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Stroke is a common disease characterized by multiple genetic dysfunctions. In this complex
disease, detecting the strength of inter-module coordination (genetic community interaction)
and subsequent modular rewiring is essential to characterize the reactive biosystematic
variation (biosystematic perturbation) brought by multiple-target drugs, whose effects are
achieved by hitting on a series of targets (target profile) jointly. Here, a quantitative approach for
inter-module coordination and its transition, named as IMCC, was developed. Applying IMCC
to mouse cerebral ischemia–related gene microarray, we investigated a holistic view of
modular map and its rewiring from ischemic stroke to drugs (baicalin, BA; ursodeoxycholic
acid, UA; and jasminoidin, JA) perturbation states and locally identified the cooperative
pathological module pair and its dissection. Our result suggested the global modular map
in cerebral ischemia exhibited a characteristic “core–periphery” architecture, and this
architecture was rewired by the effective drugs heterogeneously: BA and UA converged
modules into an intensively connected integrity, whereas JA diverged partial modules and
widened the remaining inter-module paths. Locally, the PMP dissociation brought by drugs
contributed to the reversion of the pathological condition: the focus of the cellular function shift
from survival after nervous system injury into development and repair, including neurotrophin
regulation, hormone releasing, and chemokine signaling activation. The core targets and
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Abbreviation: AKT, protein kinase B; ALS, amyotrophic lateral sclerosis; BA, baicalin; cAMP, cyclic adenosine mono-
phosphate; CM, concha margaritifera; CT, consistency score; DIMC, direct inter-module connections; DR, dissociation rate;
ECA, external carotid artery; GnRH, gonadotropin-releasing hormone; IIMC, indirect inter-module connections; IMASP,
inter-module average shortest path, also named as inter-module average characteristic path length; IMCC, inter-module
coordination coefficient; JA, jasminoidin; JS, Jaccard similarity; KEGG, Kyoto Encyclopedia of Genes and Genomes; LTP,
long-term potentiation; MAPK, mitogen-activated protein kinase; MCAO, middle cerebral artery obstruction; mTOR,
mammalian target of rapamycin; PCA, principal component analysis; PI3K: phosphoinositide 3-kinases; PMP, pathological
module pair; PS, path strength; Rap1, Ras-proximate-1; SW, sum of inter-module weight; TTC, 4% 2,3,5-triphenyltetrazolium
chloride; UA, ursodeoxycholic acid; VRCD, variation of ratio of characteristic path length and density

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6372531

ORIGINAL RESEARCH
published: 16 April 2021

doi: 10.3389/fphar.2021.637253

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.637253&domain=pdf&date_stamp=2021-04-16
https://www.frontiersin.org/articles/10.3389/fphar.2021.637253/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.637253/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.637253/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.637253/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.637253/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.637253/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhonw@vip.sina.com
https://doi.org/10.3389/fphar.2021.637253
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.637253


mechanisms were validated by in vivo experiments. Overall, our result highlights the holistic
inter-module coordination rearrangement rather than a target or a single module that brings
phenotype alteration. This strategy may lead to systematically explore detailed variation of
inter-module pharmacological action mode of multiple-target drugs, which is the principal
problem of module pharmacology for network-based drug discovery.

Keywords: IMCC, modular map rewiring, inter-module coordination, multiple-target drug, cerebral ischemia

INTRODUCTION

Stroke is a common disease characterized by multiple genetic
dysfunctions (Matthew et al., 2012; Zhou et al., 2018). The
discovery of the multi-target therapeutic drugs is considered as a
potential solution for reversing the biomolecular network of disease
systematically to achieve homeostasis (Frantz, 2005; Roth et al., 2004;
Wang et al., 2015a). How to clarify the “shotguns-like” actionmode of
multi-target drugs is still far from clear. Network-based drug analysis
aims to harness explosion of high-throughput data to investigate the
pharmacology of drugs, which makes it feasible to understand the
intrinsic pharmacological mechanism of multi-target drugs (Cheng
et al., 2019). As accumulated data from high-throughput technologies
delineate a holistic view of intracellular molecular network, the major
challenge in the post-genomic era is deciphering how these entities in
the cell work together to execute sophisticated functions (Wang and
Wang, 2013; Kim et al., 2014). The ongoing efforts have beenmade in
decomposing a network into modules and identifying the targeted
modules of drugs (Wang et al., 2012). This may help to decipher
modularized function organization in targeted networks and reveal the
pharmacological mechanisms of multi-target drugs.

However, inter-module connections, as the “backbone”
contributing to functional coordination and information flow
between modules in most biological processes, are ever important
(Granovetter, 1973; Lin et al., 2012; Ma and Gao, 2012; Onnela et al.,
2009; Levy et al., 2017). The inter-module connections, which are
more transient and flexible than intra-module connections (Ma and
Gao, 2012; Kim et al., 2014), could be considered as targets of drugs,
since modular rearrangement brought by inter-module relationship
transitions may provide more efficient ways for phenotype alteration
(Amar et al., 2013; Meda et al., 2014) than genetic variation or
modular allostery (Roguev et al., 2008; Bandyopadhyay et al., 2010;
Costanzo et al., 2016). Such modular rewiring of conserved functional
modules can be used as a network biomarker to characterize the
dynamics of drug responses (Zeng et al., 2014), by identifying and
evaluating the drug-conditional existence of collaborations between
modules (Zeng et al., 2013). Especially for the multiple-target drugs, it
is an extremely interesting and promising perspective to apply inter-
module connectivity analysis to reveal themechanism of pharmacology
(Wang et al., 2011; Ding et al., 2015; Liu and Wang, 2015). A set of
studies have referred the quantitative evaluation method for inter-
module connections (Ulitsky et al., 2008;Missiuro et al., 2009;Hsu et al.,
2011; Kelder et al., 2011; David and Ron, 2014); for example, the
number of interactions or overlapping nodes between modules or
community is commonly considered as the connections between
modules (Yang et al., 2009; Bandyopadhyay et al., 2010; Tesson,
et al., 2010; Kelder et al., 2011; Amar et al., 2013). Many of these

addressed the problem of module detection and module-to-module
interactions simultaneously but did not treat inter-module assessment
as amain task.Algorithms for inter-module assessment are still far from
perfect. Furthermore, it is pertinent to introduce biological function to
measure reliability and validity of inter-module evaluations.Andhow to
quantify transition of inter-module coordination related to
pharmacological mechanisms remains unknown.

Baicalin (BA), ursodeoxycholic acid (UA), and jasminoidin (JA) are
three major components contained in Qingkailing injection, an
effective preparation widely prescribed to patients with ischemic
stroke. Our previous studies showed that each of BA, UA, and JA
significantly reduced the infarction volume in the ischemic brain and
exerts neuroprotective effects by inhibiting inflammatory response in
cerebral ischemia (Liu et al., 2012; Wang et al., 2015b; Wang et al.,
2018). These studies provide “targeting section” of these multi-target
drugs. Nevertheless, it is still unclear to characterize the overview of
functional module rewiring response to distinct drug perturbations.
The underlyingmechanisms of these drugs regarding the inter-module
coordination in modulating complex disease phenotypes are still to be
explored.

In this study, we propose an integrated computational and
experimental approach to the systematic discovery of differential
transition of inter-module coordination that are causal determinants
of phenotype alteration (Figure 1). Here, the gene expression profile of
hippocampus from MCAO (middle cerebral artery obstruction) mice
treated by BA, JA, andUAwas analyzed by cDNAmicroarray, and the
weighted gene co-expression network and modules are constructed
accordingly. First, we integrated the quantitativemethods and statistical
analysis to construct an inter-module coordination coefficient (IMCC)
to evaluate themodule-to-module cooperation. Next, the inter-module
coordination rewiring across treated condition to disease was evaluated
and compared globally. Third, the most closely coordinating module
pair was further analyzed using the dissection rate andKEGGpathway.
Finally, the mechanism of BA, UA, and JA was validated by in vivo
experiments.

MATERIALS AND METHODS

Animals Model and Drug Administration
All animal experiments conducted were approved by the Ethics
Committee of China Academy of Chinese Medicine. The
operation was performed according to NIH Guidelines for the
Care and Use of Laboratory Animals for Experimental Procedures
(National Research Council, 1996). A total of 126 mice were used to
pharmacodynamic experiment and transcriptome data examination
in this study. Animals were randomized into sham-operated, vehicle,
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BA-treated, JA-treated, UA-treated, and CM-treated groups. Except
the sham-operated group, all animals were operated for middle
cerebral artery obstruction to induce focal cerebral
ischemia–reperfusion model. Briefly, the left middle cerebral artery
was occluded using an intraluminal filament. The artery was ligated
for 1.5 h, after that reperfused for about 24 h. For animals in the sham
group, the external carotid artery (ECA) was sham-operated and
prepared surgically without filament inserting. Drugs were injected
into the tail vein for 2ml/kg immediately after modeling. The
concentration of drugs was BA in 5mg/ml, JA in 25mg/ml, UA
in 7mg/ml, and CM (concha margaritifera) in 50mg/ml.

Drug Efficacy Examination and
Transcriptome Data Analysis
For each group, nine mice were used to examine infarction
volume by TTC (2, 3, 5-triphenyltetrazolium chloride
staining). The volume of the infarct region was determined by

Pathology Image Analysis System (Topica Inc.) and was
recognized to reflect efficacy of drugs.

After reperfusion for 24 h, the hippocampus of 12 animals of
each group was sliced and homogenized using TRIzol reagent,
and total RNA was extracted and purified. Then, cDNA
microarray consisted of a collection of 374 ischemia-related
genes, including 114 genes related to stroke and 260 genes in
pathways related to cerebral ischemia. Expression data of the 374
genes were uploaded to the public database ArrayExpress (http://
www.ebi.ac.uk/arrayexpress/, E-TABM-662).

Co-Expression Network Construction and
Module Detection
Based on the expression of aforementioned 374 genes, co-
expression network was constructed and modules were
identified using weighted gene co-expression network analysis
(WGCNA) R package (Langfelder and Horvath, 2008). WGCNA

FIGURE 1 | Schematic diagram of the systematic strategies used to reveal variation of global modular map and local inter-module coordination.
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can be used for finding clusters (modules) of highly correlated
genes, for summarizing such clusters for relating modules to one
another (Langfelder and Horvath, 2008). Correlation networks
facilitate network-based gene screening methods that can be used
to identify candidate therapeutic targets or further inter-module
analysis (Langfelder and Horvath, 2008). Correlation network in
different conditions was related to genes’ expression pattern. In
this study, we aim to calculate inter-module coordination, which
may reflect the disease- and drug-conditional existence of
collaborations between modules, to facilitate the further
pharmacological investigation. Therefore, we employed the
WGCNA to construct weighted gene co-expression network.

In brief, the weighted network was fully specified by its
adjacency matrix, which was constructed between all pairs of
probes across the measured samples by using appropriate
adjacency function parameters (β) for each group (β � 8 for
vehicle, seven for CM, four for BA, 12 for JA, and eight for UA)
(Langfelder and Horvath, 2008; Li et al., 2016). The soft
thresholds were selected when the network gets the best scale-
free topology criterion. As a result, adjacency functions aij ≥ 0.02
were used to construct weight gene co-expression network and
further analysis.

The WGCNA identified gene modules using average linkage
hierarchical clustering with topologic overlap measure and
Dynamic Hybrid Tree Cut algorithm (Langfelder and Horvath,
2008); modules are subsequently assigned a color as names, and
the details of the module detection were shown in our previous
study (Li et al., 2016).

Inter-Module Coordination Analysis
According to the local structure, connections between two
modules composed of edges between nodes from distinct
modules were defined as direct inter-module connections
(DIMC), and interactions mediated by genes that associate
with both the two modules were classified as indirect inter-
module connections (IIMC). We firstly calculated two types of
correlation parameters: SW for DIMC; CT and PS for IIMC; then,
we screened these parameters using hypergeometric distribution
or cutoff value and integrated the identified parameters; finally,
we optimized the integration weight according to KEGG
database.

Parameters Calculations
For SW, we calculated the sum of weight of edges between pairs of
modules:

SW(Mx,My) � ∑
i ∈ Mx,j ∈ My

aij, (1)

where Mx and My denote any two modules connected by at least
one edge, i and j are a gene in Mx and My, respectively, and aij is
the weight of edge between gene i and j. Using this formula, we
calculated the direct inter-module connections for any module
pair possessing one or more edges.

To decide whether the inter-module direct connections were
statistically significant, we used the p value of the hypergeometric
distribution (Lin et al., 2012), defined as

p � ∑n
k�x

(M
k
)(N −M

n − k
)

(N
n
)

, (2)

where x is observed inter-module connections; k andn are the numbers
of inter-module connections and all possible edges between two
modules, respectively; and M and N represent the total numbers of
inter-module connections and all combinational gene pairs between
any two modules in a module-to-module network, respectively. If p <
0.05, the SW is defined as a valid direct measurement.

For indirect inter-module connections, we introduced two
parameters: path strength (PS) and consistency score (CT).

In the light of the network, paths consisted of multiple vertexes
and links between them (Kelder et al., 2011). To simplify the
problem, we restricted the length of paths and only considered
paths that consist of three nodes [outset (o), mediation (m), and
end (e)] with two links.

PS(Mx,My) � ∑
o ∈ Mx,e ∈ My
m ∉ Mx,m ∉ My

Wm, o
Wm

•
Wm, e
Wm

. (3)

The path strength (PS) of a path is defined as the product of the
weighted probabilities that mediation chooses outset and end.
The weighted probability from m to o is the ratio of the weight
between m and o (Wm,o) to the sum of the weights between m
(Wm) and its first neighbors, the same as m to e.

Hypergeometric distribution was also used to screen the
statistically significant PS. However, different from SW, in Eq.
2, x is observed nodes connecting a pair of module; k and n are the
numbers of nodes connecting a pair of modules and all possible
nodes connecting the two modules, respectively; and M and N
represent the total numbers of nodes connecting any pair of
module and all possible nodes between any two modules in a
module to module network, respectively.

We also employed consistency score (CT) to measure the
inter-module connectivity as described in (Hsu et al., 2011).

CTscoreMx,My � ∑
i ∈ G

(Min{(CMx, i − S
C
CLi),(CMy , i

− T
C
CLi)} × CMx, i × CMy, i

CLi
×Wi).

(4)

G is a gene set that consists of all genes in network, and C is the total
number of genes inG.CLi is the total number of links to gene i;Wi is the
weight of gene i in network. S andT are thenumbers of genes inmodules
Mx andMy, respectively; CMx,i and CMy,i are the observed numbers of
links connecting gene i andmodulesMx andMy, respectively. Eq. 4was
used to compare the weights of genes correlated with a pair of modules
with the weights of genes related to only one of the modules (Hsu et al.,
2011).As theCT is a value after comparisonwith theoretical value,we set
cutoff value (10) to screen out the valid CT.

Measurement Integration
To obtain a more accurate and objective relationship between
modules, we merged DIMC and IIMC. First, we set SW of the
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inter-module connections, whose p-value of hypergeometric
distribution was less than 0.05, as weight of DIMC. In the
process of IMCC1 integration, SW and CT were two
parameters of different dimensions, so it was adopted to
correct the two parameters to the value of 0–1
(Supplementary Table S1). We normalized the two
measurements to be numbers between [0–1] by the follow
formula:

f ′x �
fx − fmin

fmax − fmin
. (5)

The two parameters were weighted using weighted coefficients
α and β for SW and CT, respectively. The two weighted
parameters were summed up, as follows:

IMCC1 � α•SW + β•CT . (6)

We set α + β � 1 and coefficient ratio ρ � α/β. By adjusting ρ
value, the effect of SW and CT on IMCC1 would be altered. We
calculated the IMCC1 when ρ � 1/10, 1/8, 1/4, 1/2, 1/1, 2/1, 4/1, 8/
1, and 10/1, respectively.

In the integration of SW and PS, both of them belonged to the
same dimension, so we plus the two parameters without
weighting (Supplementary Table S2), defined as:

IMCC2 � SW + PS. (7)

Optimization and Verification of Weighting
Coefficient
In biological networks, the communication between certain
modules is commonly mediated by component with important
functions; for example, a gene might be a target regulated by two
modules competitively. All the inter-module correlations
summarized or predicted are presumed to contribute to
biological functions. Therefore, it is imperative to introduce
biological data to define the best weighting coefficient, in
order to select the optimal IMCC. As a result, we employed
the KEGG (Kyoto Encyclopedia of Genes and Genomes)
database, according to which we calculated the Jaccard
similarity of enriched pathways of each module pair.

JS � |A∩B|
|A∪B|. (8)

A and B is the category of enriched KEGG terms in moduleMx

and My, respectively. Therefore, A ∩ B represents the number of
identical categories of KEGG terms between A and B, and A ∪ B
represents the number of all the categories of KEGG terms in both
A and B. For example, if A ∩ B � 6 and A ∪ B � 11, then JS will be
0.54545. We presumed that modules enriched with the same
KEGG categories might form more dense connections than those
with different KEGG categories. We benchmarked the IMCC1 of
different ρ values based on JS, and the IMCC1 scores were plotted
vs. the observed JS for each module pair (Supplementary Table
S3). Through nonlinear curve estimating and coefficient of
determination (R2) comparison, we quantitatively identified

the best ρ value and the most fitting model. To obtain more
precise results, we removed the outliers.

Our results suggested that the optimal ρ value was 1/1, and the
most fitting model was logarithmic model with a R2 of 0.616.
Thus, the final formula for IMCC could be simplified as:

IMCC � SW + CT. (9)

We also plotted the IMCC2 against JS and compared R2 of
fitted curves of IMCC1 and IMCC2 to select the optimal
integrative method.

Comparison and Verification of IMCC
As many established algorithms addressed the problem of inter-
module interaction evaluation using sum of weight (SW) of inter-
module interactions, we compared SW with IMCC by fitting the
KEGG database coverage. We also compared IMCC with inter-
module average shortest path (IMASP), also named as inter-
module average characteristic path length, a topological
parameter proposed to evaluate the distance of a module pair.
IMCCwas plotted vs. the IMASP (Supplementary Table S4), and
determination coefficient of curve fitting was also calculated.

GLOBAL TRANSITION OF MODULE
REWIRING AND LOCAL PATHOLOGICAL
MODULE PAIRS
Global Transition of Module Rewiring
To access the transitions of inter-module coordination response
to drug perturbation, we compared the distribution of IMCC
score between the treated and untreated group by dividing these
scores into four intervals by quartiles, through the chi-square test.
Besides, the principal component analysis (PCA) was employed
to evaluate the distance of IMCC distributions among these
groups.

Local Pathological Module Pairs
Identification
In order to further investigate the core factors of the modular
map, we tried to identify the “connectors.” We utilized three
computational methods, that is, betweenness centrality, variation
of ratio of characteristic path length and density (VRCD), and
distribution of edge weight, to identify candidate connector
modules from module networks. In the first method, the
betweenness of each module in modular map was calculated,
and the top 10% modules were selected as connectors. As for the
second method, the VRCD was calculated to detect connectors.
As the bridging modules constituted the channels between
modules, their removal would lead to interruption of the
inter-module connectivity (Missiuro et al., 2009; Yang et al.,
2009; Zhu et al., 2014). Therefore, we removed nodes
(module) in module map one by one and calculated the
change ratio of characteristic path length and network density.

η � Δs/Δt, (10)
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Δs � CPLa − CPLo
CPLo

, (11)

Δt � Da − Do
Do

. (12)

Δs is the change ratio of characteristic path length of modular
map. CPLo is the origin characteristic path length. CPLa is the
altered characteristic path length of modular map after deleting a
module. Δt is the change ratio of density of modular map. Do is
the origin density. Da is the altered density of modular map after
deleting a module. η is the ratio of Δs and Δt.

We set the double average η in each modular map as
respondent cutoff. Thereby, the modules, whose η is more
than cutoff, were identified as connectors based on VRCD.

In the edge weight distribution, the inter-module connections
were distributed based on their weight. The modules, whose
inter-module connection weight is more than 0.1, were
selected as connectors.

The connectors identified by all the three methods were regarded
as the characteristic modules in corresponding state. A pair of
connector modules (blue and brown) in the vehicle group was
identified as characteristic pathological inter-module connection,
which was named as “pathological module pair (PMP).”

Calculation of Dissociation Rate of PMP
The dissociation rate (DR) of PMP was also calculated. We
defined DR as the corrected ratio of the amount of modules
before dissociation to that after dissociation. The formula of DR is
as follows:

DR � nB
nA

•
NA

NB
. (13)

nA is number of modules in the initial state (disease state, nA � 2);
nB is number of modules in the succeeding state (treated by
drugs); and NA and NB are the total number of modules in initial
and succeeding states, respectively.

In Vivo Experiments Validation
In order to verify the conclusion, we designed three validation
assays using a rat MCAO model, which were introduced as the
above section.

Western Blot
Twenty MCAO rats were divided into five groups: sham, vehicle,
BA, JA, and UA group and administrated as before. The
hippocampus of rats was removed from their brains. After
protein extraction and protein quantitative analysis, protein
concentration was adjusted for load. We separated proteins
using sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE). After proteins electrotransferred
to nitrocellulose membranes, blots were incubated with rabbit
anti-Map2k6 antibody (1:2,000, Santa Cruz, CA, United States)
for overnight at 4°C. Then, cyclic membrane was washed and
stained by goat anti-rabbit IgG. The membranes were incubated
with an electrochemiluminescence reagent, After exposure, the
band density was determined with a GS-700 densitometer (Bio-
Rad). Each measurement was taken in three replicates.

RT-PCR
All of 40 rats were grouped and administrated as mentioned in the
earlier section. Total RNA from rats’ hippocampus was isolated using
TRIzol (Invitrogen, United States). Real-time PCR was performed
using a ABI 7300 Real-Time PCR System. The relative expression of
BBC3 and Bcl2l1 was analyzed using the relative content, through the
2−△△Ct method normalized by GAPDH expression.

Co-Immunoprecipitation (Co-IP)
Co-IP was performed to prove the interaction between BBC3 and
Bcl2l1 as described in (Wang et al., 2009). Briefly, tissues from animals
were homogenized. The procedure of supernatants collection and
separation is the same as Western blot. After protein extraction and
protein quantitative analysis, rabbit anti-BBC3 (CST14570, Danvers,
MA, United States) and anti-Bcl2l1 (CST2764, Danvers, MA,
United States) at a concentration of 1:1,000 and 1:2,000,
respectively, were coupled to SiezeX beads according to the
protocol of kit parameters (Pierce). Finally, eluted proteins were
separated in 12–15% SDS-PAGE and electrotransferred to
nitrocellulose for immunoblots.

RESULTS

Drug Efficacy Variation in Ischemic Infarct
Volume
According to the drug efficacy examination, BA, UA, and JA
significantly reduced the ischemic infarct volume, whereas no
significant change was detected in the CM group compared with
vehicle. Therefore, we described BA, UA, and JA as effective
drugs, and CM as an ineffective drug in the following section.

Construction and Evaluation of
Inter-module Coordination Analysis
Based on the expression of above 374 genes, co-expression networkwas
constructed and modules were identified using a WGCNA R package
(Langfelder and Horvath, 2008). A total of 48, 23, 42, 15, and 24
modules were detected in the vehicle, BA, JA, UA, andCMgroups, and
the detailed process was described in our previous study (Li et al., 2016)
(Supplementary Figure S1); the expression level of mRNAwas shown
inSupplementaryMaterial 1. Inter-module coordinationwas achieved
not only by direct interactions amongmodules but also through shared
partners (Hsu et al., 2011) or between-module (or pathways) paths that
consist of multiple proteins and interactions. In this study, we used the
CT score and PS to evaluated inter-module relationship mediated by
paths and SW for direct module-to-module interactions. For the false-
positive levels inherent in the DNAmicroarray data, we introduced the
hypergeometric distribution test, as a result, identified 28.35% SW and
31.74% PS with significance, and screened 22.07% valid CT score by
cutoff value (Figure 2A; Supplementary Tables S1, S2). These CT
scores andPSprovided supplementary inter-module relationship: 64.42
and 146.01% more than SW (Figure 2B).

All the inter-module correlations summarized or calculated
are presumed to contribute to biological function coordination.
In this study, we employed KEGG signaling to optimize the
IMCC (Supplementary Table S3). Our results (Figures 2E,F)
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suggested that the optimal ρ value in the IMCC1 model was 1/1
and the most fitting model was the logarithmic model with R2

reaching the peak of 0.616 with two sides sloping down to lower
values: when ρ � 1/10 or ρ � 10/1, the minimum R2 of each side
was observed, respectively (Supplementary Figure S2).
Therefore, it is proper to decide that the integrated parameter
IMCC1 is more consistent with the KEGG classification than any
single index (SW or CT), which would provide more accurate
evaluation of the relationship between modules. Using the same
method, we compared the IMCC2 with IMCC1 and chose the
IMCC1 model as the optimal model with a ρ value of 1/1. This
also indicated that the quantitative parameter IMCC1 reflects the
functional coordination of module pairs.

For comparison between SW and IMCC, the fitting model of
SW was y � 0.1374ln(10) + 0.9807, with R2 equal to 0.580, which is
lower than 0.616 of IMCC (Figure 2G). The results indicate that
IMCC achieved better performance on the weighted gene co-
expression data. It also means that the results based on IMCC
are more consistent with biological function than SW. This can be
attributed to the adjustable parameters (weighted coefficient α and
β) for SW and consistency score (CT), which make IMCC more
likely to reach the optimal result in KEGG function coverage.

From the topological structure, the IMCC was generally
consistent with inter-module average shortest path with
coefficient of determination equal to 0.493 (Figures 2C,D;
Supplementary Table S4).

FIGURE 2 | Quantitative evaluation of the IMCC method. (A) The screening outcomes of the three inter-module connectivity parameters (SW, CT, and PS). The
height of the column represents the total amount of SW, CT, and PS, respectively. Red and blue parts of the columns represent the screened out and the remaining
parameters, respectively. (B) The overlapping condition of two parameters to be integrated as IMCC1 and IMCC2. (C) The IMCC value against the inter-module average
characteristic path length (IMASP) of module pairs. (D) Scatter plot and linear fitting of log2 transformation of IMCC vs. IMASP. The formula is y � 0.0521x + 1.3989,
with R2 � 0.493. (E) The R2 of multiple fitting models for IMCC and JS. (F,G) are the fitting curves of logarithmic model of JS and IMCC, JS, and SW.
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GLOBAL MODULAR MAP REWIRING
REVEALS THE PERTURBATION PATTERN
OF DRUGS ON DISEASE
Drugs Destroyed the Characteristic
“Core–periphery” Structure in Disease
Globally, the distribution of IMCC between disease and treated
groups was obviously diverse (Figures 3A,B): BA-, JA-, and UA-
treated groups were different compared to the vehicle group with
significance (chi-square test, p < 0.05), whereas no statistical
difference was noted between the ineffective (CM) group and the
vehicle group (chi-square test, p � 0.06374). Besides, according to

the distance in PCA, CM was the nearest to the vehicle
(Figure 3C; Supplementary Table S5). This indicated that the
transitions of inter-module coordination induced by the effective
drugs were more thorough than those induced by the
ineffective one.

Based on the IMCC, the modular map across condition was
constructed in which modules were regarded as uniform nodes
and the IMCC between any pair of modules as edges. As a result,
the module map provided a holistic perspective of the inter-
module coordination and framework extracted as “backbone” in
disease and treated conditions. According to the topological
analysis, the modular map in the disease exhibited a topical

FIGURE 3 |Comparison of distribution of the IMCC score and global modular map rewiring. (A) The relative distribution of the IMCC score. The X-axis is the -log2 of
the IMCC score. (B) Star graph of the relative account of the IMCC score distributing in four intervals (−∞, 5.2] (5.2–7.3] (7.3–10.2] (10.2−+∞]. These four intervals were
indicated by black, red, green, and blue, respectively. (C) The principal component analysis of distribution of the IMCC score in each group. Each interval is set as
variable, and relative frequencies in each interval are set as values of corresponding variables. (D) Euclidean distance of architecture of modular map in different
groups. Three indexes (average weight, density, and centrality) were used to constitute the dimensions of space euclidean distance calculation. (E)Modular map based
on IMCC across conditions. Each circle in modular map represents a module, the color of which indicates the betweenness in the corresponding modular map. Circles
with black solid line around are connectors (modules) identified by edge weight distribution for further GO enrichment analysis.
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“core–periphery” structure, with the network centrality of the
modular map of 0.525. Whereas this “core–periphery” structure
collapsed in the treated groups, the network centrality was
significantly decreased to 0.156, 0.271, and 0.22 (one-sample
t-test, two-sided p < 0.05) in BA, JA, and UA groups,
respectively (Figures 3D,E; Table 1).

It is indicated that from the mesoscopic perspective, network
organization in stress exhibits a characteristic “core–periphery”
architecture. In this architecture, the “periphery” is constituted of
small well-defined communities; conversely, the “core” consists
of highly interconnected larger modules harder to decompose
(Bollobás, 1998; Lancichinetti et al., 2010; Han et al., 2013; Verma
et al., 2016). According to results, in this “core–periphery”
structure in disease condition, all the information propagation
is of radial distribution around a couple of modules, and the
integrity of the network is completely dependent on the modules
at the center; thus, the system is liable to collapse under stress
response. It is also suggested that when a biological network is on
stress, the center of this “core–periphery” structure is a conserved
and stable module, with crucial role for cell survival rather than
development (Mihalik and Csermely, 2011; Kim et al., 2012; Han
et al., 2013), to adapt to the novel situation. Accordingly, the
modular map in disease state exhibits a characteristic
“core–periphery” structure, core of which may contribute to
cell survival. And this structure would be rewired and collapse
in response to drug perturbation.

Aggregation and Dispersion of Modules:
Two Allosteric Directions of Drugs
Although the network centrality decreased in all of the treated
groups, we wondered if there were any distinct topological
structures in different effective drug groups. Using analysis of
neighborhood-based parameters in modular maps, we noted that
the effective drugs showed two distinct regulatory directions. For
one direction, in BA and UA groups, the inter-module
connections were very dense and modules tended to aggregate.
For example, the network density increased from 0.271 in vehicle
to 0.858 (increased by 216.6%) and 0.81 (increased by 198.9%),
the characteristic path length of the modular map decreased from
1.848 in vehicle to 1.142 (decreased by 38.2%) and 1.19 (decreased
by 35.6%), in BA and UA groups, respectively. Generally, after
treatment with BA and UA, the centrality of the modular map
decreased, and the connections between noncentral modules

increased (Figures 3D,E and Table 1). All these alterations
drive the modular map into a clique-like structure, in which
any module pairs are connected by edges. Such alterations
indicated that information propagation was easier to be
implemented. Such a structure is shown to have the highest
integrity and the strongest robustness under perturbation.
Overall, the modules in BA or UA groups aggregated into a
more intensively connected integrity.

As for the opposite direction, in the JA group, the modular
map altered into a sparser network, and the information
propagation path was elongated: compared with vehicle, the
network density decreased to 0.101 (decreased by 62.7%); and
the characteristic path length and average betweenness centrality
increased by 55 and 150%, to 2.865, and 0.0493, respectively. In
general, after treatment with JA, the centrality of the modular
map also decreased, which attributed to the disruption between
central modules and noncentral modules. Thus, we assumed that
the effect of JA on the module map includedmodule dispersing. It
should be noted that the average weight nearly quadrupled from
0.021 in vehicle to 0.081 in JA (Figures 3D,E and Table 1),
indicating that the paths between modules became wider and
smoother than those in disease state. Therefore, we inferred that
the pharmacological effects of JA were decoupling partial inter-
module paths and widening the remaining connectivity, which
may consequently interrupt the pathological information
transmission and enhance the remaining information
transmission.

Both of module aggregation and dispersion effect of drugs
destroyed the characteristic “core–periphery” architecture in
disease, that means the importance of “core” for cell survival
decreased in treated conditions, and the emphasis of the cell may
turn from survival into development. We can infer that cerebral
ischemia injury was repaired after treated by these drugs. Then,
what is the biological function of the “core”? How is this “core”
reversed by these drugs?

LOCAL DISSECTION OF COOPERATIVE
PATHOLOGICAL MODULE PAIR
INDICATED MECHANISMS
Identification and Dissection of Connectors
The topological structure analysis of modular map provides a
landscape of the transition of inter-module connections from

TABLE 1 | Topological parameters of the module map in different groups. The symbols “↑” and “↓” represent “increase” and “decrease,” respectively, compared with the
vehicle group. The three highlighted parameters with red letter were selected as the representative index of the three types of parameters for further euclidean distance
calculation.

Group Avg.
degree

Density Characteristic
path
length

Diameter Avg.
betweenness

Cluster
coefficient

Centrality Avg.
weight

Euclidean
distance

Vehicle 11.911 0.271 1.848 4 0.0197 0.615 0.525 0.0213 –

BA 18.87↑ 0.858↑ 1.142↓ 2↓ 0.0068↓ 0.867↑ 0.156↓ 0.0208↓ 1.2655
JA 3.95↓ 0.101↓ 2.865↑ 7↑ 0.0493↑ 0.281↓ 0.271↓ 0.081↑ 0.9476
UA 11.333↓ 0.81↑ 1.19↓ 2↓ 0.0147↓ 0.857↑ 0.22↓ 0.0357↑ 1.0998
CM 8.571↓ 0.429↑ 1.71↓ 4 0.0373↑ 0.661↑ 0.411↓ 0.0409↑ 0.4199
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FIGURE 4 | Identification of connectors and dissociation of pathological module pair. (A)Connectors identified by variation of ratio of characteristic path length and
density (VRCD). The Δs and Δt represent the variation ratio of characteristic path length to network density, η represents average ratio of Δs and Δt. The 2-fold change of
η, shown as dotted linear, was set as cutoff. Modules in the pink sector domains were identified as connectors. None of modules were identified as connector in BA and
UA groups for their clique-like structure with equal η of all modules (red line). (B)Connector sub-network identified by edge weight distribution. (C) Local dissection
of cooperative pathological module pair (PMP). Genes of PMP in vehicle were scattered into different modules in BA-, JA-, and UA-treated groups. Each dashed circle
represents a module; circles with the same color in the same region indicate genes in the same module; gray rough lines represent the inter-module connections; gray
thread lines represent the interactions between genes.
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disease to treated conditions. In order to identify the modules
contributing to information propagation in the modular map, we
employed three methods to detect the “connectors” (Figure 4A,
Supplementary Tables S6, S7), which were defined as modules
bridging one community to another (Yu et al., 2007; Zhu et al.,
2014) and controlling the information flow dissemination
between modules. As a result, connector networks were
detected in each group (Figure 4B). In the light of the disease
condition, the module pair with the strongest coordination was
identified as connectors, which can be regarded as “a broad bridge
with heavy traffic, controlling essential pass.” This pair of
connectors can be treated as the “core” reflecting the
characteristic pathological process in the disease condition
(Figure 4C), so were named as “pathological module
pair (PMP).”

To assess the allosteric communication of connectors from
untreated to treated conditions, we investigated what had
happened to the “core” after perturbation to reveal the
pharmacological mechanisms of these drugs. Dissociation rate
(DR) was proposed to evaluate how one modular pair in one
condition scattered in other condition. The PMP in the vehicle
group dispersed into several modules in different treated groups.
The DR was 15.65, 14.29, and 16 in BA, JA, and UA, respectively
(Table 2). As shown in Figure 4C, the effective drugs also
displayed two distinct directions. In the BA group, more than
one half of the nodes constituting PMP dispersed into one
common module (turquoise). Similar to BA, 81.63% nodes in
the PMP dispersed into four connectors (blue, brown, turquoise,
and yellow) after treatment with UA. Nodes from the PMP
aggregated into a compact integrity, like an intensely
interacted module sub-network facilitating information
communication. In the JA group, the nodes from the PMP
scattered into 25 modules, the amount of which accounted for
more than one half of the total 48 modules. This dispersion from
an intimate interaction to more sparsely association was also
noted in the modular map analysis, which would lead to
interruption of some information propagation.

PMP Dissociation Leads to Reversion of the
Pathological Processes
In order to understand how functions altered by PMP dispersion,
we enriched KEGG pathways for each module of the PMP and
modules that PMP nodes assembling in treated condition
(Table 3).

All enriched KEGG pathways of the PMP in disease are related
to the pathological process of the nervous system injury. For

example, inhibition of MAPK signaling or mTOR signaling can
effectively reduce cerebral ischemia reperfusion injury (Dennis
et al., 2001; Sovan, 2013; Johansson et al., 2014; King et al., 2015;
Yang et al., 2016). Ischemic long-term potentiation (i-LTP)
increasing and vascular smooth muscle contraction are
pathological changes following cerebral ischemic injury
(Maddahi et al., 2009) (Orfila et al., 2014) (Wang et al., 2014).
ALS is related to motor neurons degeneration in the cortex
(Sathasivam et al., 2001); (Menzies et al., 2002); (Hristelina
et al., 2009); (Jordi 2009 Giovanni 2009); (Ivanova et al.,
2014). Prion disease may lead to neuronal death by oxidative
stress and regulation of complement activation (McLennan et al.,
2004). Notably, these pathways were all cross-talk with MAPK
signaling: MAPK signaling pathway is the upstream signaling of
mTOR signaling pathway and is involved in long-term
potentiation and ALS and also acts as a critical factor to
mediate vascular smooth muscle contraction. It is the inter-
module structural connection in PMP that bridges the
functional correlations among these nervous injury–related
pathways, in which the MAPK signaling pathway plays a
major role. Therefore, these pathways of PMP reflected the
cell survival condition in the process of neural ischemia injury.

Whereas, in the treated groups, PMP was dissociated into
several modules, accompanied with reversion of the pathological
processes and a new adaptive balance of biological system. In BA
and UA, the top 10 KEGG signaling concentrated in MAPK
signaling, GnRH signaling, viral infection, cancer,
neurotrophin signaling, and chemokine signaling pathway.
That means, after treated, the emphasis of the cell shift from
survival, represented by nervous injury–related pathways
centered on MAPK signaling, into development and repair,
such as neurotrophin regulation, chemokine signaling, and
hormone releasing.

Assay Validation
To validate the PMP that is essential for the contribution of
disease phenotype, we used MCAO rats to examine the core
protein, genes, and interaction. First, we compared the expression
of a protein (MAP2k6) of MAPK signaling byWestern blot in the
disease and treated groups. Second, in order to verify the
regulatory direction of BA, JA, and UA, we used RT-PCR to
examine the gene expression differences of a pair of genes from
PMP, Bcl2l1, and BBC3. The interaction of the two genes was
tested using immune co-immunoprecipitation (co-IP).

According to Western blot analysis (Figures 5A,B,
Supplementary Figure S3), the expression of Map2k6 protein
in mice brains was significantly decreased in the vehicle group
than the sham group (p < 0.05, one-sided, paired t-test).
Expression of Map2k6 protein increased significantly in the JA
group compared with samples in the vehicle group (p < 0.05, one-
sided, paired t-test). No statistically significant differences were
found in other treated groups.

The BBC3 and Bcl2l1 mRNA were examined by RT-PCR
(Figures 5C,D). The BBC3 mRNA expression was significantly
increased in the JA group (p < 0.05, one-sided, paired t-test), but
decreased slightly in BA and UA groups. Compared with vehicle,
the expression of Bcl2l1 was significantly increased in the JA

TABLE 2 | Dissociation rate of the PMP in each treated group.

BA JA UA CM

nA 2 2 2 2
nB 15 25 10 11
NA 48 48 48 48
NB 23 42 15 23
DR 15.65 14.29 16 11.48
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group (p < 0.05, one-sided, paired t-test) but decreased
significantly in BA and UA groups (p < 0.05, one-sided,
paired t-test). The outcome of RT-PCR indicated that the
regulatory effects of BA and UA showed opposite directions to
that of JA.

Both Bcl-Xl and BBC3 were detected in precipitation products
of BBC3 IgG or Bcl-Xl IgG (Figures 5E,F). There was an
interaction between BBC3 protein and Bcl-XL protein. By
searching the String database (String 10.0, http://www.string-
db.org/), we found that BBC3 and Bcl2l1 were correlated with

TABLE 3 | Enriched KEGG pathways of the PMP in disease condition, and top 10 KEGG pathways of modules in BA and UA that PMP nodes scattered in.

Enriched KEGG pathways p value

Vehicle-blue mmu04150: mTOR signaling pathway 0.010,800,621
mmu04720: Long-term potentiation 0.017,728,358
mmu04270: Vascular smooth muscle contraction 0.048,072,485

Vehicle-brown mmu05014: Amyotrophic lateral sclerosis 3.13E-04
mmu04010: MAPK signaling pathway 0.00308,276
mmu05020: Prion diseases 0.00314,163

Top 10 signaling of BA-blue mmu05200: Pathways in cancer 3.40E-16
mmu04912: GnRH signaling pathway 4.48E-15
mmu04010: MAPK signaling pathway 9.55E-14
mmu05166: HTLV-I infection 4.56E-11
mmu05161: Hepatitis B 2.49E-10
mmu04722: Neurotrophin signaling pathway 1.95E-09
mmu04062: Chemokine signaling pathway 2.59E-09
mmu04668: TNF signaling pathway 4.82E-08
mmu05203: Viral carcinogenesis 1.91E-07
mmu05210: Colorectal cancer 3.01E-07

Top 10 signaling of UA-blue, brown, turquoise, and yellow mmu05200: Pathways in cancer 3.40E-16
mmu04912: GnRH signaling pathway 4.48E-15
mmu04010: MAPK signaling pathway 9.55E-14
mmu05166: HTLV-I infection 4.56E-11
mmu05161: Hepatitis B 2.49E-10
mmu05212: Pancreatic cancer 1.54E-10
mmu04722: Neurotrophin signaling pathway 1.95E-09
mmu04062: Chemokine signaling pathway 2.59E-09
mmu04015: Rap1 signaling pathway 1.53E-09
mmu04668: TNF signaling pathway 4.82E-08

FIGURE 5 | Validation of core protein, genes, and interaction in PMP. (A and B) show expression of MAP2K6 of Western blot in distinct groups. (C and D) are
relative contents of BBC3 and Bcl2l1 among different groups. *p < 0.05. (E and F) represent the co-immunoprecipitation results of BBC3 and Bcl-xl.
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each other (correlation score � 0.999), remarked by reaction and
binding.

DISCUSSION

In the current study, we proposed an integrated mathematical
model for quantitative evaluation of the transition of inter-
module coordination across conditions. Globally, we found the
high centrality “core–periphery” modular map is a characteristic
structure in cerebral ischemia condition. Furthermore, it is the
rewiring of the interactions between modules and consequent
architecture alteration in the modular map, rather than a single
gene or a single module, that leads to phenotype alteration in
response to drugs perturbation. Our result also indicated that BA,
UA, and JA showed diversification of the pharmacological effect
directions: the pharmacological mechanism of BA and UA can be
attributed to aggregation of modules into a clique-like
community, enhanced connections between noncentral
modules, facilitation of paths for information communication
between non-modules, and promotion of robustness in response
to perturbation; the pharmacological mechanism of JA is ascribed
to selective interruption of information transmission and
enhancement of some specific information propagation.
According to the local allosteric, the “core” of
“core–periphery” structure is an interacting PMP, whose
biological function focused on nervous injury pathways
bridged by MAPK signaling pathway. BA and UA aggregated
the dissociated nodes into a compact integrity, whereas JA
dispersed the dissociated nodes from the PMP. PMP
dissociation leading by drugs contributed to the reversion of
the pathological condition: the focus of the cellular function shift
from survival after nervous system injury into development and
repair, including neurotrophin regulation, hormone releasing,
and chemokine signaling activation. Finally, these results were
validated by in vivo experiments of MCAO rats.

Ischemic stroke is a complex disease with multiple gene
mutations. For this disease, a "from systematic to molecular
levels" analytical strategy was established to decipher the
pharmacological mechanism of multi-target drugs. Our result
highlights the holistic inter-module coordination
rearrangement rather than a target or a single module that
brings phenotype alteration. That may indicate in the biological
system, one kind of complex adaptive system composed of a set
of basic units and interactions, rewiring of interactions between
basic units lead to nonlinear phenomena: novel phenotype
emergence to response to perturbation (Zhang et al., 2014).
Therefore, complexity, in essence, is a science of emergence. The
challenge is how to discover the primary principles of
emergence, as a foundation, to quantify the interactions
between basic units and their alterations across different
conditions. Quantitative analysis of drug-induced transition

in modular map was the principal problem for systematically
elucidating the comprehensive pharmacological mechanisms of
multi-target drugs and the inevitable choice for network-based
drug discovery. Our strategy may help to map the detailed
variations of inter-module pharmacological actions of multiple-
target drugs and could be set as reference for other active
ingredients.
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