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Quantitative accuracy of virtual 
non‑contrast images derived 
from spectral detector computed 
tomography: an abdominal 
phantom study
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Dual-energy CT allows for the reconstruction of virtual non-contrast (VNC) images. VNC images have 
the potential to replace true non-contrast scans in various clinical applications. This study investigated 
the quantitative accuracy of VNC attenuation images considering different parameters for acquisition 
and reconstruction. An abdomen phantom with 7 different tissue types (different combinations of 3 
base materials and 5 iodine concentrations) was scanned using a spectral detector CT (SDCT). Different 
phantom sizes (S, M, L), volume computed tomography dose indices (CTDIvol 10, 15, 20 mGy), kernel 
settings (soft, standard, sharp), and denoising levels (low, medium, high) were tested. Conventional 
and VNC images were reconstructed and analyzed based on regions of interest (ROI). Mean and 
standard deviation were recorded and differences in attenuation between corresponding base 
materials and VNC was calculated (VNCerror). Statistic analysis included ANOVA, Wilcoxon test and 
multivariate regression analysis. Overall, the VNCerror was − 1.4 ± 6.1 HU. While radiation dose, kernel 
setting, and denoising level did not influence VNCerror significantly, phantom size, iodine content 
and base material had a significant effect (e.g. S vs. M: − 1.2 ± 4.9 HU vs. − 2.1 ± 6.0 HU; 0.0 mg/ml vs. 
5.0 mg/ml: − 4.0 ± 3.5 HU vs. 5.1 ± 5.0 HU and 35-HU-base vs. 54-HU-base: − 3.5 ± 4.4 HU vs. 0.7 ± 6.5; 
all p ≤ 0.05). The overall accuracy of VNC images from SDCT is high and independent from dose, kernel, 
and denoising settings; however, shows a dependency on patient size, base material, and iodine 
content; particularly the latter results in small, yet, noticeable differences in VNC attenuation.

Computed tomography (CT) provides morphological images with a high spatial resolution. To overcome the 
intrinsic low soft tissue contrast of CT, iodinated contrast media is frequently administered, particularly in 
abdominal CT. Modern dual-energy CT’s (DECT) allow for the reconstruction of virtual non-contrast (VNC) 
images, which have the potential to replace true non-contrast scans.

Conventional CT uses one polychromatic x-ray source emitting a wide energy spectrum, typically cover-
ing a range from 40–120 (− 140) kVp. In conventional CT, a scintillation detector registers the global loss of 
intensity due to tissue attenuation. Hence, a global attenuation profile of the scanned object is obtained. Images 
reconstructed from this data are visualized using Hounsfield units (HU). As such a global attenuation profile in 
single energy CT cannot differentiate the influence of Photoelectric effect and Compton scattering, two different 
materials may exhibit similar HU values. To overcome this limitation of conventional CT, dual-energy CT can be 
used. In DECT, two different energy spectra are employed to obtain separate attenuation profiles for lower and 
higher energy photons. Technological approaches to DECT are either emission-based (dual-source CT (DSCT), 
fast kVp-switching DECT or twin-beam DECT) or detector-based (dual-layer, spectral detector CT (SDCT))1–3.
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By separate assessment of low and high energy attenuation profiles, material decomposition becomes 
possible4–6. The most abundant applications of material decomposition comprise material specific maps for 
gout and iodine. In the latter, distribution of iodinated contrast media is visualized in quantitative maps4,7–11. 
These allow for the reconstruction of images that subtract the iodine-associated attenuation resulting in so-
called virtual non-contrast (VNC) images12–20. While several studies demonstrated the general functionality 
of VNC21–26; studies which systematically investigating the impact of different patient-associated sizes, image 
acquisition and reconstruction parameters are sparse. Yet, it is essential to understand confounding factors for 
the evaluation of VNC performance8–11,27–30.

This study aims to comprehensively evaluate these parameters using an anthropomorphic abdomen phantom.

Methods
Phantom description.  An anthropomorphic abdomen phantom with liver insert was used (QSA-453 and 
QSA-637, QRM GmbH, Moehrendorf, Germany) containing a total of 17 liver lesions with a size of > 5 mm (8 
hyperdense and 9 hypodense lesions; Fig. 1).

Different patient sizes were simulated using no extension ring small (S, 300 × 200 mm), and with extension 
rings in size medium (M, 350 × 250 mm) and large (L, 400 × 300 mm). Matrix material of the phantom exhibited 
an attenuation of 35 HU on conventional CT without iodine present. According to the vendor, the parenchyma’s 
base material yields attenuation of 54 HU, which is increased by adding iodine to meet attenuation of 90 HU 
on conventional images (Table 1). Base material and iodine amount of liver lesions varied to meet clinically 
encountered attenuation values of 45, 60, 120 and 180 HU on conventional images (Table 1, Electronic sup-
plement 1). In total, this resulted in 7 different types of tissue (5 lesion types + matrix + parenchyma, Table 1). 
Of note, iodine concentrations provided by the vendor were established using a DSCT; therefore, no accuracy 
calculations of iodine were conducted.

Data acquisition and image reconstruction.  The phantom was placed in the isocenter of a spectral 
detector CT (SDCT, IQon, Philips Healthcare, Best, The Netherlands) and scanned with a slightly modified 
routine clinical abdomen protocol: tube voltage 120 kVp, fixed tube current–time product of 111 mAs, 166 mAs, 
222 mAs, resulting in volume computed tomography dose index CTDIvol of 10 mGy, 15 mGy and 20 mGy; field-

Figure 1.   Anthropomorphic abdomen phantom with liver insert. (a) Photo of abdomen phantom size S and 
extension rings (employed to simulate sizes M and L). (b) Scheme of liver insert with lesion location and size in 
axial and sagittal plane.

Table 1.   Specification of tissue types with liver lesions and size > 5 mm. Of note, iodine concentrations as 
provided by the vendor are estimates only (as per phantom datasheet).

Tissue type
Total attenuation 
(HU)

Base attenuation 
(HU) Iodine (mg/ml) 10 (mm) 15 (mm) 10 × 15 (mm) 15 × 22.5 (mm)

Matrix 35 35 0.0 – – – –

Parenchyma 90 54 1.4 – – – –

Lesion type 1 45 45 0.0 1 2 – 1

Lesion type 2 60 54 0.3 1 – – 1

Lesion type 3 45 35 0.4 1 – 1 1

Lesion type 4 120 54 3.0 1 1 1 1

Lesion type 5 180 54 5.0 1 1 1 1
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of-view of 350 mm, 400 mm and 450 mm for phantom size S, M and L, respectively; collimation 64 × 0.625 mm; 
pitch 0.485; rotation time 0.33 s; matrix 512 × 512.

Conventional images were reconstructed using the vendor’s hybrid-iterative reconstruction algorithm (iDose4, 
Philips Healthcare, Best, The Netherlands). Virtual non-contrast images and iodine maps were reconstructed 
using a dedicated spectral reconstruction algorithm (Spectral, Philips Healthcare, Best, The Netherlands). As 
the reconstruction algorithm involves methods from iterative reconstruction, it allows for a choice of denoising 
level; here, no, medium, and strong denoising levels were chosen (0/6, 3/6 and 6/6, respectively)31. Furthermore, 
image definition (kernel) was varied between soft, standard, and sharp (A, B and C, Philips Healthcare, Best, The 
Netherlands). All images were reconstructed with a slice thickness of 2 mm with a section increment of 1 mm in 
axial plane (analogously to our institution’s routine protocol). In total, the variation resulted in 81 reconstructions 
(3 patient sizes × 3 radiation doses × 3 denoising settings × 3 kernels).

Data collection.  Data was collected based on region of interest measurement (ROI). ROI were placed on 
conventional images, copied, and pasted to iodine maps and VNC images, respectively. ROI were placed in all 17 
lesions (one ROI each), in the parenchyma (i.e., spleen insert) as well as the matrix material (two ROI each) and 
drawn as large as possible (d ≥ 6 mm). Attenuation on conventional and VNC images, as well as iodine concen-
tration on iodine maps were recorded including corresponding standard deviations.

The VNCerror was calculated as difference between attenuation in VNC reconstruction (HUVNC) and the 
reported attenaution of the corresponding base material (HUbase):

Lesions with none, low, medium, and high iodine concentrations were grouped as indicated (0.0 mg/
ml–0.3 and 0.4 mg/ml–3.0 and 5.0 mg/ml, respectively).

Data analysis.  All statistical analysis was performed using JMP Software (SAS Institute, Gary, USA). Con-
tinuous data is presented as mean ± standard deviation (SD). Statistical analysis was carried out using one-way 
ANOVA or Wilcoxon signed-rank test with Tukey–Kramer and Steel–Dwass adjustment for multiple com-
parisons, respectively. Further multivariate regression analyis was used. Statistical significance was defined as 
p ≤ 0.05. Waterfall diagrams were used to visualize VNCerror and its dependence on patient size, base material, 
and iodine content.

Results
Attenuation characteristics.  Overall, attenuation ranged from 24.9–195.6 HU and 18.7–72.5 HU in con-
ventional and VNC images, respectively. Iodine concentration ranged from 0.0 to 5.5 mg/ml. Average VNCerror 
was − 1.4 ± 6.1 HU, ranging from − 16.3 to 18.5 HU. Detailed values for pooled analysis of all measurements are 
depicted in Table 2, example images are shown in Fig. 2.

VNC error and phantom size.  No significant differences were found between small and large phantom 
settings (VNCerror: − 1.2 ± 4.9 HU and − 0.9 ± 7.1 HU, respectively, p ≥ 0.05, Fig. 3). Between small and medium 
as well as medium and large phantom settings, significant differences in VNCerror were observed (VNCerror: 
− 1.2 ± 4.9 HU, − 2.1 ± 6.0 HU and − 0.9 ± 7.1 HU, respectively, p ≤ 0.05, Fig. 3).

VNC error and radiation dose.  No significant differences were found between 10  mGy, 15  mGy and 
20 mGy acquisitions (VNCerror: − 1.2 ± 6.5 HU, − 1.2 ± 5.7 HU and − 1.7 ± 6.1 HU, respectively, p ≥ 0.05, Fig. 3).

VNC error and image definition (kernel).  No significant differences were found between soft, standard 
or sharp image definition (kernel), (VNCerror: − 1.4 ± 6.1 HU for all kernels, p ≥ 0.05, Fig. 3).

VNC error and denoising preset.  No significant differences were found between no, medium and strong 
denoising, (VNCerror: − 1.4 ± 6.1 HU for all denoising levels, p ≥ 0.05, Fig. 3).

VNC error and base material.  Between all three base materials, significant differences were found 
(VNCerror: 35-HU, 45-HU and 54-HU-base: − 3.5 ± 4.4  HU, − 5.0 ± 3.9  HU and 0.7 ± 6.5  HU, respectively, 
p ≤ 0.001, Fig. 3).

VNC error and iodine concentration.  Between different iodine contents differences in VNCerror 
were observed (0  mg/ml: − 4.0 ± 3.5  HU; 0.3  mg/ml: − 6.2 ± 4.0  HU; 0.4  mg/ml: − 4.5 ± 5.4  HU; 3.0  mg/ml: 
− 2.4 ± 5.5 HU; 5.0 mg/ml: 5.1 ± 5.0 HU; 1.4 mg/ml: 4.9 ± 0.8 HU, all p ≤ 0.05, except 0.0 mg/ml versus 0.3 mg/
ml: p > 0.05; Fig. 3).

Regression analysis.  In line with results from inter-group comparison, phantom size, base material, and 
iodine content were deemed significant parameters of VNCerror in regression analysis (all p ≤ 0.001). Dose, kernel 
and denoising level, on the other hand, did not reach significance (p = 0.178, p = 0.973 and p = 0.879). In visual 
analysis, the impact of phantom size is not depictable in waterfall plots (Fig. 4), while it can be acknowledged 
that higher attenuation of base material as well as higher iodine content result in a positive VNCerror.

VNCerror = HUVNC −HUbase
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Discussion
This study systematically evaluated the influence of size, radiation dose, kernel, denoising level, base material, and 
iodine content on the accuracy of virtual non-contrast images using an anthropomorphic abdomen phantom. 
The key findings are that VNC performance is independent of radiation dose, kernel setting and denoising level, 
while patient size, base material and iodine concentration decrease performance slightly.

Overall, our data suggests a high accuracy of VNC with an overall VNCerror of − 1.4 ± 6.1 HU. As per defini-
tion of VNCerror, negative values indicate that the VNC attenuation values are lower compared to the expected 
attenuation of the base material; hence, that the iodine-associated attenuation has been slightly overestimated, a 
phenomenon known from earlier studies10. These findings are on the lower end of earlier reported VNC errors 
that range from − 1.2 to 15 HU17,28,30. This may be explained by the fact that in this study, unlike aforementioned 
investigations, a solid-state phantom was used. Here, the base materials exhibit attenuation different from water, 
whereas in most former studies aqueous dilutions of contrast media were used.

Interestingly, VNCerror was significantly lower in the medium-sized phantom as compared to small and large 
sizes. While the reason for this remains elusive, a possible hypothesis is that the medium sized phantom most 
closely resembles an average sized patient (350 × 250 mm) potentially effecting model assumptions in image 
reconstruction2. Other studies28,30 reported that smaller phantoms yielded higher accuracy of VNC images. In 
line with that, we found lowest standard deviation with small size phantom.

In accordance with earlier reports we found that VNCerror is independent from kernel setting and denoising 
level9,27. Regarding radiation dose, which was deemed to not significantly impact VNCerror based on our data, 
there are opposing reports28,30: While Van Hedent et al. report that lower radiation dose results in greater inac-
curacy of VNC it needs to be acknowledge that their lowest dose (2 mGy) was markedly lower than the one used 
in this study (10 mGy)28. Similarly, Si-Mohammed et al. employing CTDIvol of 2.5 mGy, 5 mGy and 10 mGy, 
reported lower accuracy of VNC images30. Of note, both studies used phantoms, which caused less attenuation 
compared to ours, enabling the use of such low doses.

The iodine content and the base material were deemed to significantly influence VNCerror. In low con-
centrations, the iodine-associated attenuation is overestimated as indicated by a negative VNCerror, while in 

Table 2.   Overall measurement results for attenuation, VNC, iodine and VNCerror for each tissue type.

Tissue type

Attenuation 
(HU) VNC (HU)

Iodine (mg/
ml)

VNCerror 
(HU)

Mean SD Mean SD Mean SD Mean SD

Matrix 30.3 2.4 33.0 1.1 0.0 0.0 − 2.0 1.1

Parenchyma 96.5 1.5 58.9 0.8 1.4 0.1 4.9 0.8

Lesion type 1 46.6 3.2 40.0 3.9 0.2 0.1 − 5.0 3.9

Lesion type 2 58.7 3.8 47.8 4.0 0.4 0.2 − 6.2 4.0

Lesion type 3 43.8 4.8 30.5 5.4 0.5 0.2 − 4.5 5.4

Lesion type 4 117.3 4.9 51.6 5.5 2.6 0.3 − 2.4 5.5

Lesion type 5 181.8 5.8 59.1 5.0 4.8 0.3 5.1 5.0

Figure 2.   Example of axial slice images of liver lesions. Conventional (upper row), virtual non-contrast (middle 
row), and iodine density (lower row) images: LEFT) images of the medium sized phantom acquired with a 
CTDIvol of 10, 15, and 20 mGy are shown. RIGHT) images in different sizes (small, medium and large) are 
shown. Of note, conventional and VNC images are displayed with the institutional defaults for window level and 
width (WL 60, WW 360) and iodine (WL 2, WW 7), respectively. Images are cropped, hence the extension ring 
is not visible in S- and L-phantoms.
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concentrations greater than 3 mg/ml an underestimation was found. Similar observation have been made by dif-
ferent groups4,29,30, e.g. Hua et al. also report a shift from under- towards overestimation between iodine contents 
of 2.5 mg/ml and 5 mg/ml4. Opposed to this, Van Hedent et al. reported no impact of iodine concentration on 
VNC performance28; however, the lowest concentration they used was 2 mg/ml28. Regarding the base materials, 
data with attenuation different from water is sparse. A study by Kim et al. investigated the influence of different 
solvents on iodine quantification accuracy11. Interestingly they found an overestimation in amino acid based solu-
tions for concentrations lower than 1 mg/ml, while an underestimation in higher concentrations11. They suggest 
that these differences might occur since in SDCT, two-material decomposition is performed for water and iodine. 
Hence, any additional material will tend to increase model uncertainty and therefore decrease performance4,11. 
This argumentation seems applicable to our findings as well. Further, it needs to be acknowledged, that a greater 
VNCerror can be expected in higher concentrations; however, we refrained from normalizing the error to ensure 
translation of our observations to clinical practice.

In general, our findings indicate a clinical applicability of VNC images as they show a reasonable accuracy 
under a variety of settings in an anthropomorphic phantom. Clinically, VNC reconstructions might be helpful in 
characterizing incidental findings, such as adenoma, or in increasing diagnostic confidence, e.g. in in hypodense 
lesions of the liver. For the latter, diagnosis is often found challenging in lesions < 1 cm; here, a lack of iodine 
uptake is highly suggestive of a cystic origin and may increase confidence.

Yet, there are limitations that need to be discussed. First, we did not test extreme values for radiation dose or 
phantom size but focused on scan parameters typically encountered in abdominal imaging and average patients. 
Second, we did not evaluate accuracy of iodine reconstruction as there are numerous earlier reports for SDCT 
and other DECT-approaches8–11,27,28. It would also be of interest to investigate the dependency of VNCerror on 
different iodine background concentrations for the parenchyma and other organs. Further, true iodine concentra-
tions for the used phantom were unavailable as the specifications provided by the vendor were validated using a 
dual source CT, only. No subjective image analysis was performed on the visibility of lesions; as VNC and iodine 
maps are usually consulted to obtain quantitative information whereas other spectral results are better suited 
for this purpose23,32,33. The lesion size cut-off of 5 mm was chosen to ensure valid ROI placement. Assessment 
of actual performance for clinical decision making was out of scope of this study; hence, we do not advocate for 
the use of VNC instead of true non-contrast acquisitions if required a priori. Yet, our data together with earlier 
reports on clinical use-cases suggest that VNC closely resemble true non-contrast acquisitions irrespective of 
protocol settings and therefore may be used if deemed necessary after image acquisition. Another limitation is 

Figure 3.   Box plots of the median VNCerror for phantom sizes, radiation doses, kernel settings, denoising levels, 
base materials, and iodine contents. Significant differences are indicated (***p < 0.001, n.s. p > 0.05), except for 
iodine content (bottom right), for which all groups exhibit statistically significant (p ≤ 0.05) differences (unless 
indicated).
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that we used a single CT scanner and interscan variation was not addressed in this study as those parameters 
were investigated in earlier studies (7).

In conclusion, the accuracy of virtual non-contrast reconstructions is independent from routinely applied 
dose ranges, kernel, and denoising level setting; however, we found a small dependency on patient size, base 
material, and iodine content.
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References
	 1.	 McCollough, C. H., Leng, S., Yu, L. & Fletcher, J. G. Dual- and multi-energy CT: principles, technical approaches, and clinical 

applications. Radiology 276, 637–653 (2015).
	 2.	 Große Hokamp, N. et al. Technical background of a novel detector-based approach to dual-energy computed tomography. Diagn. 

Interv. Radiol. 26, 68–71 (2020).
	 3.	 Patino, M. et al. Material separation using dual-energy CT: current and emerging applications. RadioGraphics 36, 1087–1105 

(2016).
	 4.	 Hua, C. H., Shapira, N., Merchant, T. E., Klahr, P. & Yagil, Y. Accuracy of electron density, effective atomic number, and iodine 

concentration determination with a dual-layer dual-energy computed tomography system. Med. Phys. 45, 2486–2497 (2018).
	 5.	 Mei, K. et al. Dual-layer spectral computed tomography: measuring relative electron density. Eur. Radiol. Exp. 2, 20 (2018).
	 6.	 Müller, F. C. et al. Optimising dual-energy CT scan parameters for virtual non-calcium imaging of the bone marrow: a phantom 

study. Eur. Radiol. Exp. 3(1), 46 (2019).
	 7.	 Große Hokamp, N. et al. Precision and reliability of liver iodine quantification from spectral detector CT: evidence from phantom 

and patient data. Eur. Radiol. 29, 2098–2106 (2019).

Figure 4.   Waterfall diagrams visualize the all VNCerror sorted in ascending order and color-coded in 
dependency of phantom size, base material, and iodine content.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21575  | https://doi.org/10.1038/s41598-020-78518-5

www.nature.com/scientificreports/

	 8.	 Sellerer, T. et al. Dual-energy CT: a phantom comparison of different platforms for abdominal imaging. Eur. Radiol. https​://doi.
org/10.1007/s0033​0-017-5238-5 (2018).

	 9.	 Pelgrim, G. J. et al. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT. Eur. 
Radiol. 27, 3904–3912 (2017).

	10.	 Jacobsen, M. C. et al. Intermanufacturer comparison of dual-energy CT iodine quantification and monochromatic attenuation: a 
phantom study. Radiology 287, 224–234 (2018).

	11.	 Kim, H., Goo, J. M., Kang, C. K., Chae, K. J. & Park, C. M. Comparison of iodine density measurement among dual-energy com-
puted tomography scanners from 3 vendors. Invest. Radiol. 53, 321–327 (2018).

	12.	 Leiva-Salinas, C. et al. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: 
diagnostic performance and potential radiation dose reduction. Neuroradiology 58, 1135–1141 (2016).

	13.	 Lin, Y. M., Chiou, Y. Y., Wu, M. H., Huang, S. S. & Shen, S. H. Attenuation values of renal parenchyma in virtual noncontrast 
images acquired from multiphase renal dual-energy CT: comparison with standard noncontrast CT. Eur. J. Radiol. 101, 103–110 
(2018).

	14.	 Sauter, A. P. et al. Dual-layer spectral computed tomography: virtual non-contrast in comparison to true non-contrast images. 
Eur. J. Radiol. https​://doi.org/10.1016/j.ejrad​.2018.05.007 (2018).

	15.	 Lehti, L. et al. Reliability of virtual non-contrast computed tomography angiography: comparing it with the real deal. Acta Radiol. 
Open 7, 205846011879011 (2018).

	16.	 Slebocki, K. et al. Incidental findings in abdominal dual-energy computed tomography. J. Comput. Assist. Tomogr. 41, 294–297 
(2017).

	17.	 Ananthakrishnan, L. et al. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with 
unenhanced CT. Abdom. Radiol. 42, 702–709 (2017).

	18.	 Laukamp, K. R. et al. Virtual non-contrast for evaluation of liver parenchyma and vessels: results from 25 patients using multi-
phase spectral-detector CT. Acta Radiol. https​://doi.org/10.1177/02841​85119​89309​4 (2019).

	19.	 Laukamp, K. R. et al. Evaluation of the liver with virtual non-contrast: single institution study in 149 patients undergoing TAVR 
planning. Br. J. Radiol. 93, 20190701 (2020).

	20.	 Riederer, I. et al. Acute infarction after mechanical thrombectomy is better delineable in virtual non-contrast compared to con-
ventional images using a dual-layer spectral CT. Sci. Rep. 8, 1–5 (2018).

	21.	 Tawfik, A. M. et al. Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and 
metastatic squamous cell carcinoma cervical lymph nodes. Eur. Radiol. 24, 574–580 (2014).

	22.	 Apfaltrer, P. et al. Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors. Invest. Radiol. 47, 65–70 (2012).
	23.	 Große Hokamp, N. et al. Assessment of arterially hyper-enhancing liver lesions using virtual monoenergetic images from spectral 

detector CT: phantom and patient experience. Abdom. Radiol. 43, 2066–2074 (2018).
	24.	 Faby, S. et al. Performance of today’s dual energy CT and future multi energy CT in virtual non contrast imaging and in iodine 

quantification DECT technology. Med. Phys. 42, 4349–4366 (2015).
	25.	 De Cecco, C. N. et al. Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced 

modeled iterative reconstruction. Eur. J. Radiol. 85, 1257–1264 (2016).
	26.	 Obmann, M. M. et al. Interscanner and intrascanner comparison of virtual unenhanced attenuation values derived from twin 

beam dual-energy and dual-source, dual-energy computed tomography. Invest. Radiol. 54, 1–6 (2019).
	27.	 Sauter, A. P. et al. Accuracy of iodine quantification in dual-layer spectral CT: influence of iterative reconstruction, patient habitus 

and tube parameters. Eur. J. Radiol. 102, 83–88 (2018).
	28.	 Van Hedent, S. et al. Impact of patient size and radiation dose on accuracy and precision of iodine quantification and virtual 

noncontrast values in dual-layer detector CT—a phantom study. Acad. Radiol. 27, 409–420 (2020).
	29.	 Ehn, S. et al. Assessment of quantification accuracy and image quality of a full-body dual-layer spectral CT system. J. Appl. Clin. 

Med. Phys. https​://doi.org/10.1002/acm2.12243​ (2017).
	30.	 Si-Mohamed, S. et al. Virtual versus true non-contrast dual-energy CT imaging for the diagnosis of aortic intramural hematoma. 

(2019).
	31.	 Große Hokamp, N. et al. Virtual monoenergetic images from spectral detector CT as a surrogate for conventional CT images: 

unaltered attenuation characteristics with reduced image noise. Eur. J. Radiol. 117, 49–55 (2019).
	32.	 Große Hokamp, N. et al. Improved visualization of hypodense liver lesions in virtual monoenergetic images from spectral detector 

CT: Proof of concept in a 3D-printed phantom and evaluation in 74 patients. Eur. J. Radiol. 109, 114–123 (2018).
	33.	 Husarik, D. B. et al. Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions: 

ex-vivo and patient experience in various body sizes. Invest. Radiol. 50, 695–702 (2015).

Author contributions
J.H., H.A., D.M., and N.G.H. contributed to the conceptualisation and design. J.H., H.A., and N.G.H. contrib-
uted to the construction of the phantom, data acquisition and analysis. J.H., H.A., C.H., M.P., S.L., K.L., T.P. and 
N.G.H. contributed to the interpretation of data. All authors contributed to the draft or substantial revision of 
the manuscript. All authors have approved the submitted version (and any substantially modified version that 
involves the author’s contribution to the study). All authors have agreed both to be personally accountable for 
the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of 
the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, 
and the resolution documented in the literature.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was partly funded through the Else 
Kröner-Fresenius-Stiftung (2018_EKMS.34 to Nils Große Hokamp).

Competing interests 
SL: Received travel cost reimbursement and exemption from clinical duties for research outside this project as 
a part of a research agreement between Philips Healthcare and University Hospital Cologne. NGH: Receives 
research support from Philips Healthcare. NGH and DM: On the speakers bureau of Philips Healthcare. All 
other authors (JAH, HA, KRL, CH, MP, TP): Nothing to disclose.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-78518​-5.

Correspondence and requests for materials should be addressed to N.G.H.

https://doi.org/10.1007/s00330-017-5238-5
https://doi.org/10.1007/s00330-017-5238-5
https://doi.org/10.1016/j.ejrad.2018.05.007
https://doi.org/10.1177/0284185119893094
https://doi.org/10.1002/acm2.12243
https://doi.org/10.1038/s41598-020-78518-5


8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21575  | https://doi.org/10.1038/s41598-020-78518-5

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Quantitative accuracy of virtual non-contrast images derived from spectral detector computed tomography: an abdominal phantom study
	Methods
	Phantom description. 
	Data acquisition and image reconstruction. 
	Data collection. 
	Data analysis. 

	Results
	Attenuation characteristics. 
	VNC error and phantom size. 
	VNC error and radiation dose. 
	VNC error and image definition (kernel). 
	VNC error and denoising preset. 
	VNC error and base material. 
	VNC error and iodine concentration. 
	Regression analysis. 

	Discussion
	References


