
7250  |     Glob Change Biol. 2022;28:7250–7269.wileyonlinelibrary.com/journal/gcb

Received: 26 June 2022  | Revised: 9 September 2022  | Accepted: 16 September 2022

DOI: 10.1111/gcb.16446  

R E S E A R C H  A R T I C L E

Effects of climate on salmonid productivity: A global  
meta- analysis across freshwater ecosystems

Brian K. Gallagher  |   Sarah Geargeoura |   Dylan J. Fraser

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Department of Biology, Concordia 
University, Montreal, Quebec, Canada

Correspondence
Brian K. Gallagher, Department of Biology, 
Concordia University, 7141 Sherbrooke 
Street West, Montreal, QC H4B 1R6, 
Canada.
Email: brian.kenneth.gallagher@gmail.com

Present address
Sarah Geargeoura, Environment and 
Climate Change Canada, Gatineau, 
Quebec, Canada

Funding information
Concordia University; Eco- Canada; 
Fulbright Canada, Grant/Award Number: 
E0621431; Groupe de recherche 
interuniversitaire en limnologie, Grant/
Award Number: RQT00117; Magnet 
Student Work Placement Program; 
Natural Sciences and Engineering 
Research Council of Canada

Abstract
Salmonids are of immense socio- economic importance in much of the world, but are 
threatened by climate change. This has generated a substantial literature documenting 
the effects of climate variation on salmonid productivity in freshwater ecosystems, 
but there has been no global quantitative synthesis across studies. We conducted 
a systematic review and meta- analysis to gain quantitative insight into key factors 
shaping the effects of climate on salmonid productivity, ultimately collecting 1321 
correlations from 156 studies, representing 23 species across 24 countries. Fisher's 
Z was used as the standardized effect size, and a series of weighted mixed- effects 
models were compared to identify covariates that best explained variation in effects. 
Patterns in climate effects were complex and were driven by spatial (latitude, 
elevation), temporal (time- period, age- class), and biological (range, habitat type, 
anadromy) variation within and among study populations. These trends were often 
consistent with predictions based on salmonid thermal tolerances. Namely, warming 
and decreased precipitation tended to reduce productivity when high temperatures 
challenged upper thermal limits, while opposite patterns were common when cold 
temperatures limited productivity. Overall, variable climate impacts on salmonids 
suggest that future declines in some locations may be counterbalanced by gains in 
others. In particular, we suggest that future warming should (1) increase salmonid 
productivity at high latitudes and elevations (especially >60° and >1500 m), (2) reduce 
productivity in populations experiencing hotter and dryer growing season conditions, 
(3) favor non- native over native salmonids, and (4) impact lentic populations less 
negatively than lotic ones. These patterns should help conservation and management 
organizations identify populations most vulnerable to climate change, which can then 
be prioritized for protective measures. Our framework enables broad inferences 
about future productivity that can inform decision- making under climate change for 
salmonids and other taxa, but more widespread, standardized, and hypothesis- driven 
research is needed to expand current knowledge.
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1  |  INTRODUC TION

Climate change is strongly impacting biodiversity throughout the 
world (Parmesan & Yohe, 2003; Woodward et al., 2010). These 
effects are likely to intensify in the future (Urban, 2015), but esti-
mates of effect size can vary considerably depending on the design, 
location, and focal organism of different studies (Haddaway, 2015; 
Koricheva et al., 2013). Understanding how and why climate change 
affects biodiversity in natural systems is critically important for im-
proving predictions of biodiversity loss (Mouquet et al., 2015; Urban 
et al., 2016), as well as for developing adaptive conservation and 
management strategies (Reside et al., 2018). Although the ecologi-
cal consequences of climate change can be affected by evolutionary 
history, spatial scale, and other factors (Nadeau et al., 2017a, 2017b), 
data synthesis approaches offer a way to disentangle these con-
founding influences to gain a more integrated understanding across 
multiple studies. Indeed, data synthesis plays a prominent role in 
explaining patterns and changes in biodiversity more broadly, and 
while conclusions can still be disputed (e.g., Dornelas et al., 2014; 
Vellend et al., 2013, but see Gonzalez et al., 2016), this process can 
help identify key knowledge gaps that motivate further study.

A growing body of research has focused on synthesizing ef-
fects of climate change on fishes (Comte et al., 2021; Comte & 
Olden, 2017; Kovach et al., 2016; Krabbenhoft et al., 2020; Myers 
et al., 2017), which are culturally and economically important to 
communities around the world. Salmonids in particular support 
valuable commercial, recreational, and subsistence fisheries in many 
regions (ASF, 2011; PSC, 2017) and are thought to be sensitive to 
climate change, driving fears of future declines in productivity (de-
fined herein as the rate of population biomass production, which 
we assume to increase with higher abundance, individual growth, 
or both). However, there is considerable uncertainty in how differ-
ent species and populations will respond to future warming, while 
the factors shaping vulnerability to climate change are thought to 
be complex and difficult to disentangle (Irvine & Fukuwaka, 2011; 
Kovach et al., 2019). As a result, previous syntheses have not explic-
itly quantified spatial, temporal, and biological variation in salmonid 
responses to climate across many empirical studies. Our research 
attempts to fill this knowledge gap by synthesizing the effects of 
climate variables (temperature and precipitation) on a wide range of 
salmonid populations, providing timely insight into the broad pat-
terns influencing current and future productivity.

Spatial variation likely plays a dominant role in structuring salmonid 
responses to climate. Salmonids occupy an enormous native and non- 
native range across the globe (Crawford & Muir, 2008), and often ex-
hibit strong gradients in productivity based on latitude and elevation. 
Previous research suggests that populations at low latitudes (Ayllón 
et al., 2019; Carlson & Satterthwaite, 2011) are expected to respond 
to climate change differently than those at high latitudes (Campana 
et al., 2020; Pitman et al., 2020), with similar contrast expected be-
tween low- altitude and high- altitude populations (Isaak et al., 2016; 
Kanno et al., 2015). Specifically, declines in salmonid productivity are 
expected in areas where temperatures regularly exceed upper thermal 

limits, and should decline further if low precipitation reduces the vol-
ume and thermal buffering capacity of water (Kovach et al., 2016). 
Therefore, in the warmest areas at low latitudes and elevations, higher 
temperature is expected to reduce salmonid productivity and in-
creased precipitation should enhance productivity, whereas opposite 
patterns are expected at high latitudes and elevations (Figure 1a,b). 
Despite the importance of spatial variation in moderating responses 
to climate, no quantitative research to date has tested these predicted 
effects at a global scale across salmonid species.

Responses to climate in salmonids also likely depend on the time- 
period under consideration, as most salmonids occupy temperate re-
gions where temperature and precipitation vary seasonally and may 
disproportionately affect some life- stages more than others (Bassar 
et al., 2016; Jonsson & Jonsson, 2009; Nislow & Armstrong, 2012). 
Moreover, because salmonid productivity can also be limited by cold 
temperatures, warming can be beneficial for most of the year but harm-
ful during summer months (Armstrong et al., 2021). Despite a large vol-
ume of research on these topics, the vulnerability of specific life- stages 
to increasing temperatures is still debated (Dahlke et al., 2020; but see 
Pottier et al., 2022), and the severity of the threat posed by warm-
ing temperatures to species persistence remains unresolved (Muñoz 
et al., 2015; but see Mantua et al., 2015). Similarly, although some 
research shows that climate impacts can vary based on the size-  or 
age- class being affected (Letcher et al., 2002, 2015), these can differ 
among systems within studies (e.g., Xu et al., 2010a). Nonetheless, in-
creased temperatures and reduced precipitation should be associated 
with declines in productivity during the warmest time- periods, with 
opposite effects expected during the coldest periods, especially for 
temperature (Figure 1c,d). More complex influences of temporal vari-
ation should also be considered, as negative impacts of flooding could 
be observed during vulnerable life- stages such as egg incubation, and 
timing of key events across the life cycle can vary considerably within 
and among species (Kovach et al., 2016, 2019). Data synthesis can test 
these predictions, thereby informing debates and uncertainties about 
the factors shaping salmonid vulnerability to climate change.

Finally, biological differences among populations have the po-
tential to modify the effects of climate on salmonid productivity 
(Figure 1e,f), but these too await quantification across many studies. 
For example, effects may differ based on whether salmonids occupy 
lotic (streams and rivers) or lentic environments (lakes and ponds) 
due to the prevalence of stratification in lakes, which is expected 
to increase the availability of coldwater habitat (Blair et al., 2013) 
and reduce sensitivity to warming in lentic populations. Additionally, 
some research has suggested that non- native salmonids may re-
spond more favorably to warming than their native counterparts by 
exhibiting higher thermal tolerance or outcompeting them for suit-
able habitats (Al- Chokhachy et al., 2016; Bell et al., 2021), leading 
us to expect more severe climate- induced declines in productivity 
within native species. In addition, because our work focuses on sal-
monids in freshwater environments, migration behaviors may play a 
role, as anadromous populations could respond to climate variation 
differently than freshwater residents due to their shorter periods of 
residence and exposure to ocean conditions (Mueter et al., 2002). 
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Specifically, temperature and precipitation are expected to impact 
productivity in freshwater resident populations more strongly than 
anadromous ones. Finally, observed climate impacts could be influ-
enced by methodological differences, as studies can vary widely in 
sampling design, the exact salmonid or climate data measured, and 
how data were transformed and analyzed. Taken together with the 
spatial and temporal variation discussed previously, it is clear that 
broad patterns should be detectable in salmonid responses to tem-
perature and precipitation. A simplified overview of a priori pre-
dictions for the influence of spatial (latitude, elevation), temporal 
(age- class, time- period), and biological (range portion, habitat type, 
anadromy) factors is shown in Figure 1. Rigorously testing these pre-
dicted patterns will help clarify key drivers underlying variation in 
climate impacts, thereby addressing an important knowledge gap in 
salmonid biology (Kovach et al., 2016, 2019).

We conducted a global systematic literature search and quantita-
tive meta- analysis to illuminate key patterns in the effects of climate 
variables on salmonid productivity. This research is timely because 
it can leverage a vast body of past research to inform the future of 
salmonids in a changing world— a topic that remains rife with uncer-
tainty and disagreement (Dahlke et al., 2020; Kovach et al., 2016; 
Mantua et al., 2015; Muñoz et al., 2015; Pottier et al., 2022). Our 
objectives were to (1) conduct a systematic review to build a da-
tabase of standardized effect sizes describing the influence of cli-
mate variation on salmonid productivity, (2) identify a parsimonious 

set of covariates that best explain variation in effect sizes and test 
predicted spatial, temporal, and biological patterns, and (3) assess 
publication bias and potential taxonomic, methodological, and geo-
graphic influences that may limit current knowledge. This is the first 
study to carry out these objectives at a global scale for salmonids, 
providing the most in- depth analysis to date of climate impacts on 
these iconic coldwater taxa. Our structured and hypothesis- driven 
approach allowed us to identify broad patterns in salmonid- climate 
relationships, which can then support inferences about future pro-
ductivity. Such patterns can inform conservation and management 
decisions by helping agencies identify populations that are likely to 
be most vulnerable to climate change. More broadly, we believe this 
approach can be adapted to a host of other taxa to predict and test 
key drivers of variation in responses to climate change.

2  |  METHODS

2.1  |  Literature search and screening criteria

Throughout this study, we used PRISMA- EcoEvo criteria to guide 
decision making and reporting (O'Dea et al., 2021). We sought to 
identify studies reporting correlations between climate variables 
(temperature or precipitation) and the individual growth or rela-
tive abundance (growth or abundance hereafter) of wild salmonid 

F I G U R E  1  Summary of predicted patterns in effects of temperature (a, c, e) and precipitation (b, d, f) on salmonid productivity. 
Predictions are structured according to spatial (a, b), temporal (c, d), and biological (e, f) patterns that were of most interest, and stages 1– 3 
(boxes and arrows) correspond to the order variables were inputted into models during the stepwise model selection process (see Section 2). 
All panels have a shaded background to highlight expected climate effects when temperatures exceed upper thermal limits (red shading), or 
when low temperatures limit productivity (blue shading; see Introduction). Note that predicted effects on productivity were expected to be 
largely similar for measures of abundance and growth.
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populations in freshwater environments. To increase consistency 
and maximize focus on natural contexts, we targeted observational 
studies of populations that did not receive hatchery supplementation 
during the study period. Correlations were preferred because they 
are the simplest measure of standardized relationships between con-
tinuous variables, and can easily be used to calculate effect size and 
its sampling variance (see below). Although this decision may have 
reduced data availability, it is paramount to standardize effect sizes 
for rigorous quantitative analysis (Koricheva et al., 2013). Measures 
of relative abundance (e.g., density, population size, biomass, sur-
vival) and individual growth (e.g., length- at- age, somatic growth rate) 
were interpreted as surrogates for productivity, but past research 
has shown that rates of salmonid biomass production are often more 
sensitive to abundance than growth (Lobón- Cerviá, 2009). Similarly, 
all surrogates of temperature and precipitation were treated equally, 
although a previous review argued that direct measures of aquatic 
habitat conditions (e.g., water temperature, streamflow) are prefer-
able to indirect proxies (e.g., air temperature, rainfall; see Kovach 
et al., 2016). It would have been ideal to quantify differences be-
tween the many proxies used to describe climate and salmonid 
productivity, but we felt this was impractical because relationships 
between these proxies and the processes of interest varied and 
were often unknown or unreported.

A comprehensive literature search was conducted during the first 
week of July 2020 through the Web of Science advanced search por-
tal, including all available collections since 1900. Search terms were 
adapted from Kovach et al. (2016) but expanded to include more sal-
monid taxa, yielding 2989 studies. The specific search string was:

where TS denotes a set of search topics, AND/OR are Boolean op-
erators, and asterisks enable truncated word searches (e.g., salmon* 
identifies salmon, salmonid, salmoninae, etc.). Web of Science was 
the only literature search method used and may not be exhaustive, 
but we chose to avoid other methods (e.g., alternative search en-
gines, compiling studies from past reviews) to maximize consistency 
and save time.

Titles and abstracts were screened for relevance based on 
whether relationships between salmonid data and climate variables 
were mentioned, or if it seemed plausible that relevant raw data 
could be reported. Title and abstract screening was first conducted 
by S.G. and followed up in full by B.K.G. for verification. All studies 
deemed relevant by one or both authors were collated, yielding 700 
studies for subsequent screening. Google Scholar was used to re-
trieve full- texts, which were available for 603 relevant studies. Each 
study was subsequently scanned to determine whether the study 
design was suitable (review papers and modeling studies without 
empirical data were excluded), and whether correlations (with sam-
ple sizes) or raw data were reported. Overall, 182 studies satisfied 
these criteria and were subjected to data extraction. If not directly 

reported by authors, correlations and sample sizes were calculated 
in a spreadsheet from raw data extracted manually from tables, or 
from figures with the Digitize package in R (Poisot, 2011). Non- linear 
relationships were ignored unless they were shown in figures, in 
which case the data were extracted and used to calculate linear cor-
relation coefficients. This practice was uncommon (10 observations 
from six studies), and did not strongly impact effects (correlation 
between linear and non- linear R2 values = .94). In total, this process 
yielded 1735 observations. We were satisfied with this outcome 
and, therefore, decided not to allocate more time toward increasing 
the number of observations or studies (e.g., contacting authors for 
missing data).

2.2  |  Database description

In addition to correlations and sample sizes, a wide range of other data 
were collected in the initial database, including relevant spatial, tem-
poral, biological, and methodological covariates. Study coordinates 
and elevation data directly reported by authors were preferred, but 
georeferencing was conducted in Google Maps and elevations were 
inferred using the Elevatr R package (Hollister et al., 2021) when neces-
sary. A detailed account of the methods used and data recorded in this 
process can be found in the (see Appendix S1, section S.1), whereas 
details about covariates, their usage, and categorical levels are in 
Table 1. Once the initial database was completed, it was subjected to 
critical appraisal to ensure the validity and comparability of observa-
tions (Haddaway, 2015), while filtering out duplicates and observations 
with insufficient sample size (n < 5; Appendix S1, section S.2). After six 
critical appraisal and filtering steps, the final database contained 1321 
correlations from 156 studies, featuring 23 species within six genera, 
and spanning 24 countries across five continents. Overall, our database 
(see Gallagher et al., 2022 on Dryad) had considerably greater sample 
size, taxonomic breadth, and geographic contrast than a previous sys-
tematic review by Kovach et al. (2016). A summary of the study filter-
ing process is provided in Figure S1 (after Haddaway, 2020), the final 
database is publicly available, and we have cited all of the included 
studies (see Data Sources). Note that repeated measures within studies 
were often present (range: 1– 102 correlations per study), and this non- 
independence was accounted for during data analysis.

2.3  |  Statistical analysis

The filtered database was imported into R, and analyzed using the 
Metafor package (Viechtbauer, 2010). The escalc() function was used 
to calculate Fisher's Z based on the formula:

where ln is the natural logarithm and r is the correlation coefficient. 
This transformation alleviates problems with correlations becoming 
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skewed as they approach ±1, while retaining the magnitude and di-
rection of effects. The asymptotic variance (vZ) for each Fisher's Z esti-
mate was calculated by:

where n is the sample size. In all subsequent analyses, Fisher's Z was 
used as the standardized effect size, while the inverse of the variance 
was used to weight observations (Koricheva et al., 2013).

The database was then divided into four data sets based on the 
type of response and predictor variables used within each correla-
tion: Abundance– Precipitation (n = 362), Abundance– Temperature 
(n = 610), Growth– Precipitation (n = 66), and Growth– Temperature 
(n = 283). Abundance and growth were both assumed to be pos-
itively related to population productivity. Each data set was an-
alyzed separately using the rma.mv() function, which allows for 
linear mixed- effects models to be built with a nested random effect 
structure (Viechtbauer, 2010). Across all models in this analysis, re-
sponse variables from each correlation (which were assigned unique 
within- study codes) were nested within study to create a consistent 
random effect structure. When appropriate, variances were partiti-
tioned among studies, within studies, and due to sampling variance, 
which were used to calculate indices of heterogeneity and test their 
statistical significance (Nakagawa et al., 2017; Senior et al., 2016). 
Variance components also influenced weights for each effect size 

by downweighing repeated measures within and among studies ac-
cording to the variance observed at each level, thereby alleviating 
pseudoreplication. An explicit demonstration of this random effect 
structure and its handling of repeated measures can be obtained 
through R code that we have made publicly available (see online 
Data Availablility Statement).

2.4  |  Model selection

Due to the large number of potential covariates in our data, we 
sought to test competing models in a stepwise forward selection 
framework that reflected the structure of our data and was guided 
by mechanistic hypotheses (see Figure 1). Model selection was 
conducted separately for each data set, but we ensured the same 
framework was applied consistently to all data sets. All covariates 
were incorporated as fixed effects, with models fit using maximum 
likelihood and compared based on AICc values. The model with the 
lowest AICc was selected in each stage, although the most parsi-
monious model was preferred in cases where AICc values differed 
by less than two (Johnson & Omland, 2004). Note that taxonomic 
variation was not explicitly considered during model selection due 
to unbalanced sample sizes and concerns that estimating species- 
specific coefficients would yield over- parameterized models, so this 
was addressed in subsequent analyses (Section 2.6).

(2)vZ =
1

n − 3

TA B L E  1  List of all potential covariates, plus their abbreviations (abbrev.), usage during quantitative meta- analysis (model selection stages 
1– 3, or post- selection tests; see Section 2), and number of levels (categorical variables only). Note that variables used in stages 1, 2, and 3 
of model selection correspond to spatial, temporal, and biological or methodological covariates, respectively, and were tested in a stepwise 
forward selection framework. Details for data collection protocols can be found in the (Appendix S1, section S.1), while the full database, 
metadata, and R code are freely accessible online (see Gallagher et al., 2022 on dryad)

Covariate Abbrev. Usage N levels Description or levels

Latitude L Stage 1 Cont. Absolute value of latitude (° from the equator)

Elevation E Stage 1 Cont. Elevation (meters above sea level)

Age- class AC Stage 2 4 Age- 0, age- 1, age- 2+, or multiple

Season SE Stage 2 5 Fall, spring, summer, winter, or multiple

Life- stage LS Stage 2 7 Incubation, emergence, growing season, overwintering, 
migration, reproduction, or multiple

Life- stage*Age LSA Stage 2 10 Same as Life- stage, but growing season is broken up by 
age into growing season_0, growing season_1, growing 
season_2+, and growing season_multiple levels

Study design S Stage 3 2 Spatial or temporal

Anadromy A Stage 3 2 Anadromous or resident

Range portion N Stage 3 2 Native or non- native

Habitat type H Stage 3 2 Lotic or lentic

Publication year YR Publication bias Cont. Year when study was published

Response type RT Robustness tests 7 Abundance, population growth, stock- recruitment, survival 
(abundance only), length, weight, or growth rate 
(growth only)

Predictor type PT Robustness tests 6 Average, maximum, minimum, percentile, PCA (temperature 
or precipitation), or degree- day (temperature only)

Data transformation DT Robustness tests 2 Yes or no

Extraction method DM Robustness tests 2 Direct reporting or manual extraction
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The first stage of model selection sought to identify the best 
set of spatial covariates (latitude, elevation, and their interaction; 
Table 1) because these effects are of considerable biological in-
terest, and were expected to be relatively strong and consistent 
across data sets. In all analyses, latitude was expressed as an ab-
solute value for simplicity, but 98% of observations were from the 
northern hemisphere (Figure S2). There was limited spatial contrast 
in the Growth– Precipitation data set due to low sample size, so the 
interaction between latitude and elevation was not explored.

The selected model from the first stage was then used as the base 
model for the second stage, where temporal covariates based on age- 
class (four levels), season (five levels), life- stage (seven levels), or life- 
stage*age (10 levels; see Table 1; Appendix S1, section S.1 for details) 
were added individually and compared. Note that most levels of life- 
stage*age were identical to life- stage, but estimates from the growing 
season were broken up by age- class (Table 1). These factors were of in-
terest because they could suggest differential vulnerabilities to climate 
change based on size, age, or specific events in the life cycle. However, 
the relative importance of each temporal covariate may vary across 
data sets, especially since model selection penalized more complex co-
variates. There were few observations during the growing season in 
the Growth– Precipitation data set (n = 35) such that age differences 
were unlikely to be informative, so we chose to omit life- stage*age 
from model selection. For all other temporal covariates and data sets, 
there was sufficient contrast (n > 10 within two or more levels) to pro-
ceed with model selection, but we noted all cases where sample sizes 
did not meet this threshold for specific levels (see Section 3).

Finally, the selected model from the second stage moved for-
ward to the third stage, wherein four binary covariates (two levels) 
denoting biological (range portion, habitat type, anadromy) and 
methodological differences (study design; see Table 1; Appendix S1, 
section S.1) were added in all possible combinations. These factors 
were expected to have less consistent effects across data sets, 
but could nonetheless help explain variation. Covariates were ex-
cluded from model selection if they lacked contrast within a given 
data set (n < 10 for one of two levels), which ruled out habitat type 
in Abundance– Precipitation and Growth– Precipitation, and range 
portion in the Growth– Precipitation and Growth– Temperature data 
sets. The selected model from the third stage was considered the 
best- fit model overall for each data set.

2.5  |  Best- fit models

After identifying best- fit models, we summarized model performance 
using ΔAICc scores, likelihood ratio tests, and pseudo- R2 values 
(based on proportional reduction in variance components) relative 
to alternative models with no covariates. Mean effect sizes and 
their 95% confidence intervals were estimated from each best- fit 
model, while variance components were used to run omnibus tests 
for residual heterogeneity (Viechtbauer, 2010) and calculate total 
heterogeneity within and among studies (Nakagawa et al., 2017). 
Finally, estimated coefficients for all covariates (or contrasts for 

categorical levels) were reported and used to make summary plots, 
while an omnibus test across all covariates was performed for each 
best- fit model (Viechtbauer, 2010).

2.6  |  Publication bias and model robustness

Homogeneity of variance was evaluated by inspecting residual plots 
from all best- fit models. Collinearity was checked in each best- fit 
model using variance inflation factors (VIFs) calculated across all 
levels of each covariate, while within- level VIF values were also 
reported for temporal covariates that had more than two levels. All 
best- fit models were assessed for publication bias by creating funnel 
plots in Metafor. Currently, Egger regression cannot be implemented 
in models with nested random effects, so instead we added the 
standard error as an additional covariate in each best- fit model to 
test for the effect of precision on residuals (Viechtbauer, 2010). This 
test (Egger test hereafter) is analogous to an Egger regression, such 
that a significant effect of the standard error indicates publication 
bias. If bias was detected, we identified individual studies that 
contributed to the pattern, removed them from the data set, and 
re- tested for publication bias in the reduced data. Similarly, temporal 
publication bias was explored by relating residuals from each best- fit 
model to publication year (Gurevitch et al., 2018).

Possible taxonomic biases were examined by subsetting the 
Abundance- Precipitation, Abundance- Temperature, and Growth- 
Temperature data sets to only include the five species with the 
largest sample size (Growth- Precipitation was excluded due to low 
sample size), then re- running the best- fit model with and without 
species as an additional covariate. The decision to select five species 
was subjective, but we sought to estimate multiple species effects 
while retaining sufficient sample sizes within species. Species con-
trast terms were reported and analyzed for significance in each data 
set, while 95% confidence intervals for all other coefficients were 
compared. Support for species- specific intercepts and slopes was 
assessed using ΔAICc scores relative to the original best- fit model. 
Additionally, the effects of four methodological factors (response 
type, predictor type, data transformation, data extraction method; 
Table 1) were evaluated by adding them individually to all best- fit 
models and testing their significance. Finally, influential studies 
were identified in each data set using Cook's distance, and their im-
pact was assessed by comparing 95% confidence intervals of all co-
efficients from models fitted to data with and without these studies.

3  |  RESULTS

3.1  |  Model selection

Table 2 describes all models run and their ΔAICc scores within each 
stage of model selection, suggesting that each data set had a dif-
ferent set of covariates that best explained variation. Abundance– 
Precipitation effect sizes differed according to season and study 
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design, while Abundance– Temperature effects were influenced 
by latitude, elevation, age- class, study design, and range portion 
(Tables 2 and 3). Growth– Precipitation effect sizes varied accord-
ing to life- stage and anadromy, while Growth– Temperature effects 
had the most complex model that included latitude, elevation, life- 
stage*age, and habitat type as covariates (Tables 2 and 3). Across all 
data sets, best- fit models substantially outperformed models with 
no covariates (ΔAICc > 15; likelihood ratio test p < .001), but the pro-
portional reduction in variance components suggested that relatively 
little variation was explained (pseudo- R2 = 5%– 41%; Table 3). Mean 
effect sizes based on predicted values from the best- fit models were 
positive and significant for the Growth– Precipitation and Growth– 
Temperature data sets, while 95% confidence intervals contained 
zero in the Abundance– Precipitation and Abundance– Temperature 
data sets (Table 3). Residual heterogeneity within and among studies 
was significant (Wald- type test; p < .006) and accounted for a large 
percentage of the total variance (40%– 74%; Table 3) observed in all 
best- fit models.

3.2  |  Best- fit models

In all data sets, omnibus tests showed that covariates had significant 
explanatory power (Wald- type test p < .002; Table S1). Coefficients 
from the best Abundance– Precipitation model confirmed a 
significant positive effect of fall precipitation on abundance 
highlighted in a previous review (Kovach et al., 2016), but this 
was only evident in temporal studies, which were associated with 
significantly more positive (or less negative) effect sizes than spatial 
studies (p < .05; Table S1; Figure 2). In contrast, a significant negative 
effect of spring precipitation on abundance was apparent (p < .01; 
Table S1), but only for spatial studies (Figure 2).

The best Abundance– Temperature model showed that latitude 
and elevation had a significant positive influence on effect sizes 
(p < .01; Table S1), such that effects of temperature on abundance 
were predicted to be negative at low latitudes and elevations, but pos-
itive at higher values (latitude>60°; elevation>1500 m; Figure 3a,b). 
Temperature effects did not vary significantly by age- class (p > .05; 
Table S1) but were significantly more positive in temporal study de-
signs (p < .05) and non- native ranges (p < .01; Figure 3c).

Within the best Growth– Precipitation model, precipitation had 
significant positive effects during the growing season (p < .001) and 
negative effects during incubation (p < .01; Table S1). However, the 
latter was based on a very low sample size (n = 2; Figure 4), and this 
model should be interpreted with caution due to the low number 
of observations in the data set (n = 66 total). Effect sizes varied for 
precipitation during other life- stages, but precipitation effects were 
significantly more negative in anadromous populations relative to 
those observed in freshwater residents (p < .05; Figure 4).

Finally, estimates from the best Growth– Temperature model 
suggested that temperature effects became more positive with in-
creasing latitude and elevation (Figure 5a,b). This was only signif-
icant for elevation (p < .05; Table S1), while temperature effects 

were also significantly more negative in lotic than lentic habitats 
(p < .05; Figure 5c). Similarly, effect sizes varied across levels of life- 
stage*age, with significant differences observed during incubation 
(positive effect; p < .05), overwintering, and the growing season 
(negative effects; p < .05; Figure 5c). Negative effects during the 
growing season were weaker in age- 0 compared to age- 1 or age- 
2+ salmonids (Figure 5c), but these differences were not significant 
(p > .05). Estimates for incubation (n = 8) and overwintering (n = 12) 
were likely impacted by low sample sizes.

3.3  |  Publication bias and model robustness

Visual inspections of residuals suggested that assumptions of re-
sidual homogeneity were satisfied for all best- fit models (Figure S3; 
Table S2). VIFs suggested that collinearity among covariates in 
each best- fit model was limited (VIF < 5; Table S2). However, there 
was evidence of collinearity within the “multiple” (VIF = 6.12) and 
“winter” (VIF = 6.43) levels of the season covariate in the best- fit 
Abundance- Precipitation model, but not within other seasons or any 
of the other data sets (Table S2). Funnel plots and Egger tests re-
vealed evidence of publication bias in the Abundance- Precipitation 
data set only (p < .05; Table S2). This bias appeared to be mostly 
caused by observations with high precision having residual values 
that were skewed negative (Figure S4). Further investigation identi-
fied eleven studies that contributed disproportionately to this bias, 
which were skewed toward two study areas and correlations based 
on precipitation data averaged over nine months or more (i.e., sea-
son = “multiple”). Removing these eleven studies caused publication 
bias to become non- significant (Egger test p = .064) and reduced 
collinearity (VIF = 2.70 and 1.87 for “winter” and “multiple,” respec-
tively), while estimated coefficients had overlapping confidence 
intervals (details in Appendix S1, section S.3). Significant negative 
relationships between residuals and publication year were detected 
in the Abundance– Precipitation and Growth– Temperature data sets 
(p < .05; Table S2). However, these patterns were largely driven by 
positive residuals from very few studies published before 1981, sug-
gesting these trends could be an artifact of the skewed distribution 
of publication years.

Analysis of the three data sets subsetted by species indicated 
that results from best- fit models were robust to taxonomic differ-
ences. Specifically, whenever species contrasts were added, they 
were not significantly different than zero, with wide and overlap-
ping confidence intervals (Figure S6). Confidence intervals for all 
coefficients broadly overlapped in models with and without species 
contrasts, while models with species contrasts were always outper-
formed by best- fit models without them (ΔAICc > 3.5). Interactions 
between species and intercepts or slopes were also explored for ef-
fects of latitude and elevation in the Abundance– Temperature and 
Growth– Temperature data sets, but these models performed poorly 
compared to the original best- fit models (ΔAICc range: 8.0– 21.5).

Robustness tests suggested that methodological choices often 
had significant impacts on effect sizes. The best- fit model for the 
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Abundance– Precipitation data set was robust to all four method-
ological factors tested (p > .05), but the other data sets showed sig-
nificant effects of one or more variables (p < .05; Table S2). Adding 

data transformation and extraction method (Table 1) to the best- fit 
Abundance– Temperature model suggested that correlations based on 
transformed abundance data (99% of which were log- transformations) 

TA B L E  2  Full list of unique model numbers and corresponding equations within three stages of stepwise model selection. ΔAICc 
scores are shown for each model in the Abundance– Precipitation (labeled A– P; 16 models tested overall), Abundance– Temperature (A– T; 
24 models), Growth– Precipitation (G– P; 10 models), and Growth– Temperature (G– T; 16 models) data sets. Abbreviations used in model 
equations are taken from Table 1, with Z denoting the standardized effect size and r denoting the nested random effect structure (see 
Section 2). Some models were ignored (denoted by “— ”) due to limited contrast in covariates within some data sets (see Section 2). The 
selected models in stages 1 and 2 are denoted by *. All models within 2 ΔAICc units of the selected model are highlighted in bold italic text, 
and the model with the fewest fixed effects was selected in these cases. The best model overall for each data set is denoted by***

Stage Number Model equation A- P (n = 362) A- T (n = 610) G- P (n = 66)
G- T 
(n = 283)

1 1 Z = r 0.00* 9.97 0.00* 3.26

1 2 Z = L + r 2.03 8.24 2.10 3.66

1 3 Z = E + r 0.59 8.70 1.51 2.16

1 4 Z = L + E + r 2.33 1.02* 3.72 0.00*

1 5 Z = L × E + r 1.52 0.00 — 2.08

2 — Stage 1 (selected) 11.44 2.33 20.03 13.91

2 6 Stage 1 + LS 10.77 10.93 0.00* 2.70

2 7 Stage 1 + AC 7.77 0.00* 23.41 9.57

2 8 Stage 1 + SE 0.00* 7.87 13.13 16.26

2 9 Stage 1 + LSA 14.45 16.59 — 0.00*

3 — Stage 2 (selected) 4.19 10.96 2.05 2.44

3 10 Stage 2 + S 0.00*** 7.57 2.33 3.48

3 11 Stage 2 + A 4.82 10.25 0.26*** 4.67

3 12 Stage 2 + N 6.01 2.82 — — 

3 13 Stage 2 + H — 13.02 — 0.16***

3 14 Stage 2 + S + A 0.06 7.17 0.00 5.72

3 15 Stage 2 + S + N 1.61 0.00*** — — 

3 16 Stage 2 + S + H — 9.43 — 0.00

3 17 Stage 2 + A + N 6.02 3.04 — — 

3 18 Stage 2 + A + H — 11.87 — 2.40

3 19 Stage 2 + N + H — 4.67 — — 

3 20 Stage 2 + S + A + N 0.62 0.45 — — 

3 21 Stage 2 + S + A + H — 8.13 — 2.24

3 22 Stage 2 + S + N + H — 1.35 — — 

3 23 Stage 2 + A + N + H — 4.12 — — 

3 24 Stage 2 + S + A + N + H — 0.68 — — 

TA B L E  3  Summary of best- fit models for the Abundance– Precipitation (labeled A– P), Abundance– Temperature (A– T), Growth– 
Precipitation (G– P), and Growth– Temperature (G– T) data sets according to stepwise model selection. Abbreviations used in model equations 
are taken from Table 1. Each ΔAICc (with p- values for likelihood ratio tests) and pseudo- R2 value was calculated relative to models with 
no covariates (number = 1 in Table 2; see Section 2). Heterogeneity tests are based on a Wald- type test statistic, whereas the total 
heterogeneity (summed within and among studies) was calculated based on variance components. Significant p- values are marked with an 
asterisk (*)

Data set Best- fit model equation ΔAICc Pseudo- R2 Mean effect
Heterogeneity 
test

Total % 
heterogeneity

A– P Z = SE + S + r 15.63 (p < .001)* 0.05 0.06 (p > .05) 589 (p < .001)* 59.3

A– T Z = L + E + AC + S + N + r 22.24 (p < .001)* 0.10 −0.07 (p > .05) 1563 (p < .001)* 70.1

G– P Z = LS + A + r 21.82 (p < .001)* 0.41 0.23 (p < .05)* 91 (p = .005)* 40.2

G– T Z = L + E + LSA + H + r 19.44 (p < .001)* 0.30 0.26 (p < .05)* 874 (p < .001)* 73.8
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and data extracted from figures or tables were associated with more 
positive effect sizes (p < .05; Table S3). Similarly, adding response 
type to both Growth– Precipitation and Growth– Temperature models 
suggested that correlations based on weight were significantly dif-
ferent (p < .01) than those based on length or growth rate (Table S3). 
Predictor type also affected the best- fit Growth- Temperature model, 
such that correlations based on minimum temperature were associ-
ated with significantly more negative effect sizes than for average 
temperature, with no significant differences for other predictor types 
(Table S3). Finally, Cook's distance identified influential studies in 
each data set (n = 3– 6), but removing these studies and re- running 
each best- fit model yielded similar coefficients with substantial over-
lap in 95% confidence intervals (Table S2).

4  |  DISCUSSION

We assembled and analyzed the most extensive global database of 
climate effects on salmonid productivity to date, uncovering sub-
stantial variation. This variation exhibited broad spatial, temporal, 
and biological patterns that often, but not always, aligned with pre-
dictions based on salmonid thermal limits (see Figure 1). Specifically, 
spatial variation in latitude and elevation shaped temperature effects 
on productivity but, interestingly, did not influence precipitation ef-
fects. Generally, increased temperature tended to reduce productiv-
ity at low latitudes and elevations where warm and stressful thermal 
regimes predominate, but increase productivity at high latitudes and 
elevations where cold temperatures limit salmonid growth and abun-
dance. Similarly, temporal variation structured responses to climate 
during the warmest time- periods, when higher temperature and 
lower precipitation were both associated with reduced productivity. 

In addition, there was some evidence that increased flooding during 
egg incubation or the spring could further diminish productivity, but 
these patterns were inconsistent and sometimes impacted by low 
sample size. Finally, biological differences were also important, as 
abundance of non- native populations and salmonid growth in len-
tic habitats responded more positively (or less negatively) to higher 
temperatures, relative to native populations and lotic habitats.

Collectively, these patterns imply that future warming should be 
expected to (1) enhance productivity at polar latitudes (>60°) and 
high altitudes (>1500 m), (2) threaten salmonids in areas where pre-
cipitation is declining during the warmest months (3) affect native 
populations more negatively than non- natives, and (4) increase the 
importance of lentic habitats as climate refugia. These findings can 
help conservation and management bodies identify and protect sal-
monid populations that are especially sensitive to climate change, 
as well as guide future research. However, we also identified key 
limitations in current knowledge of salmonid responses to climate, as 
the majority of variation remains unexplained, while geographic bias, 
methodological inconsistencies, and unbalanced sample sizes likely 
restricted scope of inference.

4.1  |  Spatial patterns

The effects of temperature on salmonid abundance and, to a lesser 
extent, growth were related to latitude, as warming negatively im-
pacted productivity at low latitudes but had positive effects in polar 
regions, which is in line with previous research. For example, stud-
ies of European brown trout (Salmo trutta) suggested that higher 
temperatures and longer growing seasons should increase produc-
tivity in high- latitude populations that are currently constrained 
by cold temperatures (Jensen et al., 2000; Parra et al., 2009), 
while Mediterranean populations face extirpation due to thermal 
stress as climate change continues (Almodóvar et al., 2012; Ayllón 
et al., 2019). Our results suggest that this pattern may be similar 
across other salmonids, although most species are not well rep-
resented in our database across their range. Generally, this lati-
tudinal trend supports predictions that salmonids should become 
more productive within their native range in the Arctic under cli-
mate change (especially >60° N), while declines in productivity will 
be more frequent in low- latitude regions (Campana et al., 2020; 
Jonsson & Jonsson, 2009; Reist et al., 2006). However, the Arctic 
currently has the highest rates of warming on earth and this trend 
is expected to continue, so many high- latitude areas could be a 
boon for salmonids over the next few decades but may become 
less suitable later this century. Moreover, constraints within polar 
ecosystems could limit increases in salmonid productivity, as pri-
mary and secondary production must rise substantially to sustain 
higher salmonid biomass in the future (Reist et al., 2006), and high- 
latitude populations can still be negatively impacted by prolonged 
heat waves and droughts (von Biela et al., 2022).

Similar to latitude, there was a strong trend in temperature ef-
fects due to elevation, such that warmer temperatures were linked 

F I G U R E  2  Best- fit model for the Abundance– Precipitation data 
set, showing categorical coefficients and 95% confidence intervals 
plotted by season for spatial (silver) or temporal (gold) study 
designs (see Table S1). Total sample sizes for each level of season 
are shown for reference.
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to declines in growth and abundance at low elevations, but with 
increases at high elevations. This pattern supports the notion that 
high- altitude streams provide a “coldwater climate shield” for sal-
monids and will serve as important climate refugia in a warming 
world (Almodóvar et al., 2012; Isaak et al., 2015; Kanno et al., 2015; 
Nakano et al., 1996). Mountain streams typically exhibit slower cli-
mate velocities that help buffer against warming (Isaak et al., 2016), 
while previous research on cutthroat trout (Oncorhynchus clarkii) in 
the Rocky Mountains showed that productivity at high elevations 
is limited by cold summer temperatures (Coleman & Fausch, 2007; 
Harig & Fausch, 2002; Young et al., 2005). Thus, there is consid-
erable scope for warming to increase productivity in high- altitude 
populations (especially >1500 m), and we expect the distribution 
of productivity to shift toward higher elevations in the future. 
However, this will be offset by reduced productivity and more 

frequent extirpation in low- lying areas (Almodóvar et al., 2012; 
Nakano et al., 1996). Moreover, there is likely to be considerable 
variation in the rate of elevation shifts at the local level, especially 
as warming interacts with changes in snowpack and non- native 
species (Wenger et al., 2011).

The broad spatial patterns in salmonid- temperature relation-
ships we uncovered were in line with our predictions (Figure 1a), 
and suggest that populations occupying low- elevation habitats near 
low- latitude range margins are most likely to decline with warming. 
These vulnerable populations can be targets for conservation inter-
ventions or restoration by agencies, especially if they harbor unique 
diversity that might aid persistence (Carlson & Satterthwaite, 2011). 
Similarly, if vulnerable populations support fisheries, managers 
may need to consider reducing future harvests to remain sustain-
able under climate change. Changes in precipitation could possibly 

F I G U R E  3  Best- fit model for the Abundance– Temperature data set. Predicted values are plotted by latitude (a) and elevation (b), with 
fitted slope and intercepts corresponding to a reference level (c; arrow). Intercepts in (a) and (b) were adjusted to reflect the mean elevation 
and latitude, respectively, while points were sized according to the inverse of their sampling variance. Categorical coefficients and 95% 
confidence intervals (c) are plotted by age- class for native (silver) or non- native (gold) range portions, and spatial (circles) or temporal 
(triangles) study designs. Coefficients in (c) were estimated as contrasts relative to a reference level (bottom; see text) while controlling for 
latitude and elevation (see Table S1). Total sample sizes for each level of age- class are shown in (c) for reference.
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offset some of these impacts, but model selection did not indicate 
strong spatial variation in precipitation effects. This is likely because 
temperature varies more predictably with latitude and altitude than 
precipitation, which is more influenced by rainshadows, prevailing 
winds, and proximity to large water bodies (Fick & Hijmans, 2017).

4.2  |  Temporal patterns

Effects of climate on growth and abundance varied considerably 
based on the time- period studied, revealing critical periods when 
climate variation tends to have particularly strong impacts on sal-
monids. Most notably, warmer temperatures and decreased pre-
cipitation during the warmest times of year were both associated 
with reduced productivity, while increased precipitation during 
other time- periods (e.g., spring, egg incubation) was also linked to 
declines in productivity. These patterns largely matched expecta-
tions (especially during the growing season; Figure 1c,d) and cor-
roborated previous qualitative reviews that emphasized temporal 
variation in climate impacts, as well as its utility for improving in-
ferences (Kovach et al., 2016; Nislow & Armstrong, 2012). Indeed, 
multiple studies of brook trout (Salvelinus fontinalis) in eastern 
North America found that temperature and precipitation have 
the largest impacts during specific seasons or life- stages (Bassar 
et al., 2016; Kanno et al., 2015; Sweka & Wagner, 2022). In con-
trast, model selection in both temperature data sets supported 
the inclusion of age (age- class in Abundance– Temperature, life- 
stage*age in Growth- Temperature), but differences between age- 
classes varied in direction and were not statistically significant. 
Thus, the magnitude and direction of future climate change dur-
ing critical time- periods in the life cycle will be a key determinant 

of salmonid persistence, whereas differences among age- classes 
should be less influential. Continued research on these critical pe-
riods should help build upon current knowledge of how temporal 
climate variation shapes habitat quality (Armstrong et al., 2021), 
and how this can produce different responses within and among 
species (Bassar et al., 2016; Kanno et al., 2015, 2017).

The temporal patterns we found in salmonid responses to 
climate suggest that declines in productivity should be most fre-
quent in areas where growing season conditions are becoming 
hotter and dryer, as proposed in previous studies (Arismendi 
et al., 2013). This type of climate change is especially prominent 
in western North America (Carlson & Satterthwaite, 2011) and 
Mediterranean Europe (Ayllón et al., 2019), which will create fu-
ture management and conservation challenges in these regions. 
However, future responses will likely be complex, as temporal 
patterns were not always consistent among data sets (e.g., sum-
mer precipitation did not show expected positive effects in the 
Abundance- Precipitation data set), and their significance some-
times depended on other biological and methodological factors. 
Additionally, some strong effects were based on low sample 
sizes (e.g., reproduction and incubation in Figure 4, incubation 
and overwintering in Figure 5) and should thus be viewed as 
preliminary. The paucity of data during migration, reproduc-
tion, incubation, and emergence means we cannot resolve un-
certainties about the vulnerability of these life- stages to climate 
change (e.g., Dahlke et al., 2020; Jonsson & Jonsson, 2009; 
Pottier et al., 2022). Finally, we believe inferring the impacts of 
temporal covariates on salmonid productivity is especially ham-
pered by the use of ambiguous time- periods. Specifically, climate 
data were frequently averaged over 9– 12 month periods (e.g., 
season = “multiple”), which contributed to publication bias and 
collinearity issues in the Abundance- Precipitation data set (see 
Appendix S1, section S.3 for details). More broadly, this practice 
obscures inferences about temporal variation in climate effects 
(Appendix S1, section S.4) and should thus be avoided, as also 
suggested by Kovach et al. (2016). Instead, assessments of cli-
mate impacts should consistently focus on well- defined periods 
linked to the life cycle of the focal population.

4.3  |  Biological patterns

Biological factors such as range portion, habitat type, and ana-
dromy also strongly modified salmonid responses to climate vari-
ation. The most striking patterns were the significant differences 
in temperature effects between native and non- native species, 
and between lotic and lentic habitats, which both have implica-
tions for management and conservation. Specifically, the abun-
dance of non- native salmonids responded more positively to 
warming on average, relative to native populations. This supports 
the perception that climate change may allow non- native salmo-
nids to further outcompete or replace their native counterparts 
in some areas (Al- Chokhachy et al., 2016; Budy et al., 2008), a 

F I G U R E  4  Best- fit model for the Growth– Precipitation data 
set, showing categorical coefficients and 95% confidence intervals 
plotted by life- stage for anadromous (silver) or freshwater resident 
(gold) populations (see Table S1). Total sample sizes for each level of 
life- stage are shown for reference.



    |  7261GALLAGHER et al.

key warning sign given that many management agencies seek to 
limit or remove non- natives from critical habitats when feasible 
(Kanno et al., 2016; Kovach et al., 2017). However, such decisions 
should still be tailored to species-  and population- specific data 
whenever possible, as Bell et al. (2021) showed that competition 
with non- native salmonids can significantly threaten some native 
species, but not others. Additionally, the Growth- Temperature 
model suggested that warming temperatures during the growing 
season reduced productivity in lotic habitats, but these effects 
were negligible in lentic habitats. This pattern could be due to 
lentic environments, especially large lakes, becoming stratified 
with warming and providing deepwater thermal refugia that can 
benefit salmonid growth (Blair et al., 2013). Although the role of 
lentic habitats as potential climate refugia for salmonids has not 
been extensively studied, protecting or restoring large stratified 

lakes may be a worthwhile management and conservation option, 
especially in areas where lakes are known to be more resistant 
to warming than other habitats (Reist et al., 2006). Migration be-
haviors also influenced effects in the Growth- Precipitation data 
set, such that increased precipitation during the growing season 
improved growth in non- anadromous salmonids more than ana-
dromous populations. Causes of this pattern are uncertain, given 
the low sample size in this data set, but could perhaps be due 
to shorter freshwater residency in anadromous salmonids, which 
reduces exposure to the warmest time- periods when increased 
precipitation should be most beneficial. It is also notable that 
methodological differences in study design, data collection, and 
transformation influenced patterns in effect size (Figures 2 and 
3c; Tables S1– S3), which underscores the need to improve stand-
ardization across studies.

F I G U R E  5  Best- fit model for the Growth– Temperature data set. Predicted values are plotted by latitude (a) and elevation (b), with fitted 
slope and intercept corresponding to a reference level (c; arrow). The relationship with latitude in (a) was not signficant, so the fitted line is 
not shown. Points in (a) and (b) are sized according to the inverse of their sampling variance. Categorical coefficients and 95% confidence 
intervals (c) are plotted by life- stage*age for lentic (silver) or lotic (gold) habitat types (see Table S1). Coefficients in (c) were estimated as 
contrasts relative to a reference level (bottom; see text) while controlling for latitude and elevation. Total sample sizes for each level of life- 
stage*age are shown in (c) for reference.
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4.4  |  Limitations and future work

Although our quantitative synthesis now provides the most 
comprehensive global analysis of salmonid responses to climate 
change, current knowledge is incomplete and significant uncertainty 
remains. First, our database does not represent the whole salmonid 
range, with 85% of observations coming from Canada, the United 
States, British Isles, and Nordic countries, similar to geographic 
biases highlighted in critiques of past biodiversity syntheses (e.g., 
Gonzalez et al., 2016). This bias clearly underrepresents non– English 
speakers and limits scope of inference, such that applications of our 
findings beyond these regions must be done with care. Moreover, 
although covariates were significant overall, the variance explained 
was low for effects on abundance (pseudo- R2 = 5%– 10%) and modest 
for effects on growth (30%– 41%). This is an important limitation 
because abundance often has the strongest impact on productivity 
(Lobón- Cerviá, 2009), and much of the unexplained variation 
(40%– 75%) was attributed to heterogeneity within and among 
studies. Such variation is typical in ecological meta- analyses (Senior 
et al., 2016), and suggests that the broad patterns in productivity we 
uncovered have limited predictive power at the local level and that 
population- specific monitoring data remain critical for conservation 
and management planning. The variation we observed also likely 
reflects the remarkable population diversity of salmonids, which 
managers should seek to maintain to promote stability and resilience 
in a changing world (Schindler et al., 2010).

Our analysis was also impacted by the need to use correlations 
to derive standardized effect sizes, as these simplified relationships 
cannot account for factors such as density- dependence (Matte 
et al., 2020), food availability (Railsback, 2022), and species inter-
actions (Wenger et al., 2011). Furthermore, we analyzed growth 
and abundance separately even though these are often coupled 
(Lobón- Cerviá, 2022; Zabel & Achord, 2004), and can exhibit com-
plex and variable relationships to actual rates of biomass production 
(Lobón- Cerviá, 2009). Similarly, interactive (Arismendi et al., 2013; 
Xu et al., 2010b) or non- linear (Lobón- Cerviá & Mortensen, 2005; 
Rosenfeld, 2017) climate effects are not adequately captured with 
correlations, while the linearity of salmonid– climate relationships 
are likely influenced by choices in study design and data transfor-
mation. Further research that standardizes productivity and climate 
data while accounting for key ecological processes (e.g., density de-
pendence; Matte et al., 2020) would provide more precise and infor-
mative effects of climate on salmonids.

Despite some issues with publication bias, collinearity, and unbal-
anced sample sizes, best- fit models appeared to satisfy assumptions, 
and were robust to influential studies and taxonomic differences. 
Although species did not differ significantly in our analyses, diver-
gence in evolutionary histories, habitat preferences, and thermal 
tolerances within and among species will invariably shape future 
responses to climate change (Jonsson & Jonsson, 2009; McKenzie 
et al., 2021). Our data are probably ill- suited to taxonomic compari-
sons due to skewed species composition (47% of observations were 
brown trout or brook trout), so more targeted studies of variation 

in climate responses within and among species should be a priority 
for future research. Overall, the patterns our meta- analysis uncov-
ered are not definitive, and more research is needed to mitigate its 
geographic, taxonomic, and methodological limitations. To this end, 
we have shared our database (see Gallagher et al., 2022 on Dryad) 
and encourage others to use it, add more studies, or explore other 
covariates (e.g., WorldClim data; Fick & Hijmans, 2017). Finally, while 
we recognize that ecological data are complex and often best ana-
lyzed with sophisticated models (e.g., Letcher et al., 2015), we urge 
researchers around the world to report simple correlations (with 
sample sizes) between salmonid and climate data believed to be 
most relevant for their own study systems. Together, broader data 
sharing and more targeted, hypothesis- driven inquiry should further 
improve predictions of the future of salmonids under climate change.

5  |  CONCLUSIONS

Patterns revealed by our meta- analysis suggest that native salmo-
nids occupying lotic habitats at low latitudes and elevations are likely 
to be most vulnerable to future warming, especially in areas where 
drought will become more frequent during the hottest time- periods. 
Conversely, increased temperatures will likely enhance productiv-
ity at high latitudes and elevations. In combination, these trends can 
serve as a point of comparison for future studies and may play an im-
portant role in salmonid range shifts over the coming decades (Comte 
& Olden, 2017). More generally, our framework to predict and test 
patterns in effects of climate variation on growth and abundance 
enabled us to translate simple correlations from past research into 
broad inferences about future productivity, underscoring the value of 
data synthesis to informing conservation and management decisions 
(Haddaway, 2015). Although it is imperfect, our structured quanti-
tative approach— centered around simple questions of where, when, 
and what kind of effects are measured— should be useful for explain-
ing patterns in responses to climate in other organisms. Overall, fu-
ture impacts of climate change will be complex but are unlikely to be 
entirely negative, and local responses will exhibit substantial varia-
tion around the broad patterns highlighted in this study. Such var-
ied responses to climate change in salmonids imply that, while some 
populations will inevitably decline, this will be offset by expansion 
and increased productivity in others (Mantua et al., 2015). For biodi-
versity at large, this balance between gains and losses in species pro-
ductivity through time is critically important for the future of life in 
an increasingly human- dominated world (Dornelas et al., 2014, 2019). 
Our synthesis suggests that this uncertain balance also applies to sal-
monids, with far- reaching implications for these coldwater fishes, and 
the ecosystems and people that depend on them.
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