variety of drugs, but also
decreased endogenous MDRI gene expression [9,15,23];
and 3) it was a direct target of p53 whose role during the
onset of MDR has been well documented [26,30,32,35-
38]. To further verify WTH3's importance related to drug
resistance, we recently employed the small hairpin RNA
interference technique to permanently reduce its expres-
sion in non-MDR HEK293 cells to see if this could
increase the host's tolerance to Dox. The reason for utiliz-
ing HEK293 was that it expressed normal amounts of the
WTH3 gene, but undetectable MDR1 RNA, and was quite
sensitive to Dox. The knockdown procedure was consid-
ered successful because WTH3 gene expression in the pop-
ulation and cloned host lines was 2 or more times below
the original level. After measuring their IC50 values to
Dox we found that all those cells with the WTH3 knock-
down were 2 to 4 times more resistant to Dox than their
controls. In addition, the knockdown was accompanied
by significant MDR1 gene re-activation. These results were
consistent with previous observations and supported the
notion that there was a direct link between WTH3 gene
function and MDR development. This relationship would
be even more obvious if the WTH3 gene was completely
knocked out by a traditional targeting knockout
approach. This prediction is based on the fact that WTH3
gene expression was much lower (about 10 times) in
MCF7/AdrR than in MCF7/WT cells, the former line
processing a much stronger (about 100 times) MDR phe-
notype than the later one.

Considering that the WTH3 gene could play an important
role in regards to the on set of MDR, we were interested in
understanding the detailed mechanisms by which its tran-
scription was regulated by DNA methylation and the p53
transcription factor. In the past, we presented data that the
WTH3 gene promoter was hypermethylated not only in
MCF7/Ad1R but also drug resistant primary breast cancer
epithelial cells [15,23] and was physically targeted by p53
proteins [24]. We also found that the p53-binding site,
p53M, in the gene promoter resided in a CpG island that
was subjected to epigenetic modification. This informa-
tion indicated that DNA methylation, whose role is to
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repress gene expression [39] could have a direct impact on
p53 activated WTH3 expression. To test this hypothesis,
two approaches were employed. The first included evalu-
ating the p53 transgene's influence on WTH3 expression
in MCF7/AdrR cells that were treated with 5-aza. The sec-
ond was to study WTH3 promoter activity that was mod-
ified by methylation. The resulting information pointed
out that DNA methylation significantly diminished pro-
moter activity by at least one mechanism, by antagonizing
p53 transactivity. Since, DNA methylation usually attracts
methyl-binding-proteins (MBPs) and other epigenetic
modification factors (EMFs), one could image that the
methylated WTH3 promoter was bound by some MBPs
and EMFs, which might change the chromatin structures
and prevent p53 from recognizing its targeting structures.

Conclusion

Taken together, our studies provided solid evidence sup-
porting the important role played by the WIH3 gene in
MDR development and uncovered one of the mecha-
nisms regulating its expression. Therefore, restoring or
increasing this gene's activity could be another valuable
strategy for easing MDR encountered during cancer chem-
otherapy. This could be achieved by introducing demeth-
ylation reagents if attenuated WTH3 gene activity in a
patient was caused by DNA methylation.
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