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Matemàtica, Campus de Bellaterra, Barcelona, Spain, 5 Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom,

6 Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, United Kingdom

Abstract

We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis,
vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells,
and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio
and initial vascular network influence the tumour’s growth dynamics and its long-time composition. We establish whether it
is possible to extrapolate simulation results obtained for small domains to larger ones, by constructing a large simulation
domain from a number of identical subdomains, each subsystem initially comprising two parallel parent vessels, with
associated cells and diffusible substances. We find that the subsystem is not representative of the full domain and conclude
that, for this initial vessel geometry, interactions between adjacent subsystems contribute to the overall growth dynamics.
We then show that extrapolation of results from a small subdomain to a larger domain can only be made if the subdomain
is sufficiently large and is initialised with a sufficiently complex vascular network. Motivated by these results, we perform
simulations to investigate the tumour’s response to therapy and show that the probability of tumour elimination in a larger
domain can be extrapolated from simulation results on a smaller domain. Finally, we demonstrate how our model may be
combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.
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Introduction

Angiogenesis marks an important turning point in the growth of

solid tumours. Avascular tumours rely on diffusive transport to

supply them with the nutrients they need to grow and, as a result,

they typically grow to a maximal size of several millimetres in

diameter. Growth stops when the rate at which nutrient-starved

cells in the tumour centre die balances the rate at which nutrient-

rich cells on the tumour periphery proliferate. Under low oxygen,

tumour cells secrete angiogenic growth factors that stimulate the

surrounding vasculature to produce new capillary sprouts that

migrate towards the tumour and the new vessels increase the

supply of nutrients to the tissue, enabling the tumour to continue

growing and to invade adjacent healthy tissue. At a later stage

small clusters of tumour cells may enter the vasculature and be

transported to remote locations in the body, where they may

establish secondary tumours and metastases [1].

In more detail, the process of angiogenesis involves degradation

of the extracellular matrix, endothelial cell migration and

proliferation, capillary sprout anastomosis, vessel maturation,

and adaptation of the vascular network in response to the blood

flow [2]. Angiogenesis is initiated when hypoxic cells secrete

tumour angiogenic factors (TAFs), such as vascular endothelial

growth factor (VEGF) [3,4]. The TAFs are transported through

the tissue by diffusion where they stimulate the existing vasculature

to form new sprouts. The sprouts migrate through the tissue,

responding to spatial gradients in the TAFs by chemotaxis. When

sprouts connect to other sprouts or to the existing vascular network

via anastomosis, new vessels arise. The diameter of perfused vessels

changes in response to a number of biomechanical stimuli such as

wall shear stress and signalling cues such as VEGF [5,6].

Angiogenesis persists until the tissue segment is adequately

vascularised. On the other hand, vessels which do not sustain

sufficient blood flow will regress and be pruned from the network

[7,8].

Tumour growth and angiogenesis can be modelled using a

variety of approaches (for reviews see [9,10]). Spatially-averaged

models can be formulated as systems of ordinary differential
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equations (see [11,12]). Alternatively, a multiphase approach can

be used to develop a spatially-structured continuum model that

describes interactions between tumour growth and angiogenesis

and is formulated as a mixed system of partial differential

equations (PDEs) [13]. Alternatively a 2D stochastic model that

tracks the movement of individual endothelial cells to regions of

high VEGF concentration is introduced in [14]. Following [14],

McDougall and coworkers [15] have developed a model for

angiogenesis and vascular adaptation in which the tissue

composition is static and attention focusses on changes in the

vasculature. This framework was then extended by Stéphanou

et al. [16] to produce the first 3D simulations of angiogenesis and

vascular adaptation. More recently, Macklin et al. [17] coupled a

multiphase model to a discrete model of angiogenesis that

accounts for blood flow, non-Newtonian effects and vascular

remodelling. The models are coupled in two ways: via hydrostatic

pressure which is generated by the growing tumour and acts on the

vessels, and via oxygen which is supplied by the vessels and

stimulates growth. Lloyd et al. [18] have developed a model for

neoplastic tissue growth which accounts for blood and oxygen

transport, and angiogenic sprouting. The strain (local deformation)

in the tumour tissue is assumed to be an increasing function of the

local oxygen concentration. In separate work, Owen et al. [19],

building on the work of Alarcón and co-workers [20–23],

proposed a 2D multiscale model for vascular tumour growth

which combines blood flow, angiogenesis, vascular remodelling

and tissue scale dynamics of multiple cell populations as well as the

subcellular dynamics (including the cell cycle) of individual cells.

While several two-dimensional models of angiogenesis account

for tumour growth, few groups consider vascular tumour growth

in three space-dimensions. In an extension to work by Zheng at al.

[24], Frieboes et al. [25] couple a mixture model to a lattice-free

continuous-discrete model of angiogenesis [26] to study vascular

tumour growth. However, the effects of blood flow and vascular

remodelling are neglected. Lee et al. [27] studied tumour growth

and angiogenesis, restricting vessel sprouting to the tumour

periphery and surrounding healthy tissue. They incorporated

vessel dilation and collapse in the tumour centre, and analysed the

micro-vessel density within the tumour. Building on work by

Schaller and Meyer-Hermann [28], Drasdo et al. [29] developed a

lattice-free model for 3D tumour growth and angiogenesis that

includes biomechanically-induced contact inhibition and nutrient

limitation. However, they do not consider an explicit cell cycle

model, they neglect the effects of flow-induced vascular remod-

elling and ignore interactions between normal and tumour cells.

Similarly Shirinifard et al. [30] present a 3D cellular Potts model

of tumour growth and angiogenesis in which blood flow and

vascular remodelling are neglected, as are the cell cycle and

competition between normal and tumour cells.

In this paper, we extend the multiscale model proposed by

Owen et al. [19] from 2D to 3D. In contrast to former models we

relax the assumption that adaptation of vessel diameters occurs on

a timescale which is much shorter than the tumour doubling time

and assume instead that adaptation occurs on the same timescale

as tumour cell movement and proliferation. We perform extensive

numerical simulations of our model to investigate how the 3D

structure influences the growth and composition of the tissue and

its vascular network. We start by considering a 2D domain in

which the tissue (either normal cells only, or normal cells with a

small tumour implanted) is initially perfused by two parallel

vessels, and then increase the extent of the domain in the third

dimension. We then focus on whether it is possible to extrapolate

simulation results obtained for small subsystems to larger ones, and

the extent to which these results depend on the choice of boundary

conditions. This is important because computational limitations

often mean that it is not feasible to simulate large spatial domains.

Hence we implement periodic boundary conditions in either the z-

direction or in both the y- and z-directions (as far as we are aware

such boundary conditions have not been implemented in previous

individual-based models for angiogenesis). We perform further

simulations to investigate the tumour’s response to therapy and

present a strategy to extrapolate tumour elimination probabilities

to larger domains. We also show how vascular networks derived

from experimental data can be integrated into our model.

Methods

The computational model describes the spatio-temporal dy-

namics of tumour growth in a vascular host tissue. Cells are

represented as individual entities (agent-based approach) each with

their own cell cycle and subcellular-signalling machinery.

Nutrients are supplied by a dynamic vascular network, which is

subject to remodelling and angiogenesis. The interactions between

the different modules are depicted in Figure 1.

Our model is formulated on a regular grid that subdivides the

simulation domain into lattice sites. Each lattice site can be

occupied by several biological cells whose movement on the lattice

is governed by reinforced random walks, and whose proliferation

is controlled by a subcellular cell cycle model. The vascular

network consists of vessel segments connecting adjacent nodes on

the lattice, with defined inflow and outflow nodes with prescribed

pressures. We also specify the amount of haematocrit entering the

system through the inlets. The vessel network evolves via (i)

sprouting of tip cells with a probability that increases with the local

VEGF concentration, (ii) tip cell movement is described by a

reinforced random walk, and (iii) new connections forming via

anastomosis. In addition, vessel segments with low wall shear stress

may be pruned away. Elliptic reaction-diffusion equations for the

distributions of oxygen and VEGF are implemented on the same

spatial lattice using finite difference approximations, and include

source and sink terms based on the location of vessels (which act as

sources of oxygen and sinks of VEGF) and the different cell types

(e.g. cells act as sinks for oxygen and hypoxic cells as sources of

VEGF). The flowchart in Figure 2 summarises the algorithm and

shows how processes that act on different space and time scales are

accommodated. In summary, after initialising the system, the

diffusible fields, cellular and subcellular states are updated

(including cell division and movement), before the vessel network

is updated, this process being repeated until the simulation ends.

Further details about each step of the computation and the model

parameter values can be found in the Text S1. The model is

implemented in C++, using CVODE (https://computation.llnl.

gov/casc/sundials/main.html) to integrate the subcellular ODEs,

and SuperLU (http://crd.lbl.gov/,xiaoye/SuperLU/) to solve

the linear systems for the flow calculation.

It was necessary to implement several changes to the

computational algorithm when extending the model from 2D to

3D. For example, in order to reduce the calculation time of the

diffusion fields, the resulting linear system of equations is now

solved with an iterative GMRES-solver, rather than the direct

SuperLU-solver which was used in [19] for 2D simulations. We

remark that the linear system of equations for the flow calculation

is still solved with the SuperLU solver as higher accuracy of

solutions is needed to determine whether vessels are unperfused or

if there is low flow. Adaptation of vessel radii can be observed on

two different timescales. The first represents an acute response

(short timescale, with a magnitude of minutes or hours) to external

or internal stimuli (i.e. vessel constriction). The second timescale

Tumour Growth Modelling in 3D
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acts on a longer timescale (days) and includes vessel maturation.

Based on this consideration, our vessel-adaptation algorithm is

altered so that vessel radii are no longer iterated to steady-state at

each time-step (30 min). Instead, they evolve on each time-step,

reflecting the assumption that vessel adaptation occurs on the

same timescale as cell movement and proliferation. Periodic

boundary conditions are implemented for the random walks of the

cells (including endothelial tip cells), for the vessel network and

flow calculation, and for the reaction-diffusion equations. In order

to integrate more closely with experiments, an interface is

implemented to import experimentally-derived vascular network

data, in order to specify the initial vasculature and then apply the

tumour growth and angiogenesis model. The 3D results are

visualised in Povray (http://www.povray.org) and OpenInventor

(http://oss.sgi.com/projects/inventor/).

Stochastic components of the model include endothelial tip cell

emergence and random walks of different cell types, with

trajectories generated from a sequence of random numbers (we

use the Mersenne Twister algorithm, http://www-personal.umich.

edu/,wagnerr/MersenneTwister.html). In order to assess the

degree of stochasticity in our model simulations, we carried out

multiple simulations using different seeds for the random number

generator. In the next section we will study the variation in mean

values of our stochastic simulations as, for example, domain size

varies. Therefore it is necessary to check if these mean values really

differ significantly or if they only represent different samples that

belong to the same probability density. We estimate the confidence

intervals of our mean values by applying a bootstrapping method—

lternatively one could apply non-parametrical methods, such as the

Wilcoxon-Mann-Whitney-Test [31]. The bootstrapping method

enables us to plot 95% confidence bands for the mean dynamics in

time and confidence intervals of the mean long-time values.

Results

3D vascular tumour growth
The results from a typical simulation showing the development

of a tumour and its associated network of blood vessels are

depicted in Figure 3. Simulations were performed on a

50|50|50 lattice with spacing Dx~40mm, which corresponds

to a 2mm|2mm|2mm cube of tissue. For the following

simulations, each lattice site can be occupied by at most one cell

(either normal or cancerous), which implies that, for the grid size

used (40mm), the tissue is loosely packed. A small tumour was

implanted at t~0 in a population of normal cells perfused by two

parallel parent vessels with countercurrent flow (i.e. the pressure

drops and hence flows are in opposite directions). Initially,

insufficient nutrient supply in unvascularised areas causes

widespread death of the normal cells. The surviving tumour cells

reduce the p53 threshold for death of normal cells (see Equation

(8) in Text S1), which further increases the death rate of the

normal cells and enables the tumour to spread. Initially, most of

the tumour cells are quiescent and secrete VEGF which stimulates

an angiogenic response. After a certain period of time the

quiescent cells die and only a small vascularised tumour remains

encircling the upper vessel. The tumour expands preferentially

along this vessel, in the direction of highest nutrient supply.

Diffusion of VEGF throughout the domain stimulates the

formation of new capillary sprouts from the lower parent vessel.

When the sprouts anastomose with other sprouts or existing

vessels, the oxygen supply increases, enabling the normal cell

population to recover. Because the tumour cells consume more

oxygen than normal cells, and they more readily secrete VEGF

under hypoxia, VEGF levels are higher inside the tumour and the

vascular density there is much higher than in the healthy tissue.

Figure 1. Multiscale model overview (interaction diagram). This figure shows the connections between the different modelling layers. In the
subcellular layer the cell cycle protein concentrations and the p53 and VEGF concentrations are modelled via systems of coupled ordinary differential
equations. The local external oxygen concentration influences the duration of the cell cycles. Cells consume oxygen, and produce VEGF in the case of
hypoxia. Extracellular VEGF also influences the emergence of endothelial sprouts and their biased random walk towards hypoxic regions. If
endothelial sprouts connect to other sprouts or the existing vascular network, new vessels form. Vessel diameter is influenced by the local oxygen
concentration and flow-related parameters, such as pressure and wall shear stress. The vascular network delivers oxygen throughout the tissue.
doi:10.1371/journal.pone.0014790.g001
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The tumour remains localised around the upper vessel until new

vessels connect the upper and lower vascular networks. Thereafter

the tumour cells can spread to the lower region of the domain until

eventually the domain is wholly occupied by cancer cells and their

associated vasculature.

We remark that several of the parameter values used to produce

the simulation results presented in Figure 3 differ from those used

previously to generate 2D simulations [19]. For example, we

increased the rate of oxygen transport P02 from the vasculature into

the tissue. Without this change, all tumour cells died after a short

period of time. With the parameters from the two-dimensional

model [19] almost no new vessels are formed, as the time for vessels

to meet before they die (Tprune) is too short given the longer paths

that endothelial tip cells can take in three space dimensions. We also

decreased Rex, the size of the radius surrounding a vessel sprout in

which new sprouts are not permitted to emerge (see Table 5 in Text

S1). Without this change only a few vessels form around each parent

vessel, and the tumour cells are unable to colonise the whole domain

(after 4000 h of simulated time, the cells remain localised around

each parent vessel).

Figure 4 shows the time course of the tumour and vessel volume

fractions for these 25 realisations. The volume fractions are

defined by the ratio of lattice sites occupied by tumour or vessel

cells to the total number of lattice sites. The high degree of

variability in these results explains why it is necessary to average

over several realisations in order to draw robust conclusions from

our simulations.

Dependence on the z-extent
In order to determine the effect of extending the model from 2D

to 3D we performed simulations in which the domain size is varied

in the z-direction (see Figure 5(A)). Thus, we considered

computational grids of size 50|50|zmax, and placed two parent

vessels at the same (x,y) co-ordinates and centred in the z-

direction (z~tzmax=2s). We ran simulations with normal cells only

(as a control), or with a small tumour implanted into a population

of normal cells. In the latter case the normal cells are always

eliminated and the tumour invades the entire domain. Figure 6

shows the cell and vessel volume fractions averaged over several

realisations for each domain size considered at time t~400h.

Figure 2. Multiscale model overview (flowchart). The flowchart shows the temporal sequence of the computational steps in our simulation.
doi:10.1371/journal.pone.0014790.g002
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Figure 3. Tumour growth in healthy tissue. The tumour cells and vasculature are depicted in the left column (see Video S1), the vasculature and
normal cells in the middle column (Video S2) and the vessel network in the right column. The figure shows a realisation of a 50|50|50 domain with a
cube of tumour cells implanted in healthy tissue with two straight initial vessels. Most tumour cells become quiescent and then die. Thereafter the
following steps occur: A) Vessels emerge near the initial tumour and form a well-vascularised tumour; far from the two initial vessels most normal cells
have died, leaving two cylindrical shaped cell populations around the vessels. B) The tumour grows along the direction of maximum oxygen supply and
displaces the normal cells. C) An important step in the tumour development – the first bridge between the upper and lower network is built. D) Once a
connection has been made between the upper and lower vessels, the tumour is able to colonise the lower part of the simulation domain.
doi:10.1371/journal.pone.0014790.g003
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Increasing zmax leads to an increase in the normal (or tumour) cell

volume fraction, with a corresponding decrease in the vascular

volume fraction. The normal (or tumour) cell volume fraction

reaches a maximum when zmax&10 (when the domain size in the

z-direction is about 400mm) and then decreases for larger values of

zmax. The vascular volume fraction exhibits a complementary

dependence on zmax, decreasing as zmax increases from 1, before

reaching a minimum when zmax&10 and increasing for larger

values of zmax. This behaviour can be explained as follows.

The 2D network for zmax~1 is capable of nourishing 3D

domains with several cell layers in the z-direction, because the

maximum distance of cells from the plane of the parent vessels is

less than the characteristic length scale associated with the

combined effects of oxygen diffusion and consumption. Thus the

2D network (with zmax~1) is capable of nourishing more cells with

the same number of vessels. Consequently the ratio of normal (or

tumour) cells to vessels increases rapidly as zmax increases from

zmax~1. For larger values of zmax, the vascular network must

expand in the z-direction to provide the normal (or tumour) cells

with the nutrients they need to remain viable and colonise the

entire domain. This behaviour can be seen by considering the total

vascular volume (rather than density) as a function of zmax: for

small zmax the vascular volume increases only weakly with zmax,

but for zmax *> 10 the vascular volume increases rapidly with zmax

(results not shown).

As noted earlier, in our simulations the vessel density in the

tumour is higher than in normal tissue because the tumour cells

consume more oxygen, and, as a result, require a higher vascular

density to meet their nutritional requirements. In addition, the

tumour cells start to produce VEGF at higher oxygen concentra-

tions than normal cells (i.e. they require a lesser degree of hypoxia

to stimulate VEGF release), so that overall VEGF production is

significantly higher in the tumour. This elicits a stronger

angiogenic response in the tumour than in the normal tissue

because the sprouting probability increases with the VEGF

concentration (Equation (11) in Text S1).

Isolated and coupled subsystems and the role of
boundary conditions

Here we focus on establishing whether it is possible to

extrapolate simulation results obtained for small subsystems to

their associated larger ones. An overview of the numerical

experiments that we perform is given in Figure 5(B). We choose

three different domains for our numerical study, each possessing a

certain degree of symmetry, and each with reflecting (zero-flux)

boundary conditions. In the first case (Figure 5(Bi)), we consider a

50|50|50 domain, which initially contains 10 pairs of vessels

that are parallel to the x-axis and equally spaced in the z-direction.

The cells, diffusible substances and new angiogenic vessels in the

neighbourhood of each vessel pair permit nearfield and farfield

interactions throughout the domain. In particular, new vessels may

connect adjacent vessel pairs (nearfield interaction), or the whole

vascular network can be connected across the full extent of the

domain (farfield interaction). In the second case (Figure 5(Bii)), we

consider a 50|50|10 domain which is initially perfused by only

two vessel pairs. Nearfield interactions between neighbouring

Figure 4. Multiple realisations of angiogenesis simulations. A,B) the time courses of tumour and vessel volume fractions for 25 realisations of
our multiscale model of vascular tumour growth performed in a 50|50|5 domain. One can clearly see the highly stochastic nature of the process.
Sometimes there is a long lag-phase before the tumour starts to grow exponentially (see red line in A) and B)). C,D) depict how the mean behaviour
is located in the domain that is spanned by all simulations.
doi:10.1371/journal.pone.0014790.g004
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subsystems can occur, but long range interactions cannot. Finally,

we consider a 50|50|5 domain which initially comprises only

one vessel pair, so that vessel-vessel interactions in the z-direction

can not occur (Figure 5(Biii)).

In Figure 7, we compare the behaviour of the three cases

introduced above, results being averaged over 25 simulations. If

there is no interaction in the z-direction then all three cases should

yield similar results, and the single subsystem would provide a

Figure 6. Enhancement of the z-extent. For the numerical experiments indicated in Figure 5(A), on a 50|50|zmax domain, we show: A) the
volume fraction of normal cells (red line, for simulations with normal cells only) or cancer cells (blue line, for simulations where a tumour is implanted)
at their long-time value averaged over several simulations. Both cell densities increase as zmax increases from 1, until a maximum is reached at
zmax&10. For larger values of zmax the cell density decreases again. B) the associated vascular volume fractions.
doi:10.1371/journal.pone.0014790.g006

Figure 5. Schemes of numerical studies. A) We consider two parallel vessels running in the x-direction and centred with respect to the variable
z-extension, with equal mean pressures and opposite pressure drops. B) We analyse how the interference between neighbouring subsystems
influences the behaviour in a larger domain: Bi) We consider a large (50|50|50) domain, where all 10 subdomains, each with two parent vessels,
are allowed to interfere with each other and farfield communication is incorporated in this setting. Bii) Depicts a 50|50|10 subsystem with two
parent vessel pairs. Thus nearfield (but not farfield) interaction in the z-direction is now included. Biii) The most restricted example, a single
50|50|5 subdomain, thus preventing all communication in the z-direction. In A) and B) we apply reflecting (zero-flux) boundary conditions. C)
Different boundary conditions are considered: Ci) Periodic boundary conditions in the y- and z-direction. The grey subdomain is effectively
surrounded by other networks. Cii) Periodic boundary conditions in the z-direction only, which should produce similar behaviour to Bi).
doi:10.1371/journal.pone.0014790.g005
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good representation of the larger domain. However, if the

averages differ then we conclude that larger 3D domains are

needed to obtain results that incorporate all spatial effects and

accurately represent the behaviour of the system over a longer

timescale.

Figure 7 shows that tumour growth and vessel network

formation are fastest in the smallest domain and the vessel density

at long times is higher than for the two larger domains. In the

50|50|10 domain, with initially two parallel vessel networks in

the z-direction, growth is slower and the final vessel density lower

than in the largest domain, with 10 vessel-pairs in the z-direction,

vessel growth is slowest and the final vessel network is least dense.

We remark that the simulations on all three domains have

equivalent initial conditions, and are similar at early times, until

the first new blood vessels are created. The oxygen field then

becomes asymmetric, causing local changes in cell cycle duration

and rates of VEGF secretion. These changes influence the

subsequent dynamics, causing the system to become more

asymmetric. Thereafter we can no longer compare solutions in

the smaller subsystems with those for the full domain. We note also

that differences between the results for the 50|50|5 domain (no

interaction) and the 50|50|10 domain (nearfield interaction

only) are much greater than those between the 50|50|10
domain and the 50|50|50 domain (nearfield and farfield

interaction). Hence, for the parameter values chosen here,

nearfield interactions have a stronger influence on the simulation

results than farfield interactions.

It was not possible to reproduce the behaviour of the large

domain by the small domain. In order to determine whether this

result is due to our choice of boundary conditions we implemented

periodic boundary conditions. Periodic boundary conditions allow

vessel connections to ‘‘wrap around’’ the domain and mimic

connections between subsystems in larger domains. As before

simulations are carried out in three different settings. In the first

case (where reflecting/zero-flux boundary conditions are imposed

as discussed above), angiogenic sprouts are reflected at boundaries

(endothelial tip cells and other cell types must move along the

domain boundary or back into the domain). In the second case,

singly-periodic boundary conditions are applied: the domain is

periodic in the z-direction and reflecting in the x- and y-directions

(see Figure 5(Cii)). In the third case, doubly periodic boundary

conditions are periodic in the y- and z-directions, and reflecting in

the x-direction (see Figure 5(Ci)).

In Figure 8 we compare results for the large (50|50|50)

domain with those for the smallest domain (50|50|5) for the

three different choices of boundary conditions. We have already

seen that the small domain with non-periodic (reflecting) boundary

conditions does not provide a good representation of the

behaviour of the larger domain. Figure 8 shows that neither

singly-periodic nor doubly-periodic boundary conditions alter this

outcome, in all three cases the final vessel density for the small

domain does not approach the density of the large domain. In

conclusion, for this choice of initial vascular network (pairs of

parallel vessels with countercurrent flow), and for the boundary

conditions considered, simulations on the smallest domain are not

representative of the system dynamics on larger domains. Before

discussing why this occurs we consider whether the discrepancies

persist for more complex choices of the initial vascular network.

Multi-vessel basic tissue unit
Guided by the results presented above, we now consider a

subsystem that is initially characterised by multiple vessels with

Figure 7. Growth kinetics in isolated and coupled subsystems. For the numerical experiments indicated in Figure 5(Bi)–(Biii), we show: A) The
tumour cell volume fraction over time. After the first death of some tumour cells the tumour recovers and the increasing amount of oxygen
supported by the vascular system promotes further growth. After the first phase of rapid growth, the tumour cells can grow fastest in the smallest
domain. We obtain a different final tumour cell fraction (it is lowest on the smallest domain). C) The vessel volume fraction. Note that the largest
domain has the most efficient oxygen supply to the tissue and thus the highest tumour cell to vessel ratio. We have also plotted the 95% confidence
bands for the mean dynamics in time (A,C) by applying a bootstrapping method [31]. From these confidence intervals we conclude that the
differences between the mean values in the long-time behaviour are statistically significant. B) and D) show the confidence intervals of the long-time
values of the tumour and vessel cell volume fractions.
doi:10.1371/journal.pone.0014790.g007
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different pressures and flow orientations. Figure 9(A)–(C) shows

the initial distribution of vessels and the different boundary

conditions. The basic subsystem now comprises eight parent

vessels with equal pressure differences along their lengths, but with

four different mean pressures, arranged so adjacent vessels are at

different mean pressures. This configuration is designed to enable

functional vessels to form within and between subdomains. This

contrasts with the previous case where adjacent vessels were at

equal mean pressures, which promoted pruning of connections

between subdomains.

In order to determine whether the multi-vessel subdomains are

representative of larger domains, simulations with equivalent

initial distributions of vessels but different domain sizes are

performed. Averaged results from 10 simulations are presented in

Figure 10(A)–(B). Regardless of the choice of boundary conditions,

simulations on a 50|50|20 domain yield results which are

equivalent to those for a 50|50|40 domain.

Further, in this case, the choice of boundary conditions (rather

than the number of, or interactions between, subsystems) has a strong

effect on the growth and composition of the tumour and the

associated long-time volume fractions. Figures 10(A) and (B) show

that doubly-periodic boundary conditions generate the most efficient

networks in terms of greatest ratio of tumour cell volume to vascular

volume, whereas non-periodic boundary conditions lead to the least

efficient. We explain these results in the following way: doubly-

periodic boundary conditions give rise to an initial vessel distribution

which is homogeneous (see Figure 9(C)) and for which connections

between adjacent parent vessels are likely to be sustained because the

pressure difference is sufficient to maintain an adequate flow in the

new vessels. When non-periodic boundary conditions are imposed,

vessels that form near the boundary are highly likely to be pruned as

they can only form connections to vessels with similar pressures.

Tumour elimination and its dependence on domain size
The above results demonstrate the influence of domain size on

vascular tumour growth. Therefore it is important to assess how

the domain size affects predictions about the efficacy of cancer

therapies. A key question is whether predictions about tumour

response to therapy in larger domains can be extrapolated from

simulation results on smaller domains. We investigated these

issues by performing the following simulations: a small tumour is

implanted in a poorly vascularised tissue with reduced oxygen

delivery, such as would arise following exposure to a vascular-

targeting agent (e.g. Combretastatin [32]). We model this effect

by setting a decreased oxygen permeability coefficient P02. In this

case the environment is so hostile that many tumour cells will die,

but we seek to determine conditions under which the tumour is

completely eliminated, since if one tumour cell survives it would

eventually repopulate the entire domain. We illustrate this effect

in Figure 11 where we compare the evolution of the tissue in five

isolated 50|50|10 subdomains with that in a single

50|50|50 domain. At early times the dynamics in both cases

are similar, with small numbers of tumour cells surviving in each

subdomain (whether isolated or coupled). While the similarity

persists for a short period of time, eventually the tumour in the

larger (coupled) domain is able to colonise the entire tissue,

whereas the tumour survives in only one out of five isolated

subdomains. This is because the small subdomains that comprise

the larger simulation are connected, enabling any surviving

tumour cells in one subdomain to move into neighbouring

subdomains, and to colonise any empty space created by tumour

cell death there. When the subdomains are isolated, tumour cells

can only expand in the y-direction and their growth in this

direction is inhibited after a small period of time by competition

with normal cells.

Figure 8. Simulations with different boundary conditions. To analyse the discrepancy (illustrated in Figure 7) between the results in the
isolated small (50|50|5) subdomain and the large (50|50|50) simulation domain in more detail, different boundary conditions are implemented
and their influence is studied. In particular, we compare a subset of the numerical experiments indicated in Figure 5: (Bi) non-periodic BC, zmax~50;
(Biii) non-periodic BC, zmax~5; (Ci) double-periodic BC, zmax~5; (Cii) single-periodic BC, zmax~5. For all three types of boundary condition, the
simulations lead to similar final vessel densities for the small domains (zmax~5), which still differ significantly from the large domain. Hence, for this
initial subdomain vasculature and with the various possible choices of boundary conditions, the smallest domain cannot be representative of the
larger domain.
doi:10.1371/journal.pone.0014790.g008
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Figure 9. Multi-vessel basic vascular unit. A) A basic parent vessel unit that includes eight vessels with equal pressure differences, but with four
different mean pressures, arranged so that the nearest parent vessel in each case is at a different mean pressure, which should enable functional
vessels to form within and between subdomains. Non-periodic means that we consider reflection boundary conditions in all directions. B) Periodic
boundary conditions in the z-direction. C) Periodic boundary conditions in the y- and z-directions.
doi:10.1371/journal.pone.0014790.g009

Figure 10. Multi-vessel basic vascular unit simulations. A–C) Simulations in a 50|50|20 domain are compared to a 50|50|40 domain for
each combination of boundary conditions. We find that the domain size has only a weak effect, but the choice of boundary conditions makes a
significant difference to the long term tumour cell and vessel volume fractions. The most efficient vascular network can be formed on the doubly-
periodic domain, while we get the least efficient network for the non-periodic boundary conditions. B) and D) show the long-time values with 95%
confidence intervals.
doi:10.1371/journal.pone.0014790.g010
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Motivated by these observations, we estimate the probability of

tumour elimination, p(zmax), for tissue domains of size

50|50|zmax by performing multiple realisations and calculating

the frequency of elimination. We denote the number of non-

quiescent tumour cells at time t by Ntum(t). A tumour is said to

have been eliminated at time t if Ntum(t)~0, and to have

survived if Ntum(t)w100 for twtcrit, where tcrit is sufficiently large

(several days) to ensure that the influence of the hostile

environment can be neglected. This may correspond to a case

in which clearance of some therapeutic agent means that its

concentration has fallen sufficiently low to be negligible. Figure 12

shows the estimated probability of regrowth for three increasingly

severe environments (which we would expect to have increasing

elimination probabilities) and a range of domain sizes. If

Figure 11. Stochasticity of results and implications on growth, regrowth and therapy. To study the influence of domain size on tumour
elimination (e.g. after therapy), we implanted tumour cells in a hostile environment (in which P02 is reduced from 3800 to 3116, hence reducing
nutrient delivery to the tissue). Columns 1 and 2 show the number of tumour cells only and the numbers of all cell types respectively, for five
independent simulations in an isolated 50|50|10-domain. Columns 3 and 4 show equivalent results from one simulation in one large 50|50|50
domain. Row A) At t~60 h most of the initial tumour cells have died and only a few survived in both cases. At this early stage both isolated and
coupled simulations lead to similar results, as the coupled subdomains in the 50|50|50 case can be viewed as stochastically independent. Row B)
At t~210 h more tumour cells have died and only one isolated subdomain is occupied by tumour cells. The cells are restricted in their motion in the
z-direction in the case of isolated subdomains, whereas the tumour can spread easily in the unrestricted case. Row C) At t~600 h competition
between tumour cells and normal cells means that tumour growth slows down – this effect is stronger in the isolated subdomain. Row D) At
t~1050 h the tumour is eliminated in 4/5 isolated subdomains, but in the larger domain the subdomains are not independent of one another and
the tumour has spread into all z-layers. In such a case one overpredicts the efficacy of therapies if one simulates in 2D or in a small three-dimensional
subdomain.
doi:10.1371/journal.pone.0014790.g011
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subdomains behave independently then p(nzmax)~pe(zmax,n)
where pe(zmax,n)~p(zmax)n is the extrapolated probability of

elimination, i.e. if the domain size is increased by a factor of n (to

have n connected subdomains), all the subdomains must remain

tumour-free to ensure elimination of the tumour. Figure 12 shows

that the extrapolated elimination probabilities are in good

agreement with the results from direct simulations — with the

predicted mean lying within the 95% confidence intervals in most

cases. We conclude that, for the elimination scenario considered

here, the subdomains behave as if they are independent of one

another, and that predictions about therapeutic efficacy for larger

domains can be extrapolated from simulation results for smaller

domains.

Simulations with realistic initial vasculature
This section documents results of a vascular tumour growth

simulation for which the initial vascular geometry was taken from

multiphoton fluorescence microscopy. The aim here is to integrate

the mathematical model with in vivo experimental data. To

generate experimental data on in vivo tumour vasculature, we

implanted into a mouse dorsal window chamber a tumour

construct comprising a central core of human breast cancer cells

surrounded by rat microvessel fragments, embedded in a collagen

matrix. The cancer cells and rat microvascular cells express

different fluorescent proteins so that, following implantation, the

tumour and its vascular network can be visualised. Further details

of the experimental methods are presented in Text S1.

We used the experimental data to reconstruct the vascular

graph model, locating nodes in the vessel centres and connecting

them by edges, see Figure 13. We use this example principally as

proof-of-concept. First, we embed the vascular system into healthy

tissue and then simulate vessel adaptation until a steady-state is

reached.

Currently in the models the vasculature is embedded in a

healthy tissue into which a small tumour is implanted and its

evolution is studied. A projection of a 3D image set of the tissue is

presented in Figure 13. In Figure 14 we observe that the tumour

expands radially into the surrounding healthy tissue which is

degraded by the cancer cells by decreasing the p53 death-

threshold for normal cells. Normal cells in the lower left and right

corners of the simulation domain (first column) are exposed to low

oxygen (hypoxia), and hence produce VEGF which induces an

angiogenic response in our model. While the new vessel in the

lower left corner is persistent and increases in radius, the vessel in

the lower right corner is pruned back. In this case pruning occurs

because the new blood vessel connects vessels from the initial

network that have similar pressures. In general it can be said that

the normal cells are adequately nourished by oxygen as only a few

hypoxic cells can be observed in simulations with normal cells

only. In contrast, we find a high percentage of quiescent cancer

cells in all states of tumour growth, leading to further angiogenesis

in our simulations (see Figure 6). The dark red vessels in row 3

indicate new vessels that develop after tumour implantation. In

conclusion, our model predicts an increase in the vascular density

following tumour implantation.

Finally, in Figure 15 we present results from a simulation for

which the chemotactic sensitivity, c, of endothelial tip cells is

increased by a factor of 10, so that c~20000, and the doubly-

periodic parent vessel geometry described in Figure 9(C) is

imposed. We generated a ‘‘normal’’ vascular network from these

parent vessels by filling the domain with normal cells and allowing

angiogenesis and vessel remodelling to proceed. Since endothelial

tip cell movement is more strongly directed than in the previous

Figure 12. Tumour elimination probability dependency on domain-size. In order to study the influence of domain size when tumour cells
are very likely to die (i.e. therapy, implantation), we implanted tumour cells in a hostile environment in which most of the tumour cells die within the
first hours post implantation. Increasingly hostile environments (which mimic anti-tumour therapies) are initiated by reducing the oxygen
permeability coefficient from P02~3610 to 3306, and finally 3116. For each value of P02 we ran 120 realisations, and the points indicate the estimated
mean probability of tumour elimination, p(zmax), for five domain sizes (50|50|zmax). The bars indicate the 95% confidence intervals obtained by
boostrapping. If the probability of elimination in each subdomain is independent of the others, then we should have p(nzmax)~pe(zmax,n)~p(zmax)n .
In each case we plot the extrapolated elimination probability based on p(10). The extrapolated values are in good agreement with the results from
direct simulations — with the predicted mean lying within the 95% confidence intervals in most cases.
doi:10.1371/journal.pone.0014790.g012
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simulations, the resulting vasculature is less tortuous and less dense

than in previous examples (compare Figures 3 and 15). Figure 15

shows what happens when a small tumour is implanted into the

new ‘‘normal’’ network. The tumour stimulates further capillary

tip sprouting, and generates a tumour vasculature which is more

dense than the corresponding normal network.

Discussion

In this paper we have extended an existing multiscale model of

vascular tumour growth from 2D to 3D. By performing extensive

numerical simulations we have investigated the ways in which the

emergent system dynamics are influenced by the 3D formulation.

Starting from the idealised case of growth from a single pair of

parent vessels in a 2D domain we found that the vessel volume

fraction decreases as the z-extent is increased—each vessel can

adequately perfuse a small number of cell layers without expansion

of the vasculature. However, as the z-extent increases beyond a

characteristic length scale set by the transport and uptake of

oxygen, the vessel volume fraction rises again as more cells at a

distance from vessels become hypoxic and stimulate a compen-

satory angiogenic response.

We then considered whether it is possible to represent a large

three-dimensional tissue domain by smaller subdomains, and

whether the ability to do this depends on the choice of boundary

conditions and the initial distribution of blood vessels. For a large

domain, with many pairs of parallel vessels, two subdomains (two

vessel pairs) give a reasonable representation of the dynamics in

the larger domain, but a single subdomain can generate quite

different characteristics. Even with periodic boundary conditions,

one vessel pair is not representative of two (or more). This is in part

because, although periodic boundary conditions allow vessel

connections to be made from a parent vessel to itself (by wrapping

round in the z-direction), it is not possible for one parent vessel to

sprout in both directions from the same or adjacent points (since

we impose an exclusion distance around each sprout within which

no other sprouts may emerge). In contrast, in a perfectly

symmetric scenario with two (or more) separate parent vessels,

each parent vessel would sprout at the same place, so that, on

average, there would be connections between parent vessels at the

same pressure (which would therefore be pruned). Thus we expect

more pruning in the larger domain than in the smaller domain,

even with periodic boundary conditions. We remark that in a

deterministic partial differential equation model we could

guarantee identical solutions provided the initial conditions were

equivalent. We also found that the long-time tumour and vessel

fractions were almost identical for the small domain with the three

choices of boundary conditions, although tumour growth was

fastest in the doubly-periodic case (see Figure 8). This can be

understood by noting that in the doubly-periodic case vessel

connections can form more rapidly, promoting faster tumour

growth.

We remark that it is, in principle, possible to impose triply-

periodic boundary conditions that allow vessels and cells to leave

and re-enter the domain in all spatial directions. A problem that

arises with triply periodic boundary conditions relates to the

pressure drop that is applied to the initial vascular network. The

vessel radii adapt to several different stimuli (see the model

section). Imposing periodicity in the axial direction of the initial

vessels would demand that the vessel radii at both ends of the

domain be equal, which is not usually the case. Pressure and flow

calculations are also problematic: one has to keep track of the

boundary across which vessels leave and re-enter the domain. The

total pressure drop along each vessel is similar in a periodic

alignment, whereas the absolute pressures differ. If a sprout from

close to a low-pressure outflow leaves the domain in a downstream

direction it re-enters at the opposite domain side and can connect

to the original network close to a high-pressure inflow. This would

lead to a very short vessel segment with a nearly maximal pressure

drop, which could lead to extreme vessel dilation. The same

principle holds for vessels that leave the domain in the upstream

direction. One potential resolution to this problem would be to

Figure 13. Image reconstruction. We reconstructed the vascular network by applying the following strategy. 3D multiphoton fluorescence
microscopy images (A) taken from mouse models in vivo formed the basis of our geometrical reconstruction. These images were transferred to
OpenInventor and Matlab for image analysis. Based on the data we reconstructed the vascular graph model that describes the connectivity of the
vascular network. B) We assigned inflow (red points) and outflow nodes (blue points) at various pressures in order to obtain a persistent and stable
network. The vascular graph is characterised by the spatial coordinates of the nodes and the connections between them.
doi:10.1371/journal.pone.0014790.g013
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Figure 14. Proof-of-concept: tumour growth in an experimentally derived vascular network. A)–D) show the temporal evolution of a
tumour in a real vascular network embedded in normal tissue (see Video S3). As initial condition we have taken a vascular network from multiphoton
fluorescence microscopy and embedded it in a 32|32|6 cellular automaton domain. In the first column the tumour expands radially, and degrades
the healthy tissue (second column). The predicted adaptations of the vascular system are shown in the third column where the experimentally
derived network is shown in light red, while the new vessels are coloured in red.
doi:10.1371/journal.pone.0014790.g014
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Figure 15. Tumour angiogenesis with enhanced chemotaxis. We increased the endothelial tip cell chemotaxis coefficient by a factor of 10 (so
that c~20000), and generated a ‘‘normal’’ vascular network from the parent vessel configuration in Figure 9(C) (i.e. with doubly-periodic boundary
conditions) by filling the domain with normal cells and allowing angiogenesis and vessel remodelling to proceed (Video S4 and Video S5). We then
implanted a small tumour into the new ‘‘normal’’ network. The tumour stimulates further sprouting, so that the tumour vasculature is more dense
than the corresponding normal network. A) The generated vascular network and pressure distribution for normal tissue. B) A short time after
implantation the first endothelial sprouts appear and migrate into the tumour. The appearance of new vessels within the healthy tissue around a
tumour is an effect that can often be observed in gliomas. C)–E) A time-series of the growing tumour in the normal vasculature, the normal cells that
surround the tumour are faded out (Video S6). On the right hand side the changes to the normal vasculature due to the implanted tumour are
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consider only the pressure drop DP across the basic unit of a triply

periodic domain, adding or subtracting multiples of DP at certain

nodes to account for the number of times connecting vessels wrap

around the domain. However, the dependence of vascular

adaptation (and other features such as arterio-venous identity)

on absolute pressures makes this impractical.

Building on these results for a basic subdomain with two parallel

countercurrent initial vessels, we showed that the choice of basic

repeating unit can have a significant impact on the system’s

dynamics. In particular, for a unit of eight parallel vessels with equal

pressure drops, but a variety of mean pressures, we found that a

single unit was representative of larger domains. In these cases, the

choice of boundary conditions had a strong influence on the system’s

dynamics. For doubly-periodic boundary conditions the tissue grows

in an efficient manner, with a low vascular density—this is because

the initial vessels are in close proximity and their mean pressures are

sufficiently different (as illustrated in Figure 9(C)). For non-periodic

and singly-periodic boundary conditions, vessels near the reflecting

boundaries can only connect to vessels with similar pressures, so that

there is more pruning and the vasculature is less efficient.

The flexibility of the simulation domain is expected to play a

significant role in tumour response to therapy. We simulated a

nutrient-deprived environment, such as might arise from vascular-

regression therapies, and found that predictions for therapeutic

efficacy for larger domains could be inferred from simulations on

smaller domains. We speculate that the ability to extrapolate

predictions of tumour elimination to larger domains could be

extended to other forms of therapy, e.g. cytotoxic drugs and

radiotherapy. We anticipate that this may be dependent on the

details of particular therapies, in particular on the timescale and

spatial extent of their action. Such investigations could form the

basis for future research.

As proof-of-concept, we then used an experimentally-derived

vessel network to initialise a simulation of tumour growth and

angiogenesis. To the best of our knowledge, this is the first time this

has been done—Secomb, Pries and co-workers (e.g. [5,6]) have used

such networks to study structural adaptation alone. It paves the way

for further research which will make a closer link with experimental

data. In particular, it would be of great interest to use experimental

data with two or more time points, use the first time point to

initialise simulations, and then compare the simulation with data at

later time points. We would not expect to obtain a detailed match at

later time points, since we simulate a stochastic system, but we

would expect agreement between experimental and simulated

values for certain characteristics, such as vessel volume fractions and

the distributions of vessel radii and segment lengths.

In summary, we have shown that a small subdomain has to have

a certain size and a certain characteristic initial vessel structure to

ensure that it represents larger domains. This has important

implications for modelling therapy, and raises crucial questions

about how to use multiscale models grounded at the cellular-level

to inform modelling and our understanding at the scale of tissues

or whole tumours.

Supporting Information

Video S1 Simulation showing the dynamics of cancer cells and

the vascular system with two straight vessels as initial condition

which correspond to Figure 3.

Found at: doi:10.1371/journal.pone.0014790.s001 (3.34 MB

WMV)

Video S2 Simulation showing the dynamics of normal cells and

the vascular system with two straight vessels as initial condition

which correspond to Figure 3.

Found at: doi:10.1371/journal.pone.0014790.s002 (4.09 MB

WMV)

Video S3 Simulation showing tumour evolution with an

experimentally-derived initial vascular network, illustrating the

steps depicted in Figure 14.

Found at: doi:10.1371/journal.pone.0014790.s003 (5.59 MB AVI)

Video S4 Simulation showing the development of a vascular

system with increased endothelial cell chemotaxis, with the normal

cells faded out. (Results in Figure 15(A)).

Found at: doi:10.1371/journal.pone.0014790.s004 (1.12 MB

WMV)

Video S5 Simulation showing the evolution of a vascular system,

with 16 straight initial vessels, embedded in a population of normal

cells. Increased endothelial tip cell chemotaxis leads to the vascular

system depicted in Figure 15(A).

Found at: doi:10.1371/journal.pone.0014790.s005 (2.29 MB

WMV)

Video S6 Simulation showing tumour cells growing in a normal

vascular network and additionally inducing angiogenesis

(Figure 15, column 1 of (C)–(E)).

Found at: doi:10.1371/journal.pone.0014790.s006 (1.71 MB

WMV)

Video S7 Simulation showing the angiogenic response of the

vascular system when a tumour is implanted. The normal vascular

network is coloured in grey, whereas new angiogenic vessels are

coloured red (Figure 15, column 2 of (C)–(E)).

Found at: doi:10.1371/journal.pone.0014790.s007 (0.96 MB

WMV)

Text S1 Mathematical model, experimental methods and tables.

A more detailed description of the mathematical model,

experimental methods and the parameter values are given in this

supporting information file.

Found at: doi:10.1371/journal.pone.0014790.s008 (0.25 MB

PDF)
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