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Classification learning is a preeminent human ability within the animal kingdom but the
key mechanisms of brain networks regulating learning remain mostly elusive. Recent
neuroimaging advancements have depicted human brain as a complex graph machinery
where brain regions are nodes and coherent activities among them represent the
functional connections. While long-term motor memories have been found to alter
functional connectivity in the resting human brain, a graph topological investigation of the
short-time effects of learning are still not widely investigated. For instance, classification
learning is known to orchestrate rapid modulation of diverse memory systems like
short-term and visual working memories but how the brain functional connectome
accommodates such modulations is unclear. We used publicly available repositories
(openfmri.org) selecting three experiments, two focused on short-term classification
learning along two consecutive runs where learning was promoted by trial-by-trial
feedback errors, while a further experiment was used as supplementary control. We
analyzed the functional connectivity extracted from BOLD fMRI signals, and estimated
the graph information processing in the cerebral networks. The information processing
capability, characterized by complex network statistics, significantly improved over runs,
together with the subject classification accuracy. Instead, null-learning experiments,
where feedbacks came with poor consistency, did not provoke any significant change
in the functional connectivity over runs. We propose that learning induces fast
modifications in the overall brain network dynamics, definitely ameliorating the short-
term potential of the brain to process and integrate information, a dynamic consistently
orchestrated by modulations of the functional connections among specific brain regions.

Keywords: short-term memory, functional magnetic resonance imaging, functional connectivity, complex
network analysis, information processing
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INTRODUCTION

Learning sensory inputs is a crucial property for humans
and animals in order to adapt their behaviors in relation
to the external environment variability and survival (Tetzlaff
et al., 2012). In many cases, these conditions demand for fast
learnings which occur in short temporal intervals (i.e., from
seconds to minutes). One specific type of learning (classification
learning) requires classifications of objects into categories, an
objective typically achievable by providing an adequate number
of correctly labeled examples. For instance, an ornithology
untrained subject can quickly learn to discriminate robins from
songbirds after an opportune instruction with examples of
both species.

In the human brain, classification learning essentially involves
two memory systems: the visual working memory and the visual
short-term memory (Knowlton et al., 1994; Foerde et al., 2007).
The brain functional correlates of these systems have been
broadly identified by functional magnetic resonance imaging
(fMRI) as a distributed network in many cortical regions
(Bettencourt and Xu, 2016) such as the prefrontal cortex,
the middle temporal gyrus, the posterior parietal areas, and
the occipital regions. Also, several subcortical regions like the
hippocampus (Aron et al., 2004), the amygdala and the striatum
seem involved, too (Harrison and Tong, 2009).

From a complex network perspective, the human brain
regions have massive mutual dependencies, combined in a spatial
organization arrangement known as the modules-and-hubs
architecture (Bullmore and Sporns, 2009, 2012; van den Heuvel
and Sporns, 2013), which promotes a wide variety of coherent
subnetwork dynamics and tasks serving resting-state (Greicius
et al., 2003), attention (Dosenbach et al., 2007; Sheremata et al.,
2018), salience (Fox and Raichle, 2007), sensorimotor inputs
and outputs (Bressler and Menon, 2010), language (Friederici
and Gierhan, 2013) and other functions (Achard et al., 2006).
However, the precise spatial and temporal superposition of each
subsystem during cognitive tasks still remains unclear, possibly
because of their reciprocal interconnections (Karahanoğlu and
Van De Ville, 2015) which generate blurring intersections of their
dynamic profile. Specifically, although particularly fine, statistical
techniques such as the Independent Component Analysis (ICA)
(Calhoun et al., 2001; Stone et al., 2002) may identify coherent
activities in the spatial and temporal domains, the formal model
relies on substantial assumptions as, for example, the non-
Gaussianity of data, a limitation likely to be changed by a
pure complex network approach which models the brain as a
sole whole unit.

Therefore, in this work, we propose a functional connectome
investigation of global large-scale neurophysiological bases of
the visual working and short-term memory dynamics elicited by
a classification learning task. In classification learning, human
subjects have to learn, in few minutes, the association of
some visual stimuli to specific choices (e.g., keystroke between
two buttons). User choices are driven by visual feedbacks
which lead the learning process. If feedbacks are consistently
provided over time (deterministically), participants eventually
learn the associations between visual stimuli and the correct

responses, while, if feedbacks are administered by chance
(probabilistically), participants do not learn any associations.
We used fMRI data from publicly available repositories related
to two similar classification learning experiments performed
by Poldrack et al. (2001) (Aron et al., 2006) on 30 healthy
subjects recruited. In a first part, the participants learned the
proper stationary associations by visual error feedbacks in two
consecutive sets of trials (Run 1 and 2) where the classification
accuracy increased over runs (Poldrack et al., 2001; Aron
et al., 2006). Subsequently, participants were challenged in
another couple of run sets with non-stationary visual feedbacks,
which disrupted the already formed memories and prevented
the formation of new associations. As control condition, we
used a third dataset where a cognitive task not activating
short-term memory systems (one-back working memory task)
was similarly executed along two runs. Examiners acquired
the Blood-Oxygen-Level Dependent (BOLD) signal from fMRI
together with a preliminary structural MRI of each subject.
Functional connectomes of subjects were extracted for each
run after the AFNI (Analysis of Functional NeuroImages)
preprocessing pipeline (Cox, 2012) and embedded in two
different atlases (Harvard-Oxford FSL (Rademacher et al., 1992;
Fischl et al., 2004) and Brainnetome (Fan et al., 2016) to
reduce effects of the choice of the anatomical parcellation.
On the extracted graphs, we applied a common set of
complex network statistics widely used in the brain functional
connectomes (i.e., node degree, global and local efficiency,
clustering coefficient and the average shortest path length) to
investigate the information processing dynamics of the brain
large-scale networks. Specifically, the aforementioned measures
complementarily estimated the extent of functional segregation
and functional integration (Tononi et al., 1994), two crucial
statistics highlighting the information processing capability of
complex brain networks.

The results showed a consistent and significant increment
of the information processing efficiency in terms of functional
segregation and integration in the second runs as compared to
the first ones. This suggest that distributed and ample functional
connectivity modifications emerge also in fast short-term
learning, enabling faster information integration in classification
learning tasks. Of note, these effects were mediated by coherent
co-activation or deactivation of specific brain regions mainly
from temporal, fusiform insular gyri and parietal lobe. No
evident session effects emerged from the third dataset of one-
back memory task.

MATERIALS AND METHODS

Subject Data
Data were retrieved by the OpenfMRI project [openfmri.org
now converged into the openneuro.org portal, number “ds002”
(Poldrack et al., 2001) and “ds052” (Aron et al., 2006)]
managed by the Poldrack Lab and the Center for Reproducible
Neuroscience at Stanford University (United States). The third
dataset was the “ds107” were uploaded by Duncan et al. (2009).
The database and its contents are made available under the
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FIGURE 1 | The experimental and computational frameworks. (A) Healthy participants performed a weather-prediction task through the association of card types to
a binary weather output (sunny/rainy). (B) Two stages of trials were presented sequentially to subjects where each trial was composed by four sections: a first phase
characterized by the visual presentation of the card, a second stage wherein the user makes the choice (sun/rain), a third phase with the visual feedback
(correct/wrong) and a short final rest phase with a blank screen. Depending on the task type, the feedbacks could be assigned deterministically or probabilistically.
(C) The AFNI preprocessing pipeline used for the structural MRI and the BOLD signals. (D) Axial view samples of the two atlases used to parcellate the fMRI
volumes: the FSL and the Brainnetome (BN). (E–G) Examples of, respectively, adjacency matrices (E), their related topological (F) and MNI space embeddings (G).
(H) Exemplary collections of complex network statistics plotted in Box–Whisker (1st, 25th, 50th, and 99th percentiles) with scattering points as measure of
dispersion. (I) The classification accuracy reported by the original works (Poldrack et al., 2001; Aron et al., 2006) shows that probabilistic feedbacks did not evoke
any consistent association learning.

Public Domain Dedication and License v1.0 (PDL)1. The ds002
dataset was populated by 17 healthy right-handed participants
(female = 10, age = 23.3 ± 2.8). The ds052 dataset contained 13
healthy subjects (female = 7, age = 22.8± 3.2). The ds107 dataset
contained 49 healthy monolingual English speakers. For each
participant, both fMRI acquisitions (repetition time, TR, of 2.0 s
in ds002 and ds052 and of 3.0 s in ds107, echo time, TE, of 4 ms
in ds002 and ds052 and of 50 ms in ds107) and structural MRIs
were included. All details about MRI and BOLD acquisitions can
be found in the related works (Poldrack et al., 2001; Aron et al.,
2006; Duncan et al., 2009). Classification accuracy of experiments
ds002 and ds052 has been computed by the metadata contained
in the ds002 and ds052 datasets.

1https://opendatacommons.org/licenses/pddl/index.html

Deterministic and Probabilistic
Classification Tasks
The objective of a classification learning experiment is to
promote the learning of a set of associations between visual
stimuli and specific user responses. Learning is driven by visual
feedbacks which lead the participant to choose responses that
give back “correct” feedbacks. When feedbacks are consistently
provided over the experimental session (i.e., with a deterministic
assignment), participants eventually learn the associations
between visual stimuli and correct response while, if feedbacks
are administered by chance (i.e., by a probabilistic assignment),
participants do not learn the arbitrary associations. During the
fMRI scans in the ds002 and ds052 experiments, the subjects had
to perform two different classification learning tasks along two
consecutive runs in a “weather prediction” setup (Figure 1A).
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TABLE 1 | Region of interest labels and coordinates in MNI space of the FSL Atlas
(CONN default).

Label ID Coordinates (X, Y,
Z)

Name (Abbreviation)

1 26, 52, 8 Frontal Pole Right (FP r)

2 −25, 53, 8 Frontal Pole Left (FP l)

3 37, 3, 0 Insular Cortex Right (IC r)

4 −36, 1, 0 Insular Cortex Left (IC l)

5 15, 18, 57 Superior Frontal Gyrus Right (SFG r)

6 −14, 19, 56 Superior Frontal Gyrus Left (SFG l)

7 39, 19, 43 Middle Frontal Gyrus Right
(MidFG r)

8 −38, 18, 42 Middle Frontal Gyrus Left (MidFG l)

9 52, 28, 8 Inferior Frontal Gyrus, pars
triangularis Right (IFG tri r)

10 −50, 28, 9 Inferior Frontal Gyrus, pars
triangularis Left (IFG tri l)

11 52, 15, 16 Inferior Frontal Gyrus, pars
opercularis Right (IFG oper r)

12 −51, 15, 15 Inferior Frontal Gyrus, pars
opercularis Left (IFG oper l)

13 35, −11, 50 Precentral Gyrus Right (PreCG r)

14 −34, −12, 49 Precentral Gyrus Left (PreCG l)

15 41, 13, −30 Temporal Pole Right (TP r)

16 −40, 11, −30 Temporal Pole Left (TP l)

17 58, −1, −10 Superior Temporal Gyrus, anterior
division Right (aSTG r)

18 −56, −4, −8 Superior Temporal Gyrus, anterior
division Left (aSTG l)

19 61, −24, 2 Superior Temporal Gyrus, posterior
division Right (pSTG r)

20 −62, −29, 4 Superior Temporal Gyrus, posterior
division Left (pSTG l)

21 58, −2, −25 Middle Temporal Gyrus, anterior
division Right (aMTG r)

22 −57, −4, −22 Middle Temporal Gyrus, anterior
division Left (aMTG l)

23 61, −23, −12 Middle Temporal Gyrus, posterior
division Right (pMTG r)

24 −61, −27, −11 Middle Temporal Gyrus, posterior
division Left (pMTG l)

25 58, −49, 2 Middle Temporal Gyrus,
temporooccipital part Right
(toMTG r)

26 −58, −53, 1 Middle Temporal Gyrus,
temporooccipital part Left (toMTG l)

27 46, −2, −41 Inferior Temporal Gyrus, anterior
division Right (aITG r)

28 −48, −5, −39 Inferior Temporal Gyrus, anterior
division Left (aITG l)

29 53, −23, −28 Inferior Temporal Gyrus, posterior
division Right (pITG r)

30 −53, −28, −26 Inferior Temporal Gyrus, posterior
division Left (pITG l)

31 54, 50, −17 Inferior Temporal Gyrus,
temporooccipital part Right
(toITG r)

(Continued)

TABLE 1 | Continued

Label ID Coordinates (X, Y,
Z)

Name (Abbreviation)

32 −52, −53, −17 Inferior Temporal Gyrus,
temporooccipital part Left (toITG l)

33 38, −26, 53 Postcentral Gyrus Right (PostCG r)

34 −38, −28, 52 Postcentral Gyrus Left (PostCG l)

35 29, −48, 59 Superior Parietal Lobule Right
(SPL r)

36 −29, −49, 57 Superior Parietal Lobule Left (SPL l)

37 58, −27, 38 Supramarginal Gyrus, anterior
division Right (aSMG r)

38 −57, −33, 37 Supramarginal Gyrus, anterior
division Left (aSMG l)

39 55, −40, 34 Supramarginal Gyrus, posterior
division Right (pSMG r)

40 −55, −46, 33 Supramarginal Gyrus, posterior
division Left (pSMG l)

41 52, −52, 32 Angular Gyrus Right (AG r)

42 −50, −56, 30 Angular Gyrus Left (AG l)

43 33, −71, 39 Lateral Occipital Cortex, superior
division Right (sLOC r)

44 −32, −73, 38 Lateral Occipital Cortex, superior
division Left (sLOC l)

45 46, −74, −2 Lateral Occipital Cortex, inferior
division Right (iLOC r)

46 −45, −76, −2 Lateral Occipital Cortex, inferior
division Left (iLOC l)

47 12, −74, 8 Intracalcarine Cortex Right (ICC r)

48 −10, −75, 8 Intracalcarine Cortex Left (ICC l)

49 0, 43, −19 Frontal Medial Cortex (MedFC)

50 6, −3, 58 Supplementary Motor Cortex Right
(SMA r)

51 −5, −3, 56 Supplementary Motor Cortex Left
(SMA l)

52 0, 21, −15 Subcallosal Cortex (SubCalC)

53 7, 37, 23 Paracingulate Gyrus Right (PaCiG r)

54 −6, 37, 21 Paracingulate Gyrus Left (PaCiG l)

55 1, 18, 24 Cingulate Gyrus, anterior division
(AC)

56 1, −37, 30 Cingulate Gyrus, posterior division
(PC)

57 1, −59, 38 Precuneous Cortex (Precuneous)

58 9, −79, 28 Cuneal Cortex Right (Cuneal r)

59 −8, −80, 27 Cuneal Cortex Left (Cuneal l)

60 29, 23, −16 Frontal Orbital Cortex Right (FOrb r)

61 −30, 24, −17 Frontal Orbital Cortex Left (FOrb l)

62 22, −8, −30 Parahippocampal Gyrus, anterior
division Right (aPaHC r)

63 −22, −9, −30 Parahippocampal Gyrus, anterior
division Left (aPaHC l)

64 23, −31, −17 Parahippocampal Gyrus, posterior
division Right (pPaHC r)

65 −22, −32, −17 Parahippocampal Gyrus, posterior
division Left (pPaHC l)

66 14, −63, −5 Lingual Gyrus Right (LG r)

(Continued)
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TABLE 1 | Continued

Label ID Coordinates (X, Y,
Z)

Name (Abbreviation)

67 −12, −66, −5 Lingual Gyrus Left (LG l)

68 31, −3, −42 Temporal Fusiform Cortex, anterior
division Right (aTFusC r)

69 −32, −4, −42 Temporal Fusiform Cortex, anterior
division Left (aTFusC l)

70 36, −24, −28 Temporal Fusiform Cortex,
posterior division Right (pTFusC r)

71 −36, −30, −25 Temporal Fusiform Cortex,
posterior division Left (pTFusC l)

72 35, −50, −17 Temporal Occipital Fusiform Cortex
Right (TOFusC r)

73 −33, −54, −16 Temporal Occipital Fusiform Cortex
Left (TOFusC l)

74 27, −75, −12 Occipital Fusiform Gyrus Right
(OFusG r)

75 −27, −77, −14 Occipital Fusiform Gyrus Left
(OFusG l)

76 41, 19, 5 Frontal Operculum Cortex Right
(FO r)

77 −40, 18, 5 Frontal Operculum Cortex Left
(FO l)

78 49, −6, 11 Central Operculum Cortex Right
(CO r)

79 −48, −9, 12 Central Operculum Cortex Left
(CO l)

80 49, −28, 22 Parietal Operculum Cortex Right
(PO r)

81 −48, −32, 20 Parietal Operculum Cortex Left
(PO l)

82 48, −4, −7 Planum Polare Right (PP r)

83 −47, −6, −7 Planum Polare Left (PP l)

84 46, −17, 7 Heschl’s Gyrus Right (HG r)

85 −45, −20, 7 Heschl’s Gyrus Left (HG l)

86 55, −25, 12 Planum Temporale Right (PT r)

87 −53, −30, 11 Planum Temporale Left (PT l)

88 8, −74, 14 Supracalcarine Cortex Right
(SCC r)

89 −8, −73, 15 Supracalcarine Cortex Left
(SCC l)

90 18, −95, 8 Occipital Pole Right (OP r)

91 −17, −97, 7 Occipital Pole Left (OP l)

92 11, −18, 7 Thalamus Right (Thalamus r)

93 −10, −19, 6 Thalamus Left (Thalamus l)

94 13, 10, 10 Caudate Right (Caudate r)

95 −13, 9, 10 Caudate Left (Caudate l)

96 25, 2, 0 Putamen Right (Putamen r)

97 −25, 0, 0 Putamen Left (Putamen l)

98 20, −4, −1 Palladium Right (Palladium r)

99 −19, −5, −1 Palladium Left (Palladium l)

100 26, −21, −14 Hippocampus Right
(Hippocampus r)

101 −25, −23, −14 Hippocampus Left (Hippocampus l)

102 23, −4, −18 Amygdala Right (Amygdala r)

103 −23, −5, −18 Amygdala Left (Amygdala l)

104 9, 12, −7 Accubens Right (Accubens r)

105 −9, 11, −7 Accubens Left (Accubens l)

106 0, −30, −35 Brainstem (Brainstem)

Participants have to learn associations between cards (four in
ds002, one to three in ds052) and a binary output, visually
represented (as feedback) by a sun or a rainy cloud, after their
responses. Learning occurs trial-by-trial while the visual feedback
errors (correct/incorrect) drive subjects towards the correct card-
weather associations. According to the metadata in the dataset,
although these consistently derives from the materials presented
in Poldrack et al. (2001), Aron et al. (2006), in the first series of
two consecutive runs, trials were characterized by deterministic
associations between cards and weathers. In the second series,
instead, the associations were assigned probabilistically. In each
run there were 80 trials in ds002 (∼5 min of total duration) and
48 in ds052 (∼3 min of total duration).

One-Back Working Memory Task
In the ds107 experiment, the participants (N = 49) observe a
sequence of objects and have to press a specific key on a keyboard
whether the current object was identical to the previous one,
during MRI scanning. Visual stimuli belonged to four categories
(Duncan et al., 2009): written words, pictures of common objects,
scrambled pictures and consonant letter strings. Stimuli were
presented in a sequence of four blocks. Each block consisted of
16 trials from a single category. Objects appeared on a screen for
350 ms each. A trial began with a 650 ms fixation cross, for a total
of 1 s per trial.

Signal Processing
Data were preprocessed and analyzed using the following
MATLAB toolbox: SPM12 (Friston et al., 2007), CONN
(Whitfield-Gabrieli and Nieto-Castanon, 2012) and BCT
(Rubinov and Sporns, 2010). Prior to analyses, all images
underwent preprocessing steps according to the AFNI pipeline
(Cox, 2012) in the following order: realign and unwarp of
functional slices, centering of functional slices, slice-timing
correction of functional volumes, outlier detection in functional
volumes, direct segmentation and normalization in Montreal
Neurological Institute (MNI) space of the functional volumes,
centering of the structural slices, segmentation and normalization
in MNI space of the structural volumes and smoothing of the
functional volumes. We used the default parameters (functional
outlier detection = 97th percentiles, global-signal z-value
threshold = 5, subject-motion mm threshold = 0.9, structural
target resolution = 1 mm, functional target resolution = 2 mm,
smoothing kernel FWHM = 8 mm) suggested within the CONN
framework for all processing steps (Whitfield-Gabrieli and
Nieto-Castanon, 2012). In addition, to avoid errors derived from
the choice of the atlas, we used two different atlases: the FSL
(Rademacher et al., 1992; Fischl et al., 2004) and the Brainnetome
(Fan et al., 2016) (BN). From the FSL atlas we removed ROIs
related to the Vermis and the Cerebellum thus obtaining 106
ROIs, while the BN atlas did not contain cerebellar regions and
consists of 246 ROIs.

Functional Connectivity Estimation
After BOLD signal preprocessing, data underwent a denoising
step through a band-pass filter in the frequency of [0.008, 0.09]
Hz and a despiking procedure to furtherly remove motion
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TABLE 2 | ROI labels and coordinates in MNI space of the Brainnectome Atlas (BN).

Gyrus Brodmann’s location Label ID.L Label ID.R MNI.L MNI.R

Superior Frontal Gyrus A8m, medial area 8 1 2 −5, 15, 54 7, 16, 54

A8dl, dorsolateral area 8 3 4 −18, 24, 53 22, 26, 51

A9l, lateral area 9 5 6 −11, 49, 40 13, 48, 40

A6dl, dorsolateral area 6 7 8 −18, −1, 65 20, 4, 64

A6m, medial area 6 9 10 −6, −5, 58 7, −4, 60

A9m, medial area 9 11 12 −5, 36, 38 6, 38, 35

A10m, medial area 10 13 14 −8, 56, 15 8, 58, 13

Middle Frontal Gyrus A9/46d, dorsal area 9/46 15 16 −27, 43, 31 30, 37, 36

IFJ, inferior frontal junction 17 18 −42, 13, 36 42, 11, 39

A46, area 46 19 20 −28, 56, 12 28, 55, 17

A9/46v, ventral area 9/46 21 22 −41, 41, 16 42, 44, 14

A8vl, ventrolateral area 8 23 24 −33, 23, 45 42, 27, 39

A6vl, ventrolateral area 6 25 26 −32, 4, 55 34, 8, 54

A10l, lateral area 10 27 28 −26, 60, −6 25, 61, −4

Inferior Frontal Gyrus A44d, dorsal area 44 29 30 −46, 13, 24 45, 16, 25

IFS, inferior frontal sulcus 31 32 −47, 32, 14 48, 35, 13

A45c, caudal area 45 33 34 −53, 23, 11 54, 24, 12

A45r, rostral area 45 35 36 −49, 36, −3 51, 36, −1

A44op, opercular area 44 37 38 −39, 23, 4 42, 22, 3

A44v, ventral area 44 39 40 −52, 13, 6 54, 14, 11

Orbital Gyrus A14m, medial area 14 41 42 −7, 54, −7 6, 47, −7

A12/47o, orbital area 47 43 44 −36, 33, −16 40, 39, −14

A11l, lateral area 11 45 46 −23, 38, −18 23, 36, −18

A11m, medial area 11 47 48 −6, 52, −19 6, 57, −16

A13, area 13 49 50 −10, 18, −19 9, 20, −19

A12/47l, lateral area 12/47 51 52 −41, 32, −9 42, 31, −9

Precentral Gyrus A4hf, area 4(head and face region) 53 54 −49, −8, 39 55, −2, 33

A6cdl, caudal dorsolateral area 6 55 56 −32, −9, 58 33, −7, 57

A4ul, area 4(upper limb region) 57 58 −26, −25, 63 34, −19, 59

A4t, area 4(trunk region) 59 60 −13, −20, 73 15, −22, 71

A4tl, area 4(tongue and larynx region) 61 62 −52, 0, 8 54, 4, 9

A6cvl, caudal ventrolateral area 6 63 64 −49, 5, 30 51, 7, 30

Paracentral Lobule A1/2/3ll, area1/2/3 (lower limb region) 65 66 −8, −38, 58 10, −34, 54

A4ll, area 4 (lower limb region) 67 68 −4, −23, 61 5, −21, 61

Superior Temporal Gyrus A38m, medial area 38 69 70 −32, 14, −34 31, 15, −34

A41/42, area 41/42 71 72 −54, −32, 12 54, −24, 11

TE1.0 and TE1.2 73 74 −50, −11, 1 51, −4, −1

A22c, caudal area 22 75 76 −62, −33, 7 66, −20, 6

A38l, lateral area 38 77 78 −45, 11, −20 47, 12, −20

A22r, rostral area 22 79 80 −55, −3, −10 56, −12, −5

Middle Temporal Gyrus A21c, caudal area 21 81 82 −65, −30, −12 65, −29, −13

A21r, rostral area 21 83 84 −53, 2, −30 51, 6, −32

A37dl, dorsolateral area37 85 86 −59, −58, 4 60, −53, 3

aSTS, anterior superior temporal sulcus 87 88 −58, −20, −9 58, −16, −10

Inferior Temporal Gyrus A20iv, intermediate ventral area 20 89 90 −45, −26, −27 46, −14, −33

A37elv, extreme lateroventral area 37 91 92 −51, −57, −15 53, −52, −18

A20r, rostral area 20 93 94 −43, −2, −41 40, 0, −43

A20il, intermediate lateral area 20 95 96 −56, −16, −28 55, −11, −32

A37vl, ventrolateral area 37 97 98 −55, −60, −6 54, −57, −8

A20cl, caudolateral of area 20 99 100 −59, −42, −16 61, −40, −17

A20cv, caudoventral of area 20 101 102 −55, −31, −27 54, −31, −26

Fusiform Gyrus A20rv, rostroventral area 20 103 104 −33, −16, −32 33, −15, −34

A37mv, medioventral area 37 105 106 −31, −64, −14 31, −62, −14

(Continued)
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TABLE 2 | Continued

Gyrus Brodmann’s location Label ID.L Label ID.R MNI.L MNI.R

A37lv, lateroventral area 37 107 108 −42, −51, −17 43, −49, −19

Parahippocampal Gyrus A35/36r, rostral area 35/36 109 110 −27, −7, −34 28, −8, −33

A35/36c, caudal area 35/36 111 112 −25, −25, −26 26, −23, −27

TL, area TL (lateral PPHC, posterior
parahippocampal gyrus)

113 114 −28, −32, −18 30, −30, −18

A28/34, area 28/34 (EC, entorhinal
cortex)

115 116 −19, −12, −30 19, −10, −30

TI, area TI(temporal agranular
insular cortex)

117 118 −23, 2, −32 22, 1, −36

TH, area TH (medial PPHC) 119 120 −17, −39, −10 19, −36, −11

posterior Superior Temporal
Sulcus

rpSTS, rostroposterior superior
temporal sulcus

121 122 −54, −40, 4 53, −37, 3

TS, caudoposterior superior
temporal sulcus

123 124 −52, −50, 11 57, −40, 12

Superior Parietal Lobule A7r, rostral area 7 125 126 −16, −60, 63 19, −57, 65

A7c, caudal area 7 127 128 −15, −71, 52 19, −69, 54

A5l, lateral area 5 129 130 −33, −47, 50 35, −42, 54

A7pc, postcentral area 7 131 132 −22, −47, 65 23, −43, 67

A7ip, intraparietal area 7(hIP3) 133 134 −27, −59, 54 31, −54, 53

Inferior Parietal Lobule A39c, caudal area 39(PGp) 135 136 −34, −80, 29 45, −71, 20

A39rd, rostrodorsal area 39(Hip3) 137 138 −38, −61, 46 39, −65, 44

A40rd, rostrodorsal area 40(PFt) 139 140 −51, −33, 42 47, −35, 45

A40c, caudal area 40(PFm) 141 142 −56, −49, 38 57, −44, 38

A39rv, rostroventral area 39(PGa) 143 144 −47, −65, 26 53, −54, 25

A40rv, rostroventral area 40(PFop) 145 146 −53, −31, 23 55, −26, 26

Precuneus A7m, medial area 7(PEp) 147 148 −5, −63, 51 6, −65, 51

A5m, medial area 5(PEm) 149 150 −8, −47, 57 7, −47, 58

dmPOS, dorsomedial
parietooccipital sulcus(PEr)

151 152 −12, −67, 25 16, −64, 25

A31, area 31 (Lc1) 153 154 −6, −55, 34 6, −54, 35

Postcentral Gyrus A1/2/3ulhf, area 1/2/3(upper limb,
head and face region)

155 156 −50, −16, 43 50, −14, 44

A1/2/3tonIa, area 1/2/3(tongue and
larynx region)

157 158 −56, −14, 16 56, −10, 15

A2, area 2 159 160 −46, −30, 50 48, −24, 48

A1/2/3tru, area1/2/3(trunk region) 161 162 −21, −35, 68 20, −33, 69

Insular Gyrus G, hypergranular insula 163 164 −36, −20, 10 37, −18, 8

vIa, ventral agranular insula 165 166 −32, 14, −13 33, 14, −13

dIa, dorsal agranular insula 167 168 −34, 18, 1 36, 18, 1

vId/vIg, ventral dysgranular and
granular insula

169 170 −38, −4, −9 39, −2, −9

dIg, dorsal granular insula 171 172 −38, −8, 8 39, −7, 8

dId, dorsal dysgranular insula 173 174 −38, 5, 5 38, 5, 5

Cingulate Gyrus A23d, dorsal area 23 175 176 −4, −39, 31 4, −37, 32

A24rv, rostroventral area 24 177 178 −3, 8, 25 5, 22, 12

A32p, pregenual area 32 179 180 −6, 34, 21 5, 28, 27

A23v, ventral area 23 181 182 −8, −47, 10 9, −44, 11

A24cd, caudodorsal area 24 183 184 −5, 7, 37 4, 6, 38

A23c, caudal area 23 185 186 −7, −23, 41 6, −20, 40

A32sg, subgenual area 32 187 188 −4, 39, −2 5, 41, 6

MedioVentral Occipital Cortex cLinG, caudal lingual gyrus 189 190 −11, −82, −11 10, −85, −9

rCunG, rostral cuneus gyrus 191 192 −5, −81, 10 7, −76, 11

cCunG, caudal cuneus gyrus 193 194 −6, −94, 1 8, −90, 12

rLinG, rostral lingual gyrus 195 196 −17, −60, −6 18, −60, −7

vmPOS,ventromedial
parietooccipital sulcus

197 198 −13, −68, 12 15, −63, 12

(Continued)
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TABLE 2 | Continued

Gyrus Brodmann’s location Label ID.L Label ID.R MNI.L MNI.R

Lateral Occipital Cortex mOccG, middle occipital gyrus 199 200 −31, −89, 11 34, −86, 11

V5/MT+, area V5/MT+ 201 202 −46, −74, 3 48, −70, −1

OPC, occipital polar cortex 203 204 −18, −99, 2 22, −97, 4

iOccG, inferior occipital gyrus 205 206 −30, −88, −12 32, −85, −12

msOccG, medial superior occipital
gyrus

207 208 −11, −88, 31 16, −85, 34

lsOccG, lateral superior occipital
gyrus

209 210 −22, −77, 36 29, −75, 36

Amygdala mAmyg, medial amygdala 211 212 −19, −2, −20 19, −2, −19

lAmyg, lateral amygdala 213 214 −27, −4, −20 28, −3, −20

Hippocampus rHipp, rostral hippocampus 215 216 −22, −14, −19 22, −12, −20

cHipp, caudal hippocampus 217 218 −28, −30, −10 29, −27, −10

Basal Ganglia vCa, ventral caudate 219 220 −12, 14, 0 15, 14, −2

GP, globus pallidus 221 222 −22, −2, 4 22, −2, 3

NAC, nucleus accumbens 223 224 −17, 3, −9 15, 8, −9

vmPu, ventromedial putamen 225 226 −23, 7, −4 22, 8, −1

dCa, dorsal caudate 227 228 −14, 2, 16 14, 5, 14

dlPu, dorsolateral putamen 229 230 −28, −5, 2 29, −3, 1

Thalamus mPFtha, medial pre-frontal
thalamus

231 232 −7, −12, 5 7, −11, 6

mPMtha, pre−motor thalamus 233 234 −18, −13, 3 12, −14, 1

Stha, sensory thalamus 235 236 −18, −23, 4 18, −22, 3

rTtha, rostral temporal thalamus 237 238 −7, −14, 7 3, −13, 5

PPtha, posterior parietal thalamus 239 240 −16, −24, 6 15, −25, 6

Otha, occipital thalamus 241 242 −15, −28, 4 13, −27, 8

cTtha, caudal temporal thalamus 243 244 −12, −22, 13 10, −14, 14

lPFtha, lateral pre-frontal thalamus 245 246 −11, −14, 2 13, −16, 7

artifacts after the ArtiFact detection tool (ART)-based scrubbing2

(Power et al., 2012; Van Dijk et al., 2012; Jo et al., 2013).
Voxelwise time series were transformed into region of interest
(ROIs) series by averaging the signal over all ROI voxels.
Two parcellation atlas were used in this study: the FSL (Fischl
et al., 2004) and the Brainnetome (Fan et al., 2016). In the
subsequent first-level analysis, we computed the ROI-to-ROI
connectomes (by means of the CONN toolbox) represented
by adjacency matrices obtained through a bivariate analysis
of the Pearson correlation coefficient between all ROI couples
transformed with the Fischer z-transformation (setting to 0 those
with a False Discovery Rate, FDR (Benjamini and Hochberg,
1995), corrected p-value larger than 0.05). Formally, given Ri (t)
the ith (of n distinct) ROI BOLD signal measured at the tth
scan, results of the averaging of all voxels within the ith ROI
(centered for zero mean, i.e., by subtracting the estimated mean
value), r (Pearson’s correlation coefficient) and Z are defined
as follow:

r
(
i, j
)
=

∑T
t=1 Ri(t)Rj(t)√∑T

t=1 Ri(t)2 ∑T
t=1 Rj(t)2

,

Z
(
i, j
)
= tanh−1 r(i, j), with i, j = 1, 2, · · · , n and T is the

total number of fMRI scans.

2nitrc.org/projects/artifact_detect/

For each subject and condition, Z is the adjacency matrix of
the resulting graph G = 〈V ,E〉 where V = {vi : i = 1, 2, · · · , n}
is the set of all ROIs and E =

{
ei,j|∀ vi, vj ∈ V

}
is the set of all

edges, the functional connectome of interest which comprised all
i, j ROI’s couples. Summarily, a node vi of the graph G denotes the
ith ROI, while an edge ei,j connecting nodes vi and vj is computed
using the Z transform of the Pearson correlation coefficient
between the ROIs Ri(t) and Rj(t) such that ei,j. All graphs were
maintained in their weighted form.

We analyzed the functional connectivity graphs (i.e., the
Z matrices) with a set of common network statistics (node
degree, global and local efficiency, clustering coefficient and
the average shortest path length) by avoiding thresholding
techniques which provoke loss of information and makes
analyses more complicated because of the introduction of the
threshold parameter (Rubinov and Sporns, 2011). For both
atlases, we selected only forebrain regions (Tables 1, 2 for
details) by excluding the cerebellum because its ubiquitous role
(E et al., 2014) in high cognition is still debated (Yu et al., 2015;
Gelal et al., 2016).

Complex Network Statistics
For the analysis of the connectome graphs, we selected a
set of common statistics from the Complex Network Theory
able to estimate the network information processing extent.
Table 3 shows measures (definition and interpretation) used in
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TABLE 3 | The complex network statistics used in this work.

Measure Definition Interpretation

Node degree (also known as node
strength)

ki =
∑
j∈V

ei,j The sum of weights connected to a given node i

Average Shortest path length Given: dij =
∑

ef,g∈ ri↔j

1/ef,g where ri↔j is the shortest

path between i and j; L = 1
n
∑
i∈V

∑
j∈V,j 6=i dij
n−1

The average edge weights encountered in the shortest path
between node i and j

Local Efficiency (Latora and Marchiori,
2001)

Eloc =
1
n

n∑
i=1

∑
j,z∈V,j 6=i(ei,jei,z [dij(Ni)]−1

)

1
3

(ki−1)ki
, where dij(Ni) is

the length of the shortest path length between i and j
that contains only nodes directly connected to i

Measure of local network segregation. Supplementary to
the clustering coefficient

Global Efficiency (Latora and Marchiori,
2001)

E = 1
n

n∑
i=1

∑
j∈V,j 6=i d−1

ij
n−1 Measure of network integration. The inverse of the average

shortest path length that became meaningful in
disconnected networks with infinite length paths

Clustering coefficient (Watts and
Strogatz, 1998)

C = 1
n
∑
i∈V

Ci =
1
n
∑
i∈V

2ti
ki(ki−1) , with

ti = 1
2
∑

j,h∈V

3
√

ei,jei,hej,h

Measure of fine-grain network segregation. It counts the
average weight of triangles t (3-node fully connected
graphs) present in the network

As assumption, Z is an adjacency matrix of the graph G = 〈V,E〉 with V = {vi : i = 1, 2, · · · , n} and E =
{
ei,j|∀ vi, vj ∈ V

}
where the element ei,j represents the connection

weight between nodes i and j.

the present work. Analyses on the extracted functional brain
networks were performed in Matlab by the Brain Connectivity
Toolbox (BCT) (Rubinov and Sporns, 2010), by the Python
graph toolbox (Peixoto, 2014c), and by other ad hoc-routines
developed in our lab. Specifically, we used a complementary
measure of information integration, called Compression Flow
(CF), that we previously showed to effectively discriminate
patients diagnosed with mild cognitive impairment from those
with probable Alzheimer’s disease (Zippo et al., 2015). For a better
numerical treatment of the results, the original fourth stage,
consisting in a summation, was replaced by an average, as follows.

Algorithm:
Inputs: Z is the adjacency matrix of the graph G = 〈V ,E〉

with V = {vi : i = 1, 2, · · · , n} and E =
{

ei,j|∀ vi, vj ∈ V
}

,
the node betweenness centrality (BC) of G, and the edge
betweenness centrality (EBC) of G;

Output: the extent of CF for the graph G.
Steps:

1. Set a pivot value ϑ in the BC distribution, usually a low
percentile of the BC distribution (values from 5 to 20 do
not affect results);

2. Establish which nodes have a BC lower than ϑ, thus
obtaining the subset ϕ ⊂ V with |ϕ| = k of the putative
most peripheral nodes of G (|�| the cardinality operator);

3. For w = 1, 2, · · · , k compute and collect the random
walks rw from the periphery to the network center for
each input load w; at each step the w activated nodes are
randomly chosen from ϕ;

4. For w = 1, 2, · · · , k estimate the compression ratio by
computing (through the c function) and counting the
number of connected components |c(Ĝ)| of the graph
provisional Ĝ obtained by the collection of all edges
encountered in all paths of rw; the compression ratio is
set to ρw =

w
n−|c(Ĝ)|

;

5. Average the obtained CF = 1
k

k∑
i=1

ρi.

The algorithm is written in Matlab and the code are
available upon request. The connected components of graphs are
computed by a depth-first search algorithm.

From the graph toolbox we used an efficient routine to
extract the hierarchical modularity from networks (Peixoto,
2014a,b, 2015a,b). The implemented algorithm (the stochastic
block models) outperforms many other common modularity
methods (Newman, 2006; Blondel et al., 2008) and it has been
chosen for this reason.

Statistical Tests
We performed statistical comparisons between the used
complex network statistics within each experimental condition.
Specifically, these included the type of feedback: probabilistic or
deterministic, the chosen atlas: FSL or BN atlas and the dataset:
ds002, ds052, or ds107.

For hypothesis testing, we made no assumption about the
a priori data distribution, thus, we used non-parametric models.
Pairwise comparisons were performed by the non-parametric
Wilcoxon signed rank test with Bonferroni correction for
multiple contrasts (by multiplying the p-values for the total
number of hypotheses), while for multiple group comparisons
we used the Kruskal–Wallis test with the False Discovery Rate
(FDR) correction. The significance level was assumed as 0.05 in
all hypothesis tests.

Edge Filtering
To identify relevant edges (i.e., functional connections between
ROIs) which supported the observed information processing
enhancement from run 1 to run 2, we set up a statistical procedure
that selected edges which significantly changed between runs.
Edge weights were modeled by a linear model and fitted with
univariate ANOVA criteria in the R language environment (R
Core Team, 2019). Pairwise comparisons between runs were
subsequently performed with the Tukey post-hoc test. Edges
below the significance level (0.05) were furtherly filtered to
select those with an absolute high magnitude. For this reason,
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FIGURE 2 | Complex Network statistics for FSL atlas. A complete overview of the complex network statistics (respectively, Global and Local Efficiency, Clustering
Coefficient, Average Shortest Path Length and Node Degree see Table 3) computed on the functional connectomes for both datasets (ds002, ds052, rows 1–2 and
3–4, respectively) and both experimental conditions (deterministic/probabilistic) embedded in the FSL atlas. Plots reported the statistical significance according to
the Wilcoxon signed rank test with Bonferroni correction. Boxplot colors indicate the run: blue for run 1 and yellow for run 2. Significant p-values (<0.05) are
highlighted in red.

we picked edges whose differences were either greater than the
95th percentile (namely, positive differences) or lesser than the
5th percentile (negative differences). Since, the difference weight
distribution had about zero mean, the latter set grouped only edge
with negative weights.

RESULTS

In the present work, we preprocessed fMRI volumes, from two
classification learning experiments (Figures 1A,B), according
to the AFNI pipeline (Figure 1C) and subsequently we
extracted the ROI-to-ROI functional connectivity for each
subject (Figures 1D–H) according to the two atlases templates
(FSL and BN, coordinates in Tables 1, 2). The classification
learning tasks were of two types: deterministic and probabilistic
(Figures 1A,B). The former represented the actual classification
learning assumed to occur in subjects (reported performances

in Figure 1I), the second indicated the null hypothesis where
learning was dampened through probabilistic feedbacks and
thus memory associations were precluded. We considered a
third experiment, as additional control, to evaluate the role of
possible session-effects in a different cognitive task recruiting
only visual working memory systems (visual one-back task).
On the functional connectomes we computed a common set
of complex network statistics (Table 3) to assess the network
information processing capability between the first (run 1)
and the second group (run 2) of trials revealing a significant
increment of classification accuracy (Figure 1I). Eventually, we
used a recently presented (Zippo et al., 2015) refined functional
integration measure, of functional integration, the compression
flow (CF), stochastically estimating the network capability to
learn and predict external inputs.

We found that, in deterministic sessions, the node degree
distribution, the global and local efficiency, the clustering
coefficient and the characteristic path length were all significantly
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FIGURE 3 | Complex Network statistics for BN atlas. A complete overview of the complex network statistics (respectively, Global and Local Efficiency, Clustering
Coefficient, Average Shortest Path Length and Node Degree see Table 3) computed on the functional connectomes for both datasets (ds002, ds052, rows 1–2 and
3–4 respectively) and both experimental conditions (deterministic/probabilistic) embedded in the Brainnetome atlas. Plots reported the statistical significance
according to the Wilcoxon signed rank test with Bonferroni correction. Boxplot colors indicate the run: blue for run 1 and yellow for run 2. Significant p-values
(<0.05) are highlighted in red.

different between runs. Specifically, the node degree distribution,
the global and the local efficiency and the clustering coefficient
were higher in run 2 while, conversely, the average shortest
path length was smaller (results of Wilcoxon’s tests in Figures 2,
3, rows one and three). Moreover, analyses from both
datasets (ds002, ds052) and both atlases (FLS, BN) generated
congruent observations. In details, the node degree increment
indicated that new functional connections were activated in the
second run. The global and local efficiencies measured how
proficiently the information was exchanged within respectively
the entire graph and neighbor’s nodes. The observed efficiency
dynamics suggested that, in run 2, information exchange was
optimized thus minimizing the processing energetic expenditure
(Bullmore and Sporns, 2012). The clustering coefficient changes,
instead, demonstrated that the networks were more prone
to segregate information in run 2 compared to run 1.
Eventually, the characteristic path length decreasing in run
2 expressed a reduction in the average path length between

node random couples. These outcomes indicated that the
observed networks became more topologically efficient in run
2, and, therefore, according to complex network statistics, the
brain networks became more effective in terms of information
processing capabilities and more prone to integrate and segregate
information. Conversely, in probabilistic trials (considered as
control) we did not observe any significant modulations between
runs (results of Wilcoxon’s tests in Figures 2, 3, rows two
and four) in both datasets (ds002, ds052) and in both atlases
(FLS, BN). Altogether, these results proposed a scenario where
the brain functional connectome, when exerted by an input
learning demand, alters its connections in order to optimize
the information storage of the putative predictive associations
(Tetzlaff et al., 2012).

Subsequently, we wondered which putative functional
connections shaped the observed network dynamics and,
accordingly, we analyzed edge fluctuations between runs with
statistical hypothesis tests (see section “Materials and Methods”).
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FIGURE 4 | Selection of the most salient functional connections. An edge
filtering procedure statistically selected the strongest (above the 95th
percentile) and the weakest (below the 5th percentile) connections evoked in
run 2. (A) Percentage of filtered edges in the diverse experimental conditions
(deterministic/probabilistic), datasets (ds002, ds052) and atlases (FSL, BN).
(B) The resulting edges with positive differences are shown in three different
views (posterior, lateral, superior) in the first two rows with plot_glass_brain
function of the nilearn python library. In the first row, results were extracted
from the FSL atlas while in the second rows from the BN atlas. Connections
are represented by black lines and the centroids of the regions of interest by
small black circles. Similarly, the third and the fourth rows indicates the
negative differences. ROI colors are chosen arbitrarily.

For more statistical robustness and consistent interpretation
of the data, we combined sessions from both datasets ds002
and ds052. We found that only deterministic sessions identified

statistically significant and remarkable connections (Figure 4A)
and we divided these relevant edges into two sets: the first set
containing edged tightly strengthened in run 2, the second
containing the weakened edges in run 2. Within the FSL atlas
(Figure 4B), we found four strengthened connections, namely
the left insular cortex with the left temporal fusiform cortex,
the left superior parietal lobe with the right frontal operculum,
the right inferior temporal cortex with the subcallosal cortex
and the left nucleus accumbens with the right parahippocampal
gyrus. These results were coherent with results obtained with BN
atlas which covered more than 80% of each correspondent brain
regions. Instead, the weakened edges were those connecting the
left inferior frontal gyrus with the right fusiform cortex, the right
temporo-occipital inferior temporal cortex with the left inferior
frontal gyrus and left planum temporale with the left inferior
frontal gyrus. Again, these results were remarkably coherent
with results obtained with BN atlas where brain regions between
atlases were overlapped at least for 84%.

Looking for a further indication of the increment of
information integration in run 2, we averaged all FSL
connectomes for all participants of both experiments (ds002,
ds052) and we analyzed the hierarchical modular organization of
nodes in communities comparing deterministic and probabilistic
conditions. We observed that the number of modules and
hierarchical levels dropped from run 1 to run 2 indicating that
network information processing took place in more integrated
topological architectures (Figures 5A,B). Statistically, prior to
averaging, we found 7.4 ± 1.9 (mean and standard deviation)
modules in run 1 and 4.9 ± 0.7 in run 2 with a significant
difference (p = 0.001, non-parametric Wilcoxon signed ranksum
test). Vice versa, the number of modules did not decrease in the
probabilistic conditions as a sign of a missed integrative merging
among modules (Figures 5C,D, 8.1 ± 1.4 in run 1 vs. 7.8 ± 1.9
in run 2, p = 0.349, ranksum test). Ultimate, the CF estimations
coherently confirmed the significant increment of the topological
information integration of the connectomes (Figures 5E–H) in
the second run of deterministic trials.

Eventually, to evaluate the possible role of the session-effect
(run 1 vs. run 2), we decided to include a further dataset from
the same repository (ds107) where participants performed a one-
back working memory task. Results in Figure 6 did not show any
significant differences (Wilcoxon’s test) confirming that observed
results in the previous analyses were not merely an outcome of
the comparison between runs.

Altogether these evidences suggest that critical topological
modifications of the functional connectome allow large-scale
architecture to accommodate the incoming cognitive demand
achieving high efficiency with low energy expenditure.

DISCUSSION

In this work, we investigated the fast and transient topological
dynamics of a short-term memory task in broad functional
connectomes. We found a consistent enhancement of the
functional integration and segregation during the trial-by-trial
generation of the associative learning. Namely, connectomes
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FIGURE 5 | Hierarchical Modularity Structure and Compression Flow statistics. Hierarchical modularity analysis of the FSL grand average networks (run 1 vs. run 2,
respectively, A, B) among subjects (N = 30) and experiments (ds002, ds052) for the deterministic condition. In run 2, the functional modules of the connectome
collapse, as a sign of the arisen functional integration, into five communities with a singular hierarchical level, from the eight communities of run 1 arranged in two
hierarchical levels (five modules in the second level). Oppositely, in probabilistic condition modular organization did not change (C,D). Edge colors mark community
membership and are arbitrarily chosen by the graph plotting routine. Analyses of the compression flow measure of brain graphs by using the FSL atlas (E,G) and the
BN atlas (F,H) or the ds002 (E,F) and ds052 (G,H) experiments. Plots reported the statistical significance according to the Kruskal–Wallis non-parametric test with a
False Discovery Rate (FDR) correction for group comparisons while, for pairwise comparisons, the Wilcoxon signed rank test significance with Bonferroni correction
is reported. In (E–H), Deterministic is referred with “Det.” and Probabilistic with “Prob.”. Boxplot colors (blue, yellow, gray, and red) denote the diverse conditions
(respectively deterministic run 1, deterministic run 2, probabilistic run 1 and probabilistic run 2).
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FIGURE 6 | Complex Network Statistics in a non-classification learning cognitive task. The first row represents the collection of network statistics obtained by
extracting the ROIs according to the FSL atlas, while in the second row the statistics are computed with the BN atlas. Altogether, the lack of statistically significant
differences indicate that no session effect is present between run 1 and run 2. Boxplot colors indicate the run: blue for run 1 and yellow for run 2.

became more efficient in information processing capability in
diverse experimental conditions and analyses, a property absent
in both sham and control experiments.

Therefore, as highlighted by our estimates and analyses, higher
cognitive tasks involve global connectome adaptations rather
than mere local topological modifications of few regions. This
property implies a new assessment of general brain dynamics
obliging to reconsider the conventional view of brain functional
specialization as common refrain in studies correlating few but
specific brain regions with distinct cognitive tasks. From a clinical
perspective, this widespread interpretation takes its origins
from old neurological judgements of past centuries, assuming a
causality between anatomically observable lesions and specific
disruptions of behavioral or cognitive functions. In contrast to
such a perspective, the functional connectivity network of the
human brain proposes a strong global interdependency among
regions where alterations of single node dynamics may be echoed
widespreadly over the entire network, significantly changing the
brain network dynamics. The assumption of localized lesional
models inevitably neglects the complex and diffuse damages
upon the globally connected brain network, as well as the
compensatory or repair mechanisms that, with diverse strength
and at diverse time, may arise from the original alterations
(Catricalà et al., 2015).

From a computational point of view, classification learning
implies an information storage demand to be accomplished
in short time intervals (from seconds to few minutes).
Indeed, according to the Friston’s free-energy minimization
principles (Friston, 2010), nervous systems work to minimize
the discrepancy between external world information and the
related internal brain representations in neuronal networks. This
theoretical approach is, seemingly, time-independent and active
at most different time-scales.

Furthermore, in our previous work we conjectured that
compression flow is inversely related with the free-energy
(Zippo et al., 2015), namely, when brain networks increase the
extent of compression flow, the system free-energy decreases.
Therefore, we could suggest that the new information needed
by the classification learning task induces a bump of free-energy

that, theoretically, is likely to be cut by means of topological
modifications of the functional connectivity.

In the literature, as cited in the introduction of this work,
original neurophysiological studies on non-human primates
showed that visual working memory appeared solely related with
the prefrontal cortex, the parietal cortex and some associative
area in the occipital lobe. Subsequent studies further extended the
list of the involved areas with the contribution of the premotor
cortex, the intraparietal sulcus, the caudate, the hippocampus,
the thalamus and several occipitotemporal regions (Doron et al.,
2012). This progressive spatial extension of neuronal networks
involved in visual tasks, primarily strengthens the global vs.
local accounting of brain dynamics and, as a consequence leads
to hypothesize a more extended design applicable to other
systems and task conditions. From a more classical anatomical
view it shows augmented functional connectivity within the
rostro-caudal axis (Kuo et al., 2011) enriching dramatically
the neuronal textures ignited by an external specific stimulus
and functionally requires a widely distributed dense network
for the active maintenance of a perceptual representation
(Gazzaley et al., 2004).

By an edge-centric perspective, our results showed an
enhancement of specific brain region connections. In particular
the functional connection between the left insular and the left
fusiform cortices appears in accordance with the putative roles
of such districts implicated, respectively, in the consolidation of
object recognition memory (Bermudez-Rattoni et al., 2005) and
working memory tasks (Druzgal and D’Esposito, 2001; Postle
et al., 2003; Hofer et al., 2007), two executive functions heavily
recruited in classification learning assignments. Similarly, the
strengthened connections between the right parahippocampal
gyrus and the left nucleus accumbens are likely consonant
with their putative roles such as, respectively, in short-term
memory (Daselaar et al., 2001; Peters et al., 2009) and the
visual memory consolidation (Setlow, 1997; Deadwyler et al.,
2004). Again, the right frontal operculum and left superior
parietal lobe, participating in task control (Higo et al., 2011),
in episodic memory retrieval (Wagner et al., 2005) and in
the maintaining of internal representation (Wolpert et al., 1998).
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Eventually, the right posterior inferior temporal cortex, a crucial
region of the ventral stream visual processing directly involved
in the object recognition (Gross, 1992; Nobre et al., 1994) with
the subcallosal cortex responsible, instead, for the monitoring
and the control of executive processes (Hebscher et al., 2016).
In opposition, other functional connections were inhibited.
Specifically, these connections encompass the inferior temporal
and the fusiform cortices with the inferior frontal gyrus, usually
recruited in response inhibition (Swick et al., 2008), in the
selection among competing alternatives (Moss et al., 2005;
Hirshorn and Thompson-Schill, 2006) and attentional control
(Hampshire et al., 2010).

Past works with strong local-centric activated networks
showed that there are two distinctly different stages in accessing
information in short-term memory, a stage elicited in the
classification learning, recruiting the inferior temporal regions
with frontal- and posterior-parietal contributions, the medial
temporal lobe and left mid-ventrolateral prefrontal cortex
(Nee and Jonides, 2008). In contrast, van den Berg and
coworkers stated that neural representation of visual short-
term memory is continuous and variable rather than discrete
and fixed, thus smoothing this modular interpretation (van
den Berg et al., 2012). In addition, early evidences suggested
that the cortico-limbic neurophysiological substrate of visual
short-term memory changed globally, rather than with focal
modifications, in healthy elderly subjects (Della-Maggiore et al.,
2000). On this track, D’Esposito (2007) concluded (in a
study on the visual working memory) that it is not localized
to a single brain region but more likely it represents an
emergent property of the functional interactions between the
prefrontal cortex and the rest of the brain, a key step
towards the shift of a local towards a global appraisal of
brain functional domains. However, our results from a visual
working memory task (one-back) seemed to encourage the
idea that the observed global topological optimization causally
emerged from the visual short-term rather than working
memory completions.

Other studies on fast dynamics of the visual working
memory suggested an involvement of several EEG frequency
bands (α, β, γ) over large-scale densely connected cortical
areas (frontal, parietal and occipital) for maintenance and
coordination (Palva J. M. et al., 2010; Palva S. et al., 2010).
These findings multiply and supply furtherly more complex
pictures that succeed in a more temporally accurate technique
(i.e., the EEG) which highlighted the dynamic complexity of
the global brain involvement yet engaged in “simple” visual
tasks. A novel work suggests, again, a cross-modal recruitment
of sensory related short-term memory where visual memory
implicated also auditory regions and, vice versa, auditory
short-term memory was associated with the activity of the
dorsal and ventral visual pathways (Michalka et al., 2015).
Moreover, a recent work has shown fast modifications of
functional connectomes and remarked the importance of even
minute topological changes for the global network capacity
to integrate information (Fransson et al., 2018). Eventually,
our previous study focused on the alternating dynamics of
segregation and integration in a visual working memory

task suggested that the interchange of segregation-integration
required a quasi-continuous coherent activation of most of the
recorded cortical regions resulting in a global complex network
orchestration (Zippo et al., 2018). Therefore, the observed
involvement of global network dynamics appeared coherent with
these recent results.

Despite the present study analyzed data from two independent
experiments, it is however limited to a small sample of just
30 participants from a distinct younger age (23 years old on
average, with small variance). Thus, for generalization of results,
further investigations are needed considering larger populations
homogeneously distributed in age. In addition, both studies
referred to a single type of visual short-term and working
memory task, thus, for more robust conclusions, similar studies
with different experimental conditions and modalities (e.g.,
auditory or motor short-term learning) should be performed.
The BOLD signal, generated by the functional MRI scanner is
still considered an indirect measure of neuronal metabolism,
unclearly linked with the synaptic activity, therefore, the
robustness of the proposed results needed to be investigated in
different experimental setups with more direct measures of the
neuronal activity (e.g., EEG/MEG).

However, notwithstanding these limitations, it would be a
curious exception that other sensory and cognitive tasks involved
in the individual survival and environmental adaptation, could
perform different topological dynamics. This could be due to the
implicit law of parsimonious evolutionary conservation of basic
schemes for coherent cognitive abilities.

In conclusion, the results of the work highlight the
effectiveness of a global topological strategy in the treatment
and storage of a task (in this case) a temporary visual
memory retention, which drives the functional topologies
towards more information processing optimized configurations.
Novel interpretations of whole brain functional networks could
therefore be envisaged in investigations regarding the brain
cognitive functions.
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