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Abstract: The low sand-carrying problem caused by the low viscosity of supercritical carbon diox-
ide (SC–CO2) limits the development of supercritical CO2 fracturing technology. In this study,
a molecular simulation method was used to design a fluorine-free solvent-free SC–CO2 thickener
1,3,5,7-tetramethylcyclotetrasiloxane (HBD). Simulations and experiments mutually confirm that
HBD-1 and HBD-2 have excellent solubility in SC–CO2. The apparent viscosity of SC–CO2 after
thickening was evaluated with a self-designed and assembled capillary viscometer. The results show
that when the concentration of HBD-2 is 5 wt.% (305.15 K, 10 MPa), the viscosity of SC–CO2 increases
to 4.48 mPa·s. Combined with the capillary viscometer and core displacement device, the low damage
of SC–CO2 fracturing fluid to the formation was studied. This work solves the pollution problems of
fluoropolymers and co-solvents to organisms and the environment and provides new ideas for the
molecular design and research of SC–CO2 thickeners.

Keywords: supercritical carbon dioxide; thickener; molecular simulation; core damage;
greenhouse effect

1. Introduction

In shale gas hydraulic fracturing, water is an important resource. However, with
the continuous application of hydraulic fracturing technology, problems such as water
scarcity, drinking water pollution, and flowback water treatment have gradually become
prominent [1]. Researchers began to focus on supercritical carbon dioxide (SC–CO2)
fracturing fluid technology. Richard S. [1,2] systematically studied the pros and cons of
using CO2 as the working fluid for shale gas production: (1) CO2 fracturing effect and
fracture expansion are better than water-based hydraulic fracturing, and under constant
pressure test conditions on the shale surface CO2 adsorption is better than CH4 at elevated
temperature, which facilitates gas extraction and also serves as a fixation of CO2 [3] show
in Figure 1, (2) Possible shortcomings, including the cost and safety issues related to
handling a large amount of SC–CO2: separation of CO2 and CH4 mixed gas, transportation
costs, pressure safety, and other issues. SC–CO2 has the characteristics of high diffusion
coefficient, ultra-low surface tension, and strong permeability. SC–CO2 injection into shale
changes the pore characteristics of shale, reduces the specific surface area, increases the
porosity and average pore size, and improves the fracturing effect [4]. SC–CO2 fracturing
technology can solve the shortcomings of water-based fracturing fluid systems such as
large waste of water resources, clay swelling, and residual working fluid that cause damage
to the reservoir and incomplete reverse drainage to cause groundwater pollution [5–7].
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According to existed research, the advantages of fluoropolymers [8] in chemistry and
low surface tension make them widely used in the area of oil field chemistry. The reported
fluoropolymers [9–11] generally have an excellent performance in SC–CO2 thickening,
but fluorine-containing monomers are expensive. Fluorine was widely used in aerospace,
petroleum, chemical, and other areas. It flows into the water cycle through wastewater
discharge, and it cannot be metabolized and is enriched in biological extraction, causing
great harm [12]. The reported siloxane thickeners [13–17] rely on the formation of Lewis
acid hydrogen bonds between the cosolvent and CO2 and the similar compatibility of the
cosolvent with siloxane to enhance solubility. Silicone has the characteristics of the low
glass transition temperature, low cohesive energy, and good economy. Modified silicone
thickeners have great development potential. The reported hydrocarbon thickener [18,19]:
(1) Low-molecular-weight compounds have good solubility in CO2 and poor thickening
effect, (2) Long-chain polymer hydrocarbons are soluble in CO2 under co-solvent condi-
tions, but the damage of co-solvents to the formation cannot be ignored [14]. In this work,
we designed and prepared two environmentally friendly supercritical carbon dioxide
thickeners, which solved the problem of high cost and high pollution caused by the use of
fluoropolymer and cosolvent in the past. Moreover, the thickener has excellent solubility
and thickening performance and has certain temperature resistance and pressure resistance.

A self-designed high-precision capillary viscometer was used to measure the apparent
viscosity of the CO2 fracturing fluid after thickening; the capillary viscometer was used
in conjunction with a core displacement device to study core damage and fluid loss. In
addition, the contents of different thickeners, the influence of temperature, pressure, and
concentration on CO2 viscosity, combined with Materials Studio and Abaqus to study the
solubility, thickening mechanism, and fracturing simulation respectively.

2. Materials and Methods
2.1. Materials Studio Simulation

The polymer simulated in this paper was named HBD-1 and HBD-2, and a CO2 system
with 1000 CO2 molecules, a polymer system with 4 polymer chains, and a polymer with 4
polymer chains 1000 CO2 molecules were established by using the Material Studio software
(Accelrys Ltd., San Diego, CA, USA), the all-atom molecular model of CO2 system, as
shown in Figure 2.
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Figure 2. Three kinds of systems established by all-atom molecular model of HBD-1 and HBD-2.
(1) The CO2 system with 1000 CO2 molecules; (2) the polymer systems with 4 polymer chains; (3) the
polymer-CO2 systems with 4 polymer chains and 1000 CO2 molecules.

After the Forcite optimization and annealing calculation of the amorphous cell module,
MD simulation of the amorphous cell module was carried out in the NPT system. The
temperature was set to 305.15 K, and the temperature was set to 0.01 GPa. The running
time for all the systems was 400 ps, and the trajectories were saved at 1 ps intervals [20–22].

2.2. Synthesis and Characterization of the Hyperbranched D4H

The materials used in the experiment were ethylene glycol dimethacrylate, 2,4,6,8-
tetramethylcyclotetrasiloxane (D4H), trimethylolpropane trimethacrylate and H2PtCl6·6H2O,
which were purchased from Macleans. HBD-1 and HBD-2 were synthesized by hydrosily-
lation [23] according to the procedure shown in Scheme 1.
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Scheme 1. Synthetic routes of HBD-1 and HBD-2.

Ethylene glycol dimethacrylate was washed with 1–5% NaOH alkali solution for
three times to remove MEHQ, and then washed for three times to remove NaOH. Anhy-
drous magnesium sulfate was dried, filtered to remove magnesium sulfate, distilled to
remove the remaining alkali, and then refrigerated at low temperatures. First, 16.4833 g of
ethylene glycol dimethacrylate was added to a 250 mL three-necked flask under magnetic
stirring. When the solution temperature rises to 70 ◦C, 40 ppm catalyst was added to acti-
vate for 2 h. Then 10 g of D4H (2,4,6,8-tetramethylcyclotetrasiloxane) was slowly dropped
into a three-mouth bottle (about 30 min~35 min), and HBD-1 initial product was obtained
after 4 h reaction. To remove chloroplatinic acid, 1 g activated carbon was added into the
product, and the mixture was repeatedly washed with distilled water after hydrosilylation
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was stopped. Under the vacuum conditions of 370 K and 0.06 MPa, the small molecule
compounds and water were removed by the rotating evaporator. At 90 ◦C, the ethylene
glycol dimethacrylate was replaced by 16.8841 g trimethylolpropane trimethacrylate to
produce HBD-2.

2.2.1. H NMR Measurements

Bruker-400 MHz NMR (Bruker Ltd., Switzerland) was used to characterize the 1H
NMR spectrum of the polymer with deuterated chloroform as solvent [20,24,25].

2.2.2. FT-IR Measurements

The infrared spectrum measurement of the polymer was completed by Nicolet iS50
Fourier transforms infrared spectrometer (Thermo Fisher Scientific Ltd., Waltham, MA,
USA). After washing the ATR crystal with ethanol, spread 0.10 mL of the sample evenly
on the surface of the ATR. The scan number of the spectrum is 128 and the resolution is
8 cm−1. The wave number ranges from 4000 to 400 cm−1 [26].

2.2.3. GPC Measurements

The measurement of polymer molecular weight is done by WATERS 2414 refractive
index detector (Waters Ltd., Shanghai, China). Prepare 5 mg/mL polymer solution with
chromatographic grade tetrahydrofuran and pass the solution through the gel chromatog-
raphy column at a flow rate of 1 mL/min at 35 ◦C [27].

2.2.4. Differential Scanning Calorimetry

The glass transition temperature of the polymer was measured using a Mettler-Toledo
differential scanning calorimeter in nitrogen atmosphere (Mettler-Toledo Co., Shanghai,
China). A 10 mg polymer sample was placed on the bottom of an aluminum crucible and
sealed with a porous lid. The heating rate and cooling rate are 5 ◦C/min. Take the average
of three measurements as the result [28–30].

2.2.5. Viscosity Measurement

The capillary viscometer (Figure 3) was composed of a plunger pump, a visualiza-
tion chamber, a viscosity measurement part, and a data collection terminal to study the
viscosity of SC–CO2 fracturing fluid after thickening. The inner diameter of the capillary is
D = 0.8 mm First, carbon dioxide and thickener are pumped into intermediate container I
through booster pump I, booster pump II, and the second ISCO pump pumps the mixed
thickener and CO2 into the visualization container, turn on the heating area to ensure that
the conditions in the container reach T = 304.25 K, P = 7.38 MPa [31] (supercritical con-
ditions) or above, and then the clarified mixed liquid was pumped into the intermediate
container II and pressed into the capillary at a constant flow rate In the end, the pressure
difference recorded by the differential pressure sensor at both ends of the capillary are
expressed in Equation (1), which was generally suitable for laminar fluids [32].

η =
τw

γw
=

D∆p/4L
8v/D

(1)

where η was fluid apparent viscosity (Pa s), τw was wall shear stress (Pa), γw was the
apparent shear rate (s−1), D presented the capillary diameter (m), ∆p was the pressure
difference of capillary (MPa), and L was capillary length (m), v was the flow velocity of
thickened liquid CO2 (m s−1).
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2.2.6. Cloud Point Measurement

Figure 4 was used for cloud point measurement. Before the experiment, open switch
5 to drain the air in the visualization container by a vacuum pump (the switches not
mentioned in each step were closed), and the left side of the intermediate container II was
filled with water. (1) 1 wt.% HBD thickener (305.15 K) was added to the visualization
reactor. (2) Turn on the 1,2,6 switches, compress the CO2 into liquid in the intermediate
container I with ISCO pump, turn on switch 4 to transfer the liquid CO2 to the visible
container, and operate repeatedly until the container was filled. (3) After the thickener
was mixed with CO2, turn on switches 3 and 4, and slowly draw out the homogeneous
liquid in the visible container with a hand pump to observe the cloud point phenomenon
(the pressure when the homogeneous solution was turbid). In the whole experiment
process, the pressure rise was controlled by ISCO pump, and the depressurization was
controlled by hand pump.
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2.2.7. Core Damage Measurements

Before the start of the experiment, pure SC–CO2 was injected into the core holder
(Figure 5) at an injection rate of 0.181 mL/min, the pressure difference between the two
sides of the core holder was recorded, and the permeability of the heterogeneous core was
calculated, Equation (2). In this work, the displacement fluid is supercritical carbon dioxide.
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The results show that SC–CO2 has no damage to the core studied. After thickening, the SC–
CO2 displacement experiment was carried out at 0.18 mL/min. The specific experimental
steps are as follows: (1) The initial permeability was measured by vacuum pumping and
supercritical carbon dioxide saturation. (2) At a constant flow rate of 0.18 mL/min, the
thickened supercritical carbon dioxide was injected to keep the fluid pressure stable in
the intermediate vessel. (3) During the whole experiment, the change of injection end
pressure was monitored, the backpressure was kept at 8 MPa, and the confining pressure
was always 4 MPa higher than the inlet pressure. The pressure difference between the two
sides of the core holder was recorded, and the permeability of the heterogeneous core after
fracturing was calculated.

k =
qµL
A∆p

(2)

where k was permeability (µm2), q was flow rate (cm3/s), µ was the viscosity (mPa·s),
L presented the core length (cm), A was core cross-sectional area (cm2), and ∆p was the
pressure difference of core holder (mPa).
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3. Results and Discussion
3.1. Materials Studio Computational Simulation
3.1.1. Interaction Energy Calculation

In the polymer-CO2 system, the dissolution of the polymer in CO2 mainly depends on
the polymer-CO2 interaction. The interaction energy (Einter) can quantitatively characterize
the intensity of its action. The greater the absolute value of the interaction energy was, the
stronger the polymer-CO2 interaction was. First, calculate the total energy Epolymer-CO2 of
the polymer chain-CO2 in the above stabilization, then calculate the Epolymer and ECO2(The
calculation results are recorded in Table 1), and finally the interaction energy was calculated
by Equation (3) [20].

Einter = Epolymer-CO2 − (Epolymer + ECO2 ) (3)

Table 1. Epolymer-CO2 , Epolymer and ECO2 parameters of HBD-1 and HBD-2.

System Epolymer-CO2 /kJ·mol−1 Epolymer/kJ·mol−1 ECO2 /kJ·mol−1 Einter/kJ·mol−1

Poly HBD-1 and
SC–CO2

−4525.25 −5937.54 1910.17 −497.88

Poly HBD-2 and
SC–CO2

−4727.68 −5734.77 1910.17 −903.08

3.1.2. Cohesive Energy Density and Solubility Parameter

The cohesive energy density (CED) and solubility parameters are also generally used
to represent the interaction between polymer molecules. The cohesive energy density was
the energy required for vaporization of 1 mol condensate per unit volume to overcome the
intermolecular force, and mainly reflects the interaction between groups. The square of the
solubility parameter was the cohesive energy density. Relevant studies have shown that
polymers with lower cohesive energy density have a higher solubility in CO2 [33–35], and
the smaller the difference between the solubility parameter of the polymer and CO2 was,
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the better the solubility of the polymer in CO2 was [36]. The CED and solubility parameter
(δ) of the polymer and CO2 was shown in Table 2. The |∆δ| of the two systems in Table 2
are 1.08 and 0.04 respectively.It can be seen that HBD-1 and HBD-2 have good solubility in
SC–CO2.

Table 2. CED and solubility parameter values of the polymer and CO2.

System CED/(J/m3) δ/(J/cm3)1/2 |∆δ|/(J/cm3)1/2

PolyHBD-1-CO2 2.08 × 108 14.42 1.08
PolyHBD-2-CO2 1.79 × 108 13.38 0.04

CO2 1.78 × 108 13.34 0
|∆δ| = |δPolymer-CO2 − δCO2 |.

3.1.3. Radial Distribution Function (RDF)

The mechanism of polymer solvation in SC–CO2 was studied by comparing the RDF
value of carbon atom in polymer-CO2 with that of carbon atom in polymer-polymer. If the
RDF value of polymer-CO2 was larger, it proves that polymer HBD-1 was miscible with
SC–CO2 [20–22,37,38]. The results of the polymer-CO2 and polymer-polymer are shown in
Figure 6. The results show that the RDF value of polymer-CO2 was greater than that of
polymer-polymer, and polymer HBD-1and HBD-2 has good miscibility in SC–CO2.
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Figure 6. Radial distribution functions of the intermolecular C–C pairs for Polymer-CO2 systems at
305.15 K and 10 Mpa.

3.2. Structural Characterization of HBD-1 and HBD-2

The FT-IR and 1H NMR spectra of D4H, HBD-1, and HBD-2 were recorded in
Figures 7 and 8. In the infrared spectra of D4H, HBD-1, and HBD-2, there were Si—
O characteristic peaks at 1050 cm−1~1100 cm−1 [15], and Si—C characteristic peaks at
850 cm−1~890 cm−1. It can be seen from Figure 8 that the Si—H peak at 2160 cm−1 was
significantly weakened, and a C=O peak appeared at 1735 cm−1 [39]. In the FT-IR of HBD-2,
a peak of 1635 cm−1 appeared. The numerical changes of these characteristic peaks indicate
the changes in the functional groups corresponding to the hydrosilylation reaction. The
double bond peak still exists in the infrared image of HBD-2 because the double bond is
excessive in the reaction.
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Figure 8. Structural characterization of HBD-1 and HBD-2. (a) FT-IR spectrum of HBD-1, (b) 1H NMR spectrum of HBD-1,
(c) FT-IR spectrum of HBD-2, (d) 1H NMR spectrum of HBD-2.

The 1H NMR shift data of HBD-1 and HBD-2 were shown in Table 3. It can be seen
from Figure 7 that the Si–H peak in D4H appears at 4.5 ppm. In combination with Table 3,
Figures 7 and 8, it can be seen that the chemical shift in the 1H NMR spectrum indicates
that the two polymers undergo addition reactions with two symmetrical H in D4H, so
Si–H still exists in HBD-1 and HBD-2. However, there are double-bonded hydrogens
at 6.02 ppm~6.4 ppm in the HBD-2 1H NMR spectrum. This is because the monomer
trimethylolpropane trimethacrylate that participates in the hydrosilylation reaction con-
tains excessive double bonds, and these double bonds do not participate in the reaction
due to steric hindrance. The numerical changes of these characteristic peaks indicate
the changes in the functional groups corresponding to the hydrosilylation reaction. The
double bond peak still exists in the infrared image of HBD-2 because the double bond is
excessive in the reaction. Combined with FT-IR and 1H NMR, HBD-1 and HBD-2 were
successfully prepared.
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Table 3. Chemical shift of HBD-1 and HBD-2.

δ/ppm Type of H

HBD-1

0.19 Si–CH3

1.70–1.78 Si–CH2–CH–CH3
O=C–CH(CH3)–CH2

4.16–4.21 –O–CH2–CH2–O–
4.5 Si–H

7.39 CDCl3

HBD-2

0.19 Si–CH3
0.83 (CH2)3–C–CH2–CH3

1.63–1.85

(CH2)3–C–CH2–CH3
O=C–CH–(CH3)2

O=C–CH=CH2
O=C–CH(CH2Si) –CH3

2.3–2.4 O–C–CH–(CH3)2
O=C–CH(CH2Si)–CH3

4.15–4.23 (CH2)3–C–CH2–CH3
4.5 Si–H

6.02–6.4 O=C–CH=CH2
7.39 CDCl3

3.3. Glass Transition Temperature and Molecular Weight Analysis

Figure 9a,b are the DSC and GPC spectra of HBD, respectively. It can be seen from
(a) that glass transition temperature (Tg) of HBD-1 and HBD-2 is −15 ◦C and −44.5 ◦C,
respectively. The Tg was generally used to characterize the relative flexibility of polymer
chains, the lower the glass transition temperature was, the better the flexibility of the
molecular chain was [40,41]. High polymer chain flexibility helps to dissolve HBD in
SC–CO2 [35]. The polymer parameters were shown in Table 4.
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Table 4. Polymer parameters.

Molecular Weights (MP) Polymerization Degree

HBD-1 7552 17
HBD-2 7076 16

3.4. Cloud Point and Viscosity of HBD-1 and HBD-2 in SC–CO2
3.4.1. Cloud Point and Phase Behavior of HBD-1 and HBD-2 in SC–CO2

The phase behavior system consists of thickener HBD and SC–CO2. It can be seen
that pure CO2 was a transparent liquid (298.15 K, 7.48 MPa). In Figure 10b, HBD-1 was
milky white and HBD-2 was translucent, which indicates that HBD-2 (298.15 K, 7.48 MPa)
was more soluble in SC–CO2. The experimental results of Figure 10c show that HBD-1
and HBD-2 thickeners have excellent solubility in SC–CO2 after being kept at a constant
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temperature of 305.15 K for 12 h. This was in good agreement with the results of Einter,
CED, and RDF. As well, the cloud point pressure of the thickener SC–CO2 system in this
study was lower than 7.48 MPa.
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The mechanism was to introduce multiple aliphatic groups and an octane cyclosilox-
ane into the molecular design of thickeners. Carbon dioxide and lipid groups form hydro-
gen bonds through Lewis acid-base pairs [42–44]. The good chain flexibility of siloxane
also plays a role in improving the solubility of the polymer in SC–CO2 [35,45].

3.4.2. The Influence of Temperature on the Apparent Viscosity of HBD-1 and HBD-2 in
SC–CO2

The effect of temperature on the apparent viscosity of thickened SC–CO2 was recorded
in Figure 11. The results show that the apparent viscosity of the solution decreases with
the increase in temperature. The results are the same as the previous studies on the effect
of temperature on the apparent viscosity, because the temperature has a certain influence
on the network structure of polymer chains [46–48]. The results also show that HBD-2
thickener has better temperature resistance when the temperature rises from 305.15 K
to 315.15 K. This was because there are branched chains in HBD-2 polymer chains, and
the polymer network structure can still maintain a certain tight network structure of the
temperature action.
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The mechanism was that when HBD polymer molecules enter SC–CO2, the molecular
chains entangle with each other in the form of curl, forming a complex three-dimensional
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network structure. The molecular structure contains an eight-membered ring, and there
are hydrogen bonds (carbonyl and CO2) in the system [42–44], which hinder the flow of
CO2 molecules. When the initial temperature was low, the apparent viscosity decreased
slowly. With the increase in temperature, the network structure was destroyed more and
more thoroughly, and the apparent viscosity decreased sharply.

3.4.3. The Influence of Pressure on the Apparent Viscosity of HBD-1 and HBD-2 in SC–CO2

Figure 12 records the response of pressure to the apparent viscosity of thickened
SC–CO2. The results show that the apparent viscosity of SC–CO2 increases slowly from the
increase in system pressure. According to the thickening mechanism, the intermolecular
distance decreases to the increase in pressure, which makes it easier to form a more
compact three-dimensional network structure [47]. In the process of pressurization, the
self-winding of the polymer chain becomes closer, and the hydrogen bonding between the
electron-donating group and CO2 (Lewis acid-base formation) gradually increased [49],
which was conducive to the increase in apparent viscosity. It can be seen from the study in
Figure 12 that the viscosity increasing effect of HBD-2 was better than that of HBD-1 in the
range of 7.48 MPa~14 MPa. It can be seen from Figure 12 that HBD-2 is more sensitive to
pressure in the same pressure range. This is due to the existence of branched chains in the
polymerization unit of HBD-2, and the network structure formed between the polymer
molecules is more compact than that of HBD-1 after increasing the pressure. The denser
network structure restricted the free flow of CO2, and the viscosity of SC–CO2 thickened
by HBD-2 increased more obviously under the same pressure change. It was pointed out
that the molecular design of thickeners can enrich branch chains in a certain range.
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3.4.4. The Influence of Shear Rate on the Apparent Viscosity of HBD-1 and HBD-2 in
SC–CO2

Figure 13 shows the change in the apparent viscosity of SC–CO2 after thickening
in the shear rate range of 60 s−1 to 120 s−1. Firstly, it can be seen from the figure that
the change of shear rate does not affect the viscosity of pure CO2, because pure CO2 is a
Newtonian fluid. HBD-1 and HBD-2 exhibit a negative correlation with shear rate, which
proves that SC–CO2 fluid after thickening is a power-law fluid with shear-thinning [43].
After thickening, the apparent viscosity of SC–CO2 fluid decreases with the increase of
shear rate, mainly because the increase of shear rate destroys the spatial network structure
and restores the fluidity of CO2 molecules that were originally restricted to flow.
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3.4.5. The Influence of Thickener Content on the Apparent Viscosity of HBD-1 and HBD-2
in SC–CO2

Figure 14 shows the effect of thickener content on the apparent viscosity of thick-
ened SC–CO2. The results show that the apparent viscosity increases in the range of
1 wt.%~5 wt.%. The mechanism of action was the number of polymer molecular chains
that can form a tight network structure and hydrogen bonds in the system increased expo-
nentially. Destroying these structures requires a lot of energy [50], and there is no external
energy under experimental conditions. Therefore, the free-flowing SC–CO2 molecules in
the system were captured by the expanding polymer network, which shows the increase in
apparent viscosity.
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3.5. Core Damage

In the development of oil and gas resources, there must be physical, biological, and
thermal interactions between formation and fluid [51]. Air and water pollution caused
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by traditional hydraulic fracturing were expected to be solved by SC–CO2 water-free frac-
turing technology. In this study, a blank test was conducted first. The initial permeability
measurement results are shown in Table 5.

Table 5. Initial permeability.

Type of Thickener HBD-1 HBD-2

Core number 1 2 3 4 5 6
Permeability/10−3 µm2 14 18 20 13.4 12 13.6

The results show that the permeability of the core saturated with SC–CO2 was the
same as that of the core without SC–CO2 immersion. Formation damage rates Equation (4)
is shown as following:

ϕ =
K1 − K2

K1
× 100% (4)

whereϕ is formation damage rate, K1 is matrix permeability before fracturing fluid injection
(×10−3 µm2), K2 is matrix permeability after fracturing fluid injection (×10−3 µm2).

Figure 15 shows the permeability loss rates of three cores with different permeability
after fracturing with 5 wt.% HBD-1 and HBD-2 thickened SC–CO2. The results show that
each core has a certain degree of permeability loss, which shows that the core with higher
permeability has less permeability loss and vice versa. This may be due to the fact that
some thickeners adsorbed on the rock surface change the wettability, which leads to a
decrease of permeability [52].
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Figure 15. Core failure rate measurement results.

4. Conclusions

The SC–CO2 thickener molecules HBD-1 and HBD-2 were designed by molecular
simulation method, and the interaction energy, CED, and RDF of the thickener-CO2 system
were calculated. Using a self-designed and assembled capillary viscometer, the effects of
content, temperature, shear rate, and pressure on the apparent viscosity of SC–CO2 were
studied. The excellent solubility of HBD-1 and HBD-2 thickeners was studied through
simulation experiments and visualization experiments. The capillary viscometer was
combined with a core displacement device to study the damage of thickened SC–CO2 to
the core. The results show that HBD-1 and HBD-2 (305.15 K, 7.48 MPa) have good solubility
in SC–CO2; the apparent viscosity of supercritical CO2 fluid after thickening is positively
related to pressure and dosage and is related to temperature and deceleration rate Negative
correlation. HBD-2 has a better thickening effect at 5 wt.%, and the apparent viscosity can
reach 4.48 mPa·s (305.15 K, 10 MPa).
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There are three main mechanisms for polymer thickening and dissolution in SC–CO2:
polymer-polymer interaction, polymer-carbon dioxide interaction, and polymer chain
flexibility. To avoid the use of fluoropolymers and co-solvents, following three mechanisms,
the author introduced some CO2-philic groups in the polymerization unit to increase the
solubility of polymer molecules and introduced cyclic siloxanes to improve the viscosity-
increasing effect. A thickener with good solubility in supercritical CO2 was designed.
This study verified the feasibility of this idea and found that the existence of multiple
aliphatic groups in the branched-chain also had a certain impact on the viscosity, which
opened up a new way for the development of environmentally friendly SC–CO2 thickener.
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Nomenclature
D4H 1:3,5,7-tetramethyl-l-cyclotetrasiloxane, HBD Hyperbranched D4H, Tg Glass transition temper-
ature ◦C, τ Shear rate, s−1.
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