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Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert
various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity,
antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described.
This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave
assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described,
including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance
liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides.

1. Introduction

The oceans occupy more than 70% of the earth and are a rich
natural resource formany bioactive compounds in organisms
such as fish, shellfish, molluscs, univalves, cephalopods,
crustaceans, and echinoderms, which significantly contribute
to economic and research development [1, 2]. Since marine
organisms live in complex habitats and are exposed to
extreme conditions, such as salinity, pressure, temperature,
and illumination, they produce a wide variety of secondary
metabolites that cannot be found elsewhere [2]. In addition,
themarine organisms also have special structures and consti-
tute nearly half of the worldwide biodiversity, like antioxidant
activity, antimicrobial activity, anticancer activity, antihy-
pertensive activity, anti-inflammatory activity, and so forth
[3].

In general, bioactive peptides often have 3 to 20 amino
acid residues, and their biological activities are based on
their amino acid composition and sequence [4]. Recently,
much attention has been paid to unravelling the structural,
compositional, and sequential properties of bioactive pep-
tides [3]. This review highlights the characteristics of marine
peptides with biological activities as well as the preparation
and purification of such peptides.

2. Marine Peptides with Different Bioactivities

Many marine organisms are exposed to more extreme con-
ditions than that on land, which make the marine bioactive
peptides have significant different amino acid compositions
and sequences from land bioactive peptides; besides, the
species and amounts of marine bioactive peptides are more
than that of land bioactive peptides. Moreover, Marine bioac-
tive peptides can be obtained from various marine animals,
plants, and lower organisms. Each is unique as a species,
considering its great taxonomic diversity and special charac-
teristics, marine bioactive peptides have better bioactivity in
some areas than land bioactive peptides.

2.1. Antioxidative Peptides. Oxidation is an essential reaction
in all living organisms, as the formation of free radicals and
other reactive oxygen species (ROS) plays an important role
in signal transduction [5]. However, excess free radicals can
cause many human diseases, such as heart disease, strokes,
arteriosclerosis, diabetes, and cancer [6]. Antioxidants are
compounds that can inhibit oxygen-dependent lipid oxida-
tion, usually by scavenging and thereby neutralizing free
radicals [7]. In addition, the synthetic antioxidants such
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as butylated hydroxyanisole (BHA) and butylated hydroxy-
toluene (BHT) have long-term safety problems and negative
consumer perception [8]. For these reasons, the demand for
natural antioxidants has increased recently.

Compared to the earth environment, marine organ-
isms live in complex habitats and are exposed to extreme
conditions; thus, some of them have higher antioxidant
activities. In recent years, many antioxidative peptides from
marine organisms have been found, such as those from
Hoki (Johnius belengerii) frame [9], Mackerel (Pneumatopho-
rus japonicus) [10], Mussel (Perna canaliculus) muscle [11],
Croaker (Otolithes ruber) [12], Tuna backbone [13], and
Prawn (Penaeus japonicus) [14], and these peptides show sig-
nificant free radical scavenging activities (Table 1). Moreover,
every year a considerable amount of total catch is discarded
[15], causing environmental pollution and the wasting of
resources. Therefore, many researchers used seafood by-
products to prepare antioxidative peptides, like Sardinelle
(Sardinella aurita) by-products [16], Abalone (Haliotis discus
hannai Ino) viscera [17], Nile Tilapia skin [18], Jumbo Squid
(Dosidicus gigas) skin [19], and so forth, and, thus, these stud-
ies were increasing the utilization value of marine organisms.

The measurement of antioxidant activity is an important
screening method. Some chemical methods are used, includ-
ing reducing power, hydroxyl radical scavenging activity,
superoxide anion radicals scavenging activity, scavenging
reactive oxygen species, and inhibition of lipid peroxidation
[20–23]. Despite the wide use of these chemical antioxidant
activity assays, none of them take into account the bioavail-
ability, uptake, andmechanismof the antioxidant compounds
[24]. In recent years, cell culture models provide an approach
that is cost-effective and relatively fast and can explain
metabolic issues [25]. One approach is to use the cellular
antioxidant status measured by the methyl thiazolyl tetra-
zolium assay and protect HepG2 cells against H

2
O
2
-induced

cytotoxicity [26, 27]. However, since the concentration of
H
2
O
2
is not clear, this method should have a preliminary

experiment. Another effective cellular antioxidant activity
(CAA) assay is also related to HepG2 cells [25, 28], and
the CAA assay is considered a superior indicator of in vivo
activity compared with in vitro assays because it involves the
exposure of the antioxidants to the complexity of biological
substrates under physiological conditions [29]. Certainly,
the best antioxidant assays are from animal models and
human studies [30], but they are expensive, time-consuming,
and not suitable for the initial screening [24]. In other
words, although there is a great multiplicity of methods used
for antioxidant testing, there are no approved standardized
methods.

2.2. Angiotensin-I-Converting Enzyme (ACE) Inhibitory Pep-
tides. Hypertension is one of the most common cardiovas-
cular diseases worldwide [54]. Approximately 54% of strokes,
47% of ischaemic heart disease, 75% of hypertensive disease,
and 25% of other cardiovascular diseases worldwide were
attributable to high blood pressure [55]. Among the processes
related to hypertension, Angiotensin-I-Converting Enzyme
(ACE) plays an important role in the regulation of blood
pressure. ACE can catalyse the conversion of angiotensin I to

angiotensin II, and angiotensin II is a potent vasoconstrictor
that increases peripheral vascular resistance and conse-
quently elevates arterial pressure [56, 57]. Therefore, in the
development of drugs to control high blood pressure, ACE
inhibitors and angiotensin receptor blockers are now used
clinically for the treatment of various cardiovascular diseases
[58]. However, the synthetic drugs such as captopril, lisino-
pril, and enalapril [59] are believed to have certain side effects
such as a cough, skin rash, loss of taste, or angioneurotic
oedema [60, 61]. Due to these adverse side effects, there is
a trend towards encouraging the development of natural ACE
inhibitors.

In recent years, naturally occurring peptides with ACE
inhibitory activity were obtained from variousmarine organ-
isms such as Green Algae [62], Sea Cucumber (Acaudina
molpadioides) [31], Tuna [32], Sole (Limanda aspera) [33],
Blue Mussels (Mytilus edulis) [34], Jumbo Squid (Dosidicus
gigas) [63], Oysters (Crassostrea gigas) [64], and Shrimp [35,
36]. In addition, fish are sources of numerous bioactive pep-
tides with ACE inhibitory activities including Alaska Pollack
(Theragra chalcogramma) frame [37] and skin [38], Flounder
fish (Paralichthys olivaceus) [65], Tuna [32], Shark [39], and
Cod (Gadus morhua) [66]. Marine organisms may become
important protein resources for the selection of novel ACE
inhibitors (Table 1).

To date, the most commonly used method for the detec-
tion of ACE inhibitory activity is evaluated by Lineweaver-
Burk plots [56]. Additionally, there are many methods
for evaluating the ACE inhibitory activity in vitro, such
as spectrophotometric, fluorometric, radiochemical, high-
performance liquid chromatography (HPLC) and capillary
electrophoresis (CE) methods [67, 68]. However, the spec-
trophotometric assay is complicated and time-consuming;
the fluorometric assay is expensive but easy and automated
[69]; and the radiochemical assay is unsafe and time-
consuming and require special apparatus [70]. The HPLC
assay has a high sensitivity and short operation time, while in
comparison to the methods mentioned above, the CE assay
is found to be faster and more automated and requires less
sample, substrates, and reagents, which suggests that the CE
method is more suitable for the high throughput screening
of peptides with ACE inhibitory activity [54]. In addition,
there is not necessarily an in vivo effect after the identification
of an ACE inhibitory peptide in vitro. Thus it is necessary
to perform in vivo animal studies using animal models, and
the in vivo assay of ACE inhibitory activity is generally con-
ducted by measuring the blood pressure response in spon-
taneously hypertensive rats following intravenous injection
or oral administration [71]. However, the in vivo assays are
expensive, time-consuming, and complicated. In conclusion,
the establishment of a simple, rapid, sensitive, and reliable
inhibition assay is desirable.

2.3. Antimicrobial Peptides. The discovery of the widespread
distribution of antimicrobial peptides (AMPs) over the past
20 years has provided insights into the innate defence
systems that permit multicellular organisms [72], and AMPs
are considered as highly significant immune effectors that
have evolved through positive selection [73]. Recently, much
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Table 1: Biological activity associated with protein hydrolysates and peptides from marine organisms.

Common name Scientific name Origin Biological activity Peptide(s) sequence Reference

Hoki Johnius belengerii Frame Antioxidant ESTVPERTHPA
CPDFN [9]

Mackerel Pneumatophorus
japonicus Muscle Antioxidant — [10]

Mussel Perna canaliculus Muscle Antioxidant KGYSSYICDK,
SSYCIVKICDK [11]

Croaker Otolithes ruber Muscle Antioxidant KTFCGRH- [12]

Tuna Backbone Antioxidant VKAGFAWTA
NQQLS [13]

Prawn Penaeus japonicus Muscle Antioxidant IKK, FKK, FIKK [14]

Sardinelle Sardinella aurita Muscle Antioxidant
LHT, LAAL, GGG,
GAH, GATA, PHTL,

GALAAH
[16]

Jumbo Squid Dosidicus gigas Skin Antioxidant FDSGPAGVL,
NGPLQAGQPGER [19]

Sea Cucumber Acaudina
molpadioides Whole body ACE inhibitory MEGAQEAQGD [31]

Tuna — Frame Antihypertensive GDLGKTTTVS
NWSPPKYKDTP [32]

Sole Limanda aspera Frame Antihypertensive MIFPGAGGPEL [33]
Blue Mussel Mytilus edulis Whole body ACE inhibitory EVMAGNLYPG [34]
Shrimp — Fermented product ACE inhibitory SV, IF, WP [35]

Shrimp Plesionika izumiae
Omori Whole shrimp Antihypertensive VWYHT, VW [36]

Alaska Pollack Theragra
chalcogramma Frame ACE inhibitory FGASTRGA [37]

Alaska Pollack Theragra
chalcogramma skin ACE inhibitory GPL, GPM [38]

Tuna — Frame ACE inhibitory GDLGKTTTVS
NWSPPKYKDTP [32]

Shark — Meat ACE inhibitory CF, EY, MF, FE [39]
Oyster Crassostrea gigas Muscle Anti-HIV LLEYSL, LLEYSI [40]

Yellow Catfish Pelteobagrus
fulvidraco Skin Mucus Antimicrobial GKLNLFLSRLE

ILKLFVGAL [41]

Marine Snail Cenchritis
muricatus Whole body Antifungal SRSELIVHQR [42]

Hoki Johnius belengerii Frame Ca-binding VLSGGTTMYA
SLYAE [43]

Alaska Pollack Theragra
chalcogramma Backbone Ca-binding VLSGGTTMA

MYTLV [44]

Yellowfin Sole Limanda aspera Frame Anticoagulant TDGSEDYGILE
IDSR [45]

Spirulina Maxima — Whole body Antiatherosclerotic LDAVNR, MMLDF [46]

Blue Mussel Mytilus edulis Whole body Anticoagulant EADIDGDGQV
NYEEFVAMMTSK [47]

Oyster Crassostrea gigas Muscle Antitumour — [48]

Tuna Thunnus tonggol Muscle Antiproliferative LPHVLTPEAGAT,
PTAEGGVYMVT [49]

Pacific Whiting Merluccius
productus Whole body Immunomodulatory — [50]

Algae Pyropia yezoensis Whole body Anti-inflammatory — [51]
Salmo Oncorhynchus keta Skin Antidiabetic — [52]
Brown Shrimp Penaeus aztecus Head Antiobesity — [53]
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attention has been paid to marine-derived bioactive peptides
due to their special living environment, compositions, and
properties. The marine organisms are in close contact with
microbes and provide a huge source of AMPs. In addition,
open ocean seawater harbours have 106 bacterial and 103
fungal cells per millilitre, and most marine organisms host
specific populations of microbes on their surfaces or within
the confines of their tissues [74]. As stated earlier, this section
is to introduce several marine-derived natural products
that possess significant antimicrobial properties. In recent
years, researchers have isolated AMPs from Atlantic Cod
(Gadus morhua) [75], Mud Crab (Scylla paramamosain) [76],
Oyster (Crassostrea gigas) [40], Yellow Catfish (Pelteobagrus
fulvidraco) [41], Sponge (Trichoderma sp.) [77], and Marine
Snail (Cenchritis muricatus) [42], and the AMPs frommarine
organisms have safe, natural, inexpensive, and high bioac-
tivity properties (Table 1). In addition, several methods for
testing the antimicrobial activity of hydrolysates or peptides
have been used. For example, the agar diffusion assay is
a common method used to test the antimicrobial activity
of peptides [78, 79]. This method quantifies the ability of
antibiotics to inhibit bacterial growth [80].The agar diffusion
technique is usually used for determining the minimum
inhibitory concentration in solid media [81]. Furthermore,
there are some other assays to evaluate the antimicrobial
activity like the disc diffusion assay [82], broth dilution [83],
high throughput fluorescence screening assay [84], and so
forth. The growing problem of resistance to conventional
antibiotics and the need for new antibiotics has stimulated
interest in the development of antimicrobial peptides as
human therapeutics [72].

2.4. Other Bioactive Peptides. The peptides from marine
organisms also exhibit other bioactivities, such as calcium
binding, anticoagulant, antitumour, cardiovascular protec-
tive, immunomodulatory, neuroprotective, antidiabetic, and
appetite suppression activities [85, 86].

There are many researches about the above biological
activities; for example, Jung and Kim [43] prepared a peptide
from Hoki (Johnius belengerii) bone showing significant Ca-
binding activity, and the bone could be used in nutraceuticals
with a high bioavailability of calcium. Jung et al. [44] also
found a low molecular weight peptide with a high affinity
to calcium from Alaska Pollack (Theragra chalcogramma)
backbone, whichmakes it possible to utilize the fish backbone
in the nutraceutical field. Furthermore, with cardiovascu-
lar disease being identified as the leading cause of death
worldwide, some researchers have separated cardiovascular
protective peptides from Yellowfin Sole (Limanda aspera)
[45], Spirulina Maxima [46], Blue Mussel (Mytilus edulis)
[47], and other marine organisms (Table 1).

In recent years, there is also a trend to focus on
marine organism protein hydrolysates that are used as
antitumour agents [87]. For example, Wang et al. [48]
have studied the antitumour activity of the Oyster (Cras-
sostrea gigas) hydrolysates in BALB/c mice and found the
spleen proliferation of lymphocytes and the phagocytic
rate of macrophages in S180-bearing mice significantly
increased after the administration of the oyster hydrolysates.

Hsu et al. [49] have investigated the antiproliferative activities
of peptides from Tuna Dark (Thunnus tonggol) muscle by-
product, and the results showed that the peptide fraction
with the molecular weight range from 390 to 1400Da
possessed the greatest antiproliferative activity. Alemán et
al. [88] have proven that giant squid gelatine hydrolysates
demonstrated an in vitro cytotoxic effect on cancer cells,
with IC50 values of 0.13 and 0.10mg/mL for MCF-7 (human
breast carcinoma) andU87 (glioma) cell lines, respectively. In
addition, the effect of immunomodulatory peptides may be
due to enhanced macrophage activity and lymphocyte pro-
liferation. Some researchers have found that the phagocytic
activity of peritoneal macrophages is enhanced following
the administration of fish protein concentrate from Pacific
Whiting (Merluccius productus) at 0.3mg/ml for 7 days [50].
Yang et al. [89] studied the immunomodulatory effects of
marine oligopeptide from Chum Salmon hydrolysate, and, in
comparison with the control group, the salmon hydrolysate
could significantly enhance the capacity for lymphocyte
proliferation. Furthermore, as part of our innate immune
system, inflammation is one of the most generic responses,
but uncontrolled inflammation is believed to play crucial
roles in the pathogenesis of various diseases [90], and there
has been a remarkable increase in pharmacological research
on anti-inflammatory marine biomolecules in recent years.
Novel bioactive peptides from sponges [91], Algae (Pyropia
yezoensis) [51], Brown Seaweed [92], and Abalone [93] are
also described along with their pharmacological effects in
relation to anti-inflammation.

Furthermore, some other bioactive peptides frommarine
organisms have been investigated. Lee et al. [94] have inves-
tigated the antidiabetic effect and mechanism of a Marine
Algae (I. foliacea) product in C57BL/KsJ-db/db mice and
found that the levels of postprandial blood glucose were
significantly lower than the control group. Zhu et al. [52]
have also found that the oligopeptides from Marine Salmo
(Oncorhynchus keta) skin could significantly reduce the
fasting blood glucose in diabetic rats, and they concluded that
the antidiabetic activity may be mediated by downregulating
T2DM-related oxidative stress and inflammation. Moreover,
as obesity has become a serious public health problem
throughout the entire world, some marine peptides were
found to have antiobesity activity, such as Seaweeds [95],
Cod [96], Blue Whiting (Micromesistius poutassou), Brown
Shrimp (Penaeus aztecus) [53], and other marine organisms
[97]. Although marine organisms comprise roughly one-half
of the total global biodiversity and a number of studies exist
for proving the biological effects using in vitro experiments
or animalmodels, it is now important to use human interven-
tion trials to study the biological effects and theirmechanisms
in more detail [86, 98].

3. Preparation of Marine Bioactive Peptides

The bioactive peptides were different depending on their
species, amino acid composition, and sequence, and they can
prepared by different methods. Moreover, certain methods
also affect the biological activities of peptides [99].
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3.1. Organic Synthesis. With the development of technologies
andmethodologies for structural elucidation, organic synthe-
sis is increasingly applied to marine natural products [100].
Due to their special bioactivities, marine natural products
have yielded a considerable number of drug candidates,
ranging from simple peptides to cyclic peptides, and organic
synthesis is always used to batch synthetic target peptides
due to the purification production being low [101]. Organic
synthesis usually chooses a solid-phase synthesis method
using a series of solvents and synthesis methods to obtain the
target peptides, and the coarse product is identified by mass
spectrometry to test whether it is consistent with the theoreti-
calmolecular weight. Its further biological activity would also
be verified.Organic synthesiswould realize high-volumepro-
duction of the target peptides. However, the organic synthesis
technique is time-consuming, expensive, and environmen-
tally unfriendly. This technique also requires target peptides
with a clear sequence. Then the researchers should identify
the compositions of peptides using a series of isolation
and purification technologies, and, thus, better extraction
techniques are preferred.

3.2. Microwave Assisted Extraction. In the last decade,
microwave assisted extraction has been successfully applied
for the extraction of numerous biologically active compounds
from a wide variety of natural resources [102, 103]. This
technique involves the use of electromagnetic radiation in
a frequency ranging from 300MHz to 300GHz to heat
solvents in contact with a sample to separate compounds of
interest from the sample matrix [104]. This technique has
been reported to enhance the extraction yield of bioactive
compounds from various matrices compared to traditional
solid-liquid extraction [105]. The mechanism of microwave
assisted extraction is through inter- and intramolecular
friction, together with the movement and collision of a very
large number of charge ions, causing the rapid heating of the
reaction system and resulting in the breakdown of cell walls
as well as membranes [106]. Although the use of microwave
assisted extraction may degrade bioactive carbohydrates due
to the localized high temperature [107], there are many
reports about extracting bioactive materials from marine
organisms using microwave assisted extraction. For example,
some researchers have applied a microwave assisted extrac-
tion method for fish tissues [108], Oysters [109], and Shrimp
[110], and microwave assisted acid hydrolysis of proteins
for peptide mass mapping and tandem mass spectrometric
analysis of peptides has been reported [111].

Additionally, the microwave assisted technology is suit-
able for degrading the special organisms, such as Algae, that
have cells that are surrounded by a dynamic, complex, and
carbohydrate-rich cell wall, which makes the breakdown of
cell walls particularly important [112]. For example, some
researchers have studied the antioxidant capacity of sul-
phated polysaccharides from Brown Seaweed [113, 114] using
microwave assisted extraction under different pressures,
extraction times, and algae/water ratios, and these studies
indicated that microwave assisted extraction was an effective
technology. Moreover, mechanical disruption techniques are

also very useful to break down calcareous and siliceous
skeletons of some hard sponges [106].

In general, the compounds are extracted more selec-
tively and quicker by this technique, with similar or better
yields in comparison with conventional extraction processes.
Meanwhile, this technique also uses less energy and solvent
volume, has reduced costs, and is more environmentally
friendly than traditional extraction processes [115].

3.3. Chemical Hydrolysis. Chemical hydrolysis of proteins
is achieved by cleaving peptide bonds with either acid or
alkaline. This method has been widely used in the past for
the industry because it is inexpensive and quiet simple to
conduct. However, this technology has many limiting factors
such as it being a difficult process to control and trend to
give modified amino acids [98] and yielding products with
variable chemical compositions and functional properties.
Acid hydrolysis is an important chemical modification that
can significantly change the structure and functional proper-
ties of peptides [116]. Acid hydrolysis is preferred over other
pretreatments because of its low cost and effectiveness [117].
The most common type of dilute acid used is sulfuric acid
(H
2
SO
4
). However, nitric acid (HNO

3
), hydrochloric acid

(HCl), phosphoric acid (H
3
PO
4
), and other acids have also

been investigated [118]. Interestingly, maleic acid and oxalic
acid were more efficient in biomass hydrolysis than a dose
of H
2
SO
4
[116]. The acid hydrolysis of fish scales has usually

involved HCl [119], and other fish, such as scup, salmon,
bluefish, andMackerel, were hydrolysed by 25% of 0.4MHCl
[120]. However, acid hydrolysis usually requires high temper-
ature, and the hydrolysate contains a large amount of salt.
Furthermore, acid hydrolysis could destruct the tryptophan,
which is an essential amino acid [121]. On the other hand,
there are some researches about alkali hydrolysis on samples
like Cod [122], Tilapia [123], Channel Catfish [124], and so
forth, but alkali hydrolysis often results in poor functionality
and lownutritive value [121]. Furthermore, desalination in the
later experiment is also complex. Additionally, high collagen
solubility is also observed with alkali treatment [125–127].
In other words, chemical hydrolysis can easily cause peptide
bond hydrolysis and obtain a high yield of peptides, but this
technology is insecure and environmental unfriendly, thus
making it mainly used for industrial production.

3.4. Enzyme Hydrolysis. Enzymatic modification of proteins
using selected proteolytic enzyme preparations to cleave spe-
cific peptide bonds is widely used in the food industry [128].
Enzymatic proteolysis from animal and plant sources has
been studied extensively and described by several different
authors over the last 60 years [121], and it is still the most
commonly usedmethod for adding value to the target organ-
ism. The preferred commercial enzymes are prepared from
bacterial origin, including Alcalase [13, 129], Neutrase [130,
131], and Flavourzyme [132, 133], as well as from animals and
plants, including trypsin [68, 134], Pepsin [135, 136], Papain
[137, 138], Bromelain [139, 140], and Subtilisin [141, 142].
Furthermore, the addition of exogenous enzymes couldmake
the hydrolytic process more controllable and reproducible.
There are five independent variables of enzyme hydrolysis



6 BioMed Research International

including the following: enzyme concentration, pH, extrac-
tion temperature, extraction time, and water/material ratio,
with each enzyme having different hydrolysis conditions
[143]. For example, Bhaskar et al. [144] used Alcalase with the
optimum conditions of an enzyme to substrate level of 1.5%,
and a hydrolysis time of 135min to hydrolyse visceral waste
proteins of Catla (Catla catla) and obtain a higher degree of
hydrolysis close to 50%. Another researcher used Protamex
with the optimum conditions of an enzyme to substrate level
of 4%, a pH of 7.1 and a temperature of 51∘C to hydrolyse Blue
Shake skin in order to obtain peptide with the highest degree
of hydrolysis [145]. In addition, Song et al. [146] studied the
hydrolysis conditions of Pepsin with an enzyme to substrate
level of 1100U/g, a pH of 2.0, a reaction time of 2.4 h, and
a water-to-substrate ratio of 4 : 1 (v/w). In a word, there are
many researcherswho have focused on the enzymehydrolysis
due to its reproducibility and controllability [147]; besides,
enzymatic reactions do not involve side reactions and do not
reduce the nutritional value of the protein source. However,
adjusting the pH with acid or alkali may add inorganic mass,
such as salt, which may be difficult and costly to remove later
in the process.

4. Purification of Marine Bioactive Peptides

The peptides usually have 3–20 amino acid residues, and
their bioactivities are based on their amino acid compositions
and sequences. Recent studies have shown that most peptide
sequences encrypted in food proteins confer bioactive prop-
erties after release by enzymatic hydrolysis [148]. Then it is
important to identify the peptide structure and that is why so
many researchers have investigated the peptide purification.

In a typical procedure for discovery of marine bioactive
peptides, the peptides firstly extracted from the marine
organisms, the extract is screened for a special bioactivity,
fractionated using a bioassay-guided fractionation technol-
ogy, and finally purified to yield a single bioactive peptide.
In addition, to develop an efficient purification process, it
is necessary to clearly research methods such as membrane
filtration systems, gel or size exclusion chromatography, ion-
exchange column chromatography, and reversed-phase high-
performance liquid chromatography (RP-HPLC) (Figure 1).
Each purification technology has its own advantages and
disadvantages, which the researcher should consider clearly
before the purification of peptides.

4.1. Membrane Filtration. Advances in material science and
membrane manufacturing technology have made the mem-
brane technique grow to be an important technology for
the separation of natural products [149]. Generally speaking,
to obtain the target peptide, the initial peptide is usually
separated by membrane filtration first. Membrane filtration
can be used at different levels. Ultrafiltration with a high
molecular weight cut-off (MWCO) can be used for the
separation of macropeptides and nonhydrolyzed proteins.
In normal conditions, the peptides have 3–20 amino acid
residues, and membranes with an MWCO at 1–10 kDa are
suitable for the fractionation of bioactive peptides with

desired molecular weights. Membranes with a lowMWCO at
approximately <1 kDa are used to concentrate the peptides.
Furthermore, membrane filtration can operate at normal
temperature, and there are no chemical reactions during the
process (Figure 2). Membrane filtration can provide a large
number of separation compared to other chromatographic
separation, and then this technology always shows applica-
tions for the separation and recovery of bioactive compounds
from diverse raw matrices. However, membrane filtration is
restricted to desalination due to the poor selectivity of the
membrane, while most of chromatographic separation could
desalinize, and some researchers have used a nanofiltration
membrane for desalination [150]. Certainly, active carbon is
also used for desalination [151].

In recent years, many researchers have used membrane
filtration as the first purification step. For example, Cho et al.
[152] used cross-flowmicrofiltration tomake the galacturonic
acid content of pectin increase from 68.0 to 72.2%. Kim et
al. [9] used ultrafiltration membranes to separate the Hoki
(Johnius belengerii) frame protein hydrolysates (HPH) and
found that HPH-III with a molecular weight distribution of
3–5 kDa showed the highest antioxidant activity. Moreover,
with ultrafiltration, Wang et al. [10] concentrated and pre-
purified antioxidative peptides extracted fromMackerel, and
they found that the peptide with molecular weight of below
3 kDa displayed the highest 1,1-diphenyl-2-picrylhydrazyl
radical scavenging activity. Tonon et al. [153] have obtained
a protein hydrolysate from Shrimp by coupling ultrafiltra-
tion, and Roblet et al. [154] have used electrodialysis with
filtrationmembranes to purify Atlantic salmon frame protein
hydrolysate.

In summary,membrane filtration technology has demon-
strated potential application in the separation of bioactive
products. The main problem with membrane separation is
fouling, which could shorten the membrane life and increase
cost. As a result, modification of the structure and properties
of the membrane and the development of new membrane
systems with low fouling characteristics and high selectivity
would promote the development ofmembrane filtration tech-
nology.

4.2. Gel Filtration Chromatography. The partially purified
extract is subjected to gel filtration chromatography and ion-
exchange chromatography, with reversed phase C

18
HPLC

used in the final purification step [155, 156].
Gel filtration chromatography (GFC), also called size

exclusion chromatography, has been employed for over 40
years for the separation, desalting, and molecular weight
estimation of peptides and proteins. GFC is the simplest
and mildest of all of the chromatography techniques and
separates molecules on the basis of differences in size. Its
separationmechanism is to filtermolecules according to their
sizes; some smaller molecules enter the pores of the gel and
travel a longer distance, while larger molecules show much
shorter retention times. Unlike ion-exchange chromatogra-
phy and others,molecules do not bind to the chromatography
medium so the buffer composition does not directly affect
the resolution. Consequently, a significant advantage of GFC



BioMed Research International 7

Target peptides

Health food and medicine

Ultrafiltration or nanofiltration

Marine organism

Proteases: animal, plant, bacterial

Protein hydrolysates

Bioactive peptides

Purification and identificationBioactivity in vitro
and in vivo assays

Antioxidative, antimicrobial 
anticoagulant, antitumour, 

anti-inflammatory, antihypertensive. 

Figure 1: Schematic diagram for preparation and purification of biological peptides.
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Figure 2: The flow chart of ultrafiltration method.

is that elution conditions can be varied to suit the type of
sample as well as the requirements for further purification,
analysis, or storage without altering the separation. GFC is
well-suited to biomolecules that are sensitive to changes in
pH, concentrations ofmetal ions, or cofactors as well as harsh
environmental conditions and can be used directly after ion-
exchange chromatography since the buffer composition will
not generally affect the final separation. In addition, GFC has
high selectivity and high resolution, which is an important
step in a purification scheme.

The GFC also has some limitations, such as the loading
amount being seldom compared to the membrane filtration

and collecting sample costing a lot of time. In addition, the
resolution is influenced bymany factors, like the particle size,
particle uniformity, bed height, column packing quality, flow
rate, sample concentration and volume, and so forth. The
molecular weight range over which a GFCmedium can sepa-
rate molecules is referred to as the selectivity of the medium.
Today’s GFC media cover a molecular weight range from 100
to 8 × 107Da, separating biomolecules from peptides to very
large proteins and protein complexes. There are many GFC
media and different media have special properties. For exam-
ple, Superdex Increase or Superdex is designed for high reso-
lution, short run times, and high recovery. Huang et al. [157]
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found a novel polysaccharide peptidewith amolecularweight
of 9.17 × 104Da that was obtained from Clinacanthus nutans
Lindau leaves through purification with Superdex 200 and
DEAE Sepharose Fast Flow. Qian et al. [158] also used
Superdex 200 to purify a protein with a molecular weight
of 4.3 × 104Da, and Pan et al. [159] purified the fish scale-
degrading enzyme with molecular weight of 1.19 × 105Da.
Superdex prep grade [160, 161] and Sephacryl [162, 163]
are suitable for fast, high-recovery separation at laboratory
and industrial scales. For example, Wu et al. [164] purified
trypsin inhibitor from Yellowfin Tuna (Thunnus Albacores)
roe, followed by column chromatography on Sephacry S-
200, Sephadex G-50, and DEAE-cellulose, and it was finally
found to have an apparent molecular weight of 7 × 104Da.
In addition, Sephadex is recommended for rapid group sep-
aration such as desalting and buffer exchange and it is widely
used in the marine organism purification field [16, 165]. For
example, Jai ganesh et al. [156] and Vijaykrishnaraj et al. [11]
used Sephadex G-25 to separate Parastromateus Niger viscera
and mussel flavour, respectively. In addition, Ma et al. [166]
performed the study on the purification ofMarine Yeast using
Sephadex G-75.

In other words, although GFC is cumbersome, time-
consuming, and costly, its high selectivity and high resolution
make this technology applicable to various separation and
purification fields.

4.3. Ion-Exchange Chromatography. In recent years, the uti-
lization of ion-exchange chromatography (IEX) techniques
for the separation, detection, and structural determination of
proteins, peptides, and small nucleotides has become increas-
ingly important [167]. IEX media have charged functional
groups that bind molecules with an opposite charge. Bound
molecules are eluted from the medium by displacement, via
the application of an increasing concentration of a similarly
chargedmolecule. Proteins have numerous functional groups
that can have either positive or negative charges. By adjusting
the pH or the ionic concentration of the mobile phase,
proteins can be separated. IEX is used for capturing the
target protein or bulk impurities from large-volumes, as an
intermediate purification step or as a final step for high
resolution purification to remove impurities.

Since ion exchange is an adsorption technique, it can be
used in either positive or negative capturemodes. Depending
on the pH or conductivity of the sample, the target may
adsorb while the contaminant is unretained, and this is
referred to as positive chromatography. In reverse, it is
referred to as negative chromatography. In addition, there
is an extensive range of IEX media and a suitable IEX
medium can be chosen depending on the target, sample,
and resolution that are needed. The media include Capto,
MacroCap, MiniBeads, MonoBeads, Sephadex, Sepharose,
and SOURCE. Each media has its special working pH, buffer
system, and capacity, and, thus, it is used for purifying
different type of samples. We can use Sephadex media as
an example. DEAE Sephadex is a weak anion exchanger,
and its working pH is 2–9; QAE Sephadex is a strong anion
exchanger, and its working pH is 2–12; and CMSephadex and

SP-Sephadex are weak cation and strong cation exchangers,
respectively, and their working pH ranges are 6–10 and 4–13,
respectively.

Based on above-mentioned properties, many researchers
have used different IEX media to purify the target product.
For example, Li et al. [151] have used CM Sephadex C-25
to separate chitooligomers with the elution requirement of
HAc–NaAc buffer (50mM, pH = 4.8) and different concen-
trations of NaCl (0–2M)–HAc buffer stepwise at 3mL/min.
Park et al. [168] have purified the antioxidant peptide from
Blue Mussel (Mytilus edulis) hydrolysate with SP-Sephadex
C-25 cation exchanger, which was equilibrated with 50mM
sodium acetate buffer (pH = 4.0). In addition, SP-Sephadex
C-25 is used by other researchers to purify the target peptide
[169, 170]. Additionally, other media such as CM Sepharose
Fast Flow [171, 172], DEAE Sepharose Fast Flow [173–175], SP
Sepharose Fast Flow [176, 177], Q Sepharose Fast Flow [178],
and so forth were applied to purify marine organisms. The
great advantage of IEX is the implementation of mass separa-
tion compared to GFC, which could save time and improve
accuracy. However, IEX is also costly, complex, and is not
well-suited to biomolecules that are sensitive to pH, metal
ions, and other factors. Further research on IEX may focus
on finding a cheap and high resolutionmaterial to replace the
expensivemedia. Although this technology is difficult to real-
ize, IEX will be widely applied in biological separation in the
future.

4.4. High-Performance Liquid Chromatography. HPLC is the
most widely used technique for the separation, identification,
and purification of bioactive peptides [179]. Analysis HPLC
could fully reflect the information of the sample and do not
need to collect fractions; preparative HPLC need to consider
the purity, production, production cycle, and operating cost.
In addition, RP-HPLC can be used to fractionate peptides
based on their hydrophobic properties, especially when
studying the structural and functional properties of peptides
[180, 181]. The main advantages of this technology include
the ease of operation, high resolution, and sensitivity, and it
always uses a short time to get the elution spectra compared to
the GFC and IEX, which always need twenty to thirty hours.
In recent years, there are many researchers that have used
HPLC to purify marine organisms, like Enteromorpha [182],
Cyanobacterium [183], Thornback Ray [184], Sponge [185],
Tuna [186], Abalone [187], Marine Snail [188], and so forth.
The researchers used HPLC with different chromatographic
columns and elution conditions to collect the narrow peaks;
fractions showing remarkable activities were freeze-dried and
further analysed to identify the amino acid composition
and sequences, while HPLC also has some limitations, like
chromatographic columns being expensive, elution compo-
sition containing organic solvent and being environmentally
unfriendly, and so forth.

In recent years, HPLC is usually combined with qual-
itative equipment such as mass spectrometry (MS), and
liquid chromatography followed by tandem mass spectro-
metric detection (LC–MS/MS) is the standard method for
the characterization of peptide sequences [98], which has
opened a new era in the structural elucidation of protein
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and peptides [189]; although this method is very precise and
robust, it remains expensive and time-consuming [190]. In
addition, electrospray ionization (ESI) and matrix-assisted
laser desorption ionizations (MALDI) have appeared as
important tools for protein identification and characteriza-
tion [191]; matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF) mass spectrometric analysis is the
backbone analysis for generating the peptide profiles of
protein hydrolysates or semipurified fractions [179, 192], and
so forth.

Besides, in order to alleviate insufficiencies, inade-
quacy, and disadvantages of the existing techniques, some
researchers have developed new, rapid, specific, cost- and
time-effective methods, such as high-performance liquid
chromatography with evaporative light scattering detection
(HPLC-ELSD), which can be used as an investigation tool
for purification and quantitative measurements [193]. And
as efficiency and speed of analysis have become of great
importance in the field of bioanalysis, it is very impor-
tant to increase the throughput and reduce the analy-
sis costs; ultra-high-performance liquid chromatography-
tandem mass spectrometry (UHPLC-MS/MS) analysis [194]
and rapid resolution liquid chromatography-tandem mass
spectrometry (RRLC–MS) [195] give new possibilities in this
area.

In summary, there are increasing numbers of high effi-
ciency and high resolution technologies for separation and
purification. Thus, researchers should choose appropriate
separation methods and media. Although some separation
methods are still complex, time-consuming, and costly,
scientists are committed to finding better methods to replace
them, and the testing method would be more advanced.

5. Conclusion

Marine resources have been identified as excellent reservoirs
for the extraction of potent functional bioactivities com-
pounds. Therefore, large numbers of bioactive peptides have
been isolated from marine organisms and display strong
antioxidant, antihypertension, antimicrobial, anticoagulant
and antidiabetic activities, and so forth. However, thus far,
a limited number of bioactive peptides have been identified
from marine organisms; most of the marine organisms with
special biological activity are not yet been found. Thus, the
existing manufacturing techniques need further improve-
ment in order to find out more marine bioactive peptides.
Furthermore, the most important problem is applying the
bioactive peptides to human health and nutrition, because
most of the researches stay in the stages of in vitro exper-
iment or animal experiment due to the time-consumption
and cost problems. In addition, the purification techniques
developing rapidly in recent years and various media have
been researched and improved; however, low yield and high
cost are still a limiting factor. As a result, on the basis of
guaranteeing the high selectivity and high resolution, how
to improve the separation and purification technology is a
difficult and significant task.
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