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Abstract

Mitochondria play a variety of roles in the cell, far beyond their widely recog-

nized role in ATP generation. One such role is the regulation and sequestration

of calcium, which is done with the help of the mitochondrial calcium uniporter

(MCU) and its regulators, MICU1 and MICU2. Genetic variations in MICU1 and

MICU2 have been reported to cause myopathy, developmental disability and

neurological symptoms typical of mitochondrial disorders. The symptoms of

MICU1/2 deficiency have generally been attributed to calcium regulation in the

metabolic and biochemical roles of mitochondria. Here, we report a female child

with heterozygous MICU1 variants and multiple congenital brain malformations

on MRI. Specifically, she shows anterior perisylvian polymicrogyria, dysmorphic

basal ganglia, and cerebellar dysplasia in addition to white matter abnormalities.

These novel findings suggest that MICU1 is necessary for proper neuro-

development through a variety of potential mechanisms, including calcium-

mediated regulation of the neuronal cytoskeleton, Miro1-MCU complex-

mediated mitochondrial movement, or enhancing ATP production. This case

provides new insight into the molecular pathogenesis of MCU dysfunction and

may represent a novel diagnostic feature of calcium-based mitochondrial disease.
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1 | INTRODUCTION

Mitochondria are required for critical cellular functions,
including apoptosis, metabolism, and calcium dynamics. In
most mitochondrial diseases, symptoms arise from dys-
regulation of the two cell types with the highest metabolic
demand: muscle cells (proximal myopathy, dysphagia,
respiratory insufficiency, and cardiac disease) and neurons
(developmental delay, ophthalmoplegia, epilepsy, stroke-
like episodes).1 Most patients present with an unpredictable
subset of these symptoms, as mitochondrial disease pro-
duces diverse phenotypes, even among family members.2

The exact etiology of this heterogeneity is unclear, although
mitochondrial heteroplasmy, organ-specific mitochondrial
distributions, and interaction between nuclear and mito-
chondrial encoded proteins likely contribute.3

Biallelic pathogenic variants in one nuclear-encoded
protein, mitochondrial calcium uptake 1 (MICU1) have
recently been described to cause myopathy with extrapyra-
midal signs (MPXPS). MPXPS has been reported in 41 cases
(Table S1) and presents with myopathy, learning disability,
and extrapyramidal movement disorder.4-12 The MICU1
protein regulates calcium influx into mitochondria through
interaction with the mitochondrial calcium uniporter
(MCU). At baseline, MCU continuously moves calcium into
the mitochondria. The MICU1 protein is a calcium-sensor
for MCU, allowing decreased calcium uptake when cyto-
plasmic calcium is low. Although mitochondrial calcium
homeostasis plays diverse roles in cellular signaling,13 mito-
chondrial metabolism,13 programmed cell death13-15 and
cell migration,16-19 previously-described phenotypes of
MPXPS have been largely attributed to biochemical dys-
regulation and impaired ATP production.20,21

Here we report a female child with compound hetero-
zygous variants in MICU1, who presents with typical
symptoms of mitochondrial disease, including myopathy,
ataxia, developmental delay, and generalized seizures,22

without an elevated lactate level. In addition to white
matter changes, her magnetic resonance imaging scans
showed multifocal brain malformations including ante-
rior perisylvian polymicrogyria, dysmorphic basal gang-
lia, and cerebellar dysplasia. These findings have not
been previously reported in MPXPS.

2 | CASE PRESENTATION

The patient was born at term from an uncomplicated
pregnancy into a family with no known family history of

childhood developmental delay, neurologic conditions,
genetic disease, or consanguinity. At birth, she was 3.5 kg
with a length of 48.3 cm and a head circumference of
35.6 cm. Her newborn screening tests, including hearing
tests, were within normal limits. She experienced an RSV
infection at 6 months, sat at 9 months, and was able to
scoot and roll over at 1 year of age. At 3 years, she began
speaking in sentences but also showed delays in fine
motor control. Limited magnetic resonance imaging of
her brain (Figure 1) was performed using a general proto-
col with basic sequences. The study was initially reported
as normal, but in retrospect showed subtle multifocal
brain malformations and white matter abnormalities.
Specifically, there was bilateral anterior perisylvian poly-
microgyria, dysmorphic basal ganglia with hypoplastic
anterior limbs of the internal capsules, mild cerebellar
dysplasia with broad palisaded folia, and patchy per-
iventricular white matter signal changes. She later devel-
oped amblyopia at 4 years of age.

At 5 years old, she had pneumonia, which was treated
with cefdinir without improvement. She was subse-
quently switched to azithromycin for potential myco-
plasma pneumonia. She began to recover but then
developed altered mental status, increased ataxia, and
stiffened gait. Her laboratory evaluations were grossly
normal except for leukocytosis, increased CSF protein,
and elevations in specific amino acids (valine and lysine).
Mycoplasma pneumonia serologies, chest radiograph,
CSF oligoclonal bands, and paraneoplastic antibody
panel were unremarkable. Magnetic resonance imaging
of her brain was performed and showed multifocal con-
fluent areas of edema and patchy enhancement in the
subcortical and deep white matter, optic nerves, basal
ganglia, brainstem, and cerebellum (Figure 2), suggestive
of acute disseminated encephalomyelitis (ADEM) or
other parainfectious syndromes. She was treated with a
5-day course of IV methylprednisolone, which resulted in
significant improvement. One month later, she showed

SYNOPSIS
We describe a patient with myopathy with extra-
pyramidal signs secondary to compound hetero-
zygous variant in Mitochondrial Calcium Uptake
1 (MICU1) presenting with a novel phenotype of
diffuse brain malformations, indicative of
disrupted neuronal development, and associated
with seizures and encephalopathy.
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some remnant ataxia and slight clumsiness on fine motor
skills but had otherwise returned to her clinical baseline.

Seven years later, the patient developed new tonic-clonic
seizures with secondary generalization. Her seizures
involved initial eye and limb twitching with decreased
responsiveness. She then proceeded to become stiff and pro-
ceed into a tonic-clonic seizure. She experienced status
epilepticus and an apneic episode with O2 desaturation.
Although her seizures were not directly observed on con-
ventional or computer-assisted prolonged video electroen-
cephalography (EEG), her EEG pattern did show
abnormalities, including frequent left-lateralized periodic
discharges over left temporal head region, with occasional
multifocal left temporal, midline and right frontal sharp
waves, a mild degree of nonspecific diffuse slowing of back-
ground activity and excessive fast activity in the back-
ground. She continued to have elevated creatinine kinase,
but a normal lactate level. Magnetic resonance imaging
(Figure 3A) using high-resolution epilepsy sequences con-
firmed her congenital brain malformations, now with sup-
erimposed chronic encephalomalacia from the prior
parainfectious syndrome, and acute postictal changes in the
left hippocampus.

On examination, the patient has abnormal narrow
facies with a short prominent upturned nose, epicanthal
folds, and hypertelorism. At 12 years of age, she was
prominently hyperreflexic, and showed clonus on the
left side.

3 | GENETIC INVESTIGATION

The patient's encephalopathy and myopathy were investi-
gated for a genetic cause. Chromosome analysis showed
karyotype of 46XX with no gross chromosomal abnor-
malities. An epilepsy deletion/duplication panel was
completed at GeneDx using an exon-level oligo array
CGH (ExonArrayDx). Data analysis was performed with
respect to genes of interest and analyzed in comparison
to the human genome build GRCh37/USChg19. This
analysis, including 96 genes, showed no pathogenic vari-
ants or variants of uncertain significance (VUS). Further
analysis was obtained via GeneDx EpiXpanded panel,
using a proprietary capture method for Next-Generation
Sequencing with CNV calling. The enriched genes were
sequenced bidirectionally using an Illumina platform and

FIGURE 1 Baseline brain malformations in a patient with MPXPS. Baseline MRI at age 3 years shows patchy periventricular white

matter signal changes (black arrowheads), anterior perisylvian polymicrogyria (white arrows), dysmorphic basal ganglia with hypoplastic

anterior limbs of the internal capsules (black arrows), and mild cerebellar dysplasia with broad palisaded folia

FIGURE 2 Acute encephalopathy in a patient with MPXPS and baseline structural brain abnormalities. At age 5 years, during an acute

encephalopathic episode, MRI shows multifocal confluent edema (FLAIR, asterisks, left panels) and patchy enhancement (T1 post contrast,

black arrows, right panels) in the subcortical and deep white matter, optic nerves, basal ganglia, brainstem and cerebellum
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aligned to the human genome build GRCh37/UCSChg19.
XomeAnalyzer was used to analyse the data. Over 1400
genes were analyzed, with no pathogenic variants rev-
ealed. Whole-genome sequencing was completed at
GeneDx using similar methods to the epilepsy deletion/
duplication panel described above. Whole exome
sequencing revealed two variants in the MICU1 nuclear-
encoded gene, each defined about transcript variant
1 (NM_006077.3). Of note, this gene was not included in
the GeneDx EpiXpanded Panel. The first (c.161
+ 1G > A), was a pathogenic maternally inherited vari-
ant. This splicing variant is rare as reported in low fre-
quency (0.0018%; 5/275750 alleles) primarily in the non-
Finnish European population (gnomAD v2.1.123) with no
homozygotes observed. This variant destroys the second
exon canonical donor site most likely causing a loss of
function effect via intron retention or exon skipping.
Alternatively, a strong exonic splice site is predicted by

SpliceAI to occur 23 nucleotides upstream and its use
would also lead to an out-of-frame transcript. The second
(c.386G > C), a likely pathogenic variant, was paternally
inherited. This variation is predicted to result in a p.
R129P missense mutation at the protein level. This vari-
ant is also present in population databases at a low fre-
quency (0.0071%; 20/279944 alleles) with no
homozygotes reported. Residue 129 is highly conserved
across orthologues and in silico predictions suggest this
variant to be deleterious.

4 | DISCUSSION

MPXPS, secondary to pathogenic variants in MICU1, can
present with myopathy, developmental delay, and extra-
pyramidal symptoms. This case highlights two other clin-
ical manifestations: encephalopathy (novel) and seizures

FIGURE 3 Neurological and

genetic presentation of seizures in

a patient with MPXPS and

baseline structural brain

abnormalities: A, At age 12 years,

new seizures with epilepsy

protocol MRI shows chronic

encephalomalacia from the prior

parainfectious syndrome (white

arrows) and acute postictal

changes in the left hippocampus

(dotted oval). B, Reported

pathogenic variations associated

with MPXPS. Previously reported

variations are roughly noted, in

dark grey lines. Pathogenic

variations reported in the

described patient are shown in

prominent dark lines designated

#4 and #5
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(reported previously in Reference 10). Interestingly, in
this case, MRI demonstrated multiple brain mal-
formations indicative of diffusely disrupted neuronal
development. The patient's MICU1 variants are predicted
to be pathogenic by in silico analysis (including analysis
for protein prediction, uniqueness and evolutionary con-
servation via SIFT/Polyphen 2/M-CAP/CADD) and are
not in close proximity to previously reported pathogenic
variants (Figure 3B).

The MICU1 protein contains a mitochondrial N-
terminal targeting sequence, four EF-hand calcium-
binding domains (two of which are functional) and a
carboxy-terminal C-helix.24 The reported pathogenic vari-
ants in MICU1 occur in diverse regions (Figure 3B). Of
note, both variants, in this case, are present at low fre-
quencies with no reports of homozygotes in the general
population. Most pathogenic variants in MICU1 have been
reported as loss-of-function variants6,8,9,12 except for the
second variant reported in this case, (c.386G > C). The
nonconservative arginine to proline substitution, occurring
in a stretch of highly conserved basic side chain residues,
likely disrupts the secondary structure or negatively affects
the folding kinetics. Furthermore, this variant occurs near
residues 99 to 102 that are critical for the EMRE/SMTDT1
interaction and downstream function.25

Seizures and encephalopathy are common in mito-
chondrial myopathies.26-29 The underlying
pathomechanism for encephalopathic episodes in
patients with mitochondrial myopathies is not clear.30

MR findings during the patient's encephalopathic presen-
tation (Figure 2) were reminiscent of acute disseminated
encephalomyelitis (ADEM, Figure 3A). However, it has
been proposed, in a POLG-linked mitochondrial myopa-
thy, that the neuroinflammation might actually be sec-
ondary to the mitochondrial defect, or that these two
possible causes could interact or overlap.30 Although
these ADEM or ADEM-like encephalopathies are rela-
tively rare in mitochondrial disease, they represent a sig-
nificant medical burden. An improved understanding of
the pathogenesis may lead to better treatments and
potential prevention of damage to the brain. In this case,
for instance, the patient did not experience seizures until
she was 12 years old, 7 years after her encephalopathy.
Based on neurologic examination and EEG, the findings
from her prior encephalopathy did not fully explain her
subsequent epileptic presentation.

This case represents the first description of brain
structural abnormalities in a patient with MPXPS. Specif-
ically, this patient showed multiple brain malformations
compatible within utero disruption of neuronal develop-
ment. These findings may represent a novel manifesta-
tion or potentially under-recognized sign of MPXPS and

may explain many of the MPXPS-associated neurological
signs and symptoms. Past studies have focused on the
biochemical impact of MICU1 pathogenic variants, but
little attention has been paid to the potential effects on
neuronal development and migration. For instance, cyto-
plasmic calcium flux is greatly impacted by mitochon-
drial calcium stores and release31 and is responsible for
cell movement via changes in the cytoskeleton.13,32-35 A
second hypothesis would be that MICU1 is needed for
the movement of mitochondria, a prerequisite for neuro-
nal growth and extension.36,37 The adaptor protein that
links mitochondria to the motor proteins is Miro1, which
requires the MCU complex to bind mitochondria.38 If the
absence of MICU1 prevents this interaction, mitochon-
dria may not be properly localized, leading to abnormal
localization of dendrites, axons, and potentially cell bod-
ies. A third possibility is that neuronal development
could simply be altered secondary to the decreased pro-
duction of ATP with decreased global energy stores.
Interestingly, the brain malformations seen in this
patient are analogous to those seen with defects in cyto-
skeletal proteins, including tubulinopathies39-42; extracel-
lular matrix proteins, including congenital muscular
dystrophies11; and inborn errors of metabolism including
peroxisomal disorders,43-45 PDHc deficiency46,47 and
glutaric acid deficiency,48,49 further supporting these
potential hypotheses. Normal neuronal generation,
migration, and differentiation rely on the maintenance of
cytoskeletal architecture as well as appropriate energy
stores. Thus, both mechanical disruptions of scaffolding
and energetic disruptions of metabolism could converge
on the final common pathway of disrupted neuronal
development, occurring over an extended time period
during gestation.

In addition, the presence of brain malformations may
be able to help classify the diverse phenotypes seen in
MPXPS. For instance, some patients experience only
myopathy, whereas others experience encephalopathy,
seizures, and severe learning disabilities. It is possible
that the degree of structural abnormalities seen in the
brain may correlate with or predict future neurologic
symptoms. In our patient, clinical seizures were corre-
lated with her polymicrogyria on MRI, encephalopathy
with white matter changes, clonus with basal ganglia dys-
morphism, and ataxia with cerebellar dysplasia.

5 | CONCLUSION

Biallelic pathogenic variants in MICU1 cause MPXPS,
which classically presents with myopathy, developmental
delay, and extrapyramidal signs. Clinical features have
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previously been attributed to changes in mitochondrial
metabolism secondary to altered calcium homeostasis. In
this patient's course, additional episodic symptoms were
present, including encephalopathy and seizures. The find-
ing of multiple brain malformations on MRI suggests that
MICU1 may be necessary for neuronal development and
migration. Although the exact mechanism remains
unclear, future studies will hopefully clarify whether struc-
tural abnormalities are a diagnostic feature of MPXPS and
their predictive value for neurological outcomes.
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racts, NYS - nystagmus, PTS - ptosis, HMP - hypermetro-
pia, ASM - Astigmatism, n/a - not available, or not
reported
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