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Abstract

Motivation: The highly portable Oxford Nanopore MinION sequencer has enabled new applica-

tions of genome sequencing directly in the field. However, the MinION currently relies on a cloud

computing platform, Metrichor (metrichor.com), for translating locally generated sequencing data

into basecalls.

Results: To allow offline and private analysis of MinION data, we created Nanocall. Nanocall is the

first freely available, open-source basecaller for Oxford Nanopore sequencing data and does not

require an internet connection. Using R7.3 chemistry, on two E.coli and two human samples, with

natural as well as PCR-amplified DNA, Nanocall reads have �68% identity, directly comparable to

Metrichor ‘1D’ data. Further, Nanocall is efficient, processing �2500 Kbp of sequence per core hour

using the fastest settings, and fully parallelized. Using a 4 core desktop computer, Nanocall could

basecall a MinION sequencing run in real time. Metrichor provides the ability to integrate the ‘1D’

sequencing of template and complement strands of a single DNA molecule, and create a ‘2D’ read.

Nanocall does not currently integrate this technology, and addition of this capability will be an im-

portant future development. In summary, Nanocall is the first open-source, freely available, off-line

basecaller for Oxford Nanopore sequencing data.

Availability and Implementation: Nanocall is available at github.com/mateidavid/nanocall,

released under the MIT license.

Contact: matei.david@oicr.on.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The MinION produced by Oxford Nanopore Technologies (ONT)

is a highly portable, third-generation sequencing instrument, com-

parable in size to a cell phone. The small form factor makes the

MinION particularly suitable for sequencing experiments performed

in remote locations (Quick et al., 2016). However, the MinION

relies on the cloud computing platform Metrichor (metrichor.com)

for basecalling, i.e. translating the low-level, locally generated

sequencing data into DNA sequence reads. In a multi-site evaluation

of the MinION using the SQK-MAP005 sequencing kit, Ip et al.

(2015) obtained an average yield of �115 Mbp of ‘2D’ sequence

data. This is encoded by Metrichor in more than 50 Gb (basecalls

and original events). One can easily envisage a setting in which the

scarcity of internet access can limit the effectiveness of using a

MinION for sequencing. Furthermore, the Metrichor source code is

only available under a restrictive proprietary license, and we believe

an open source basecaller would be valuable to the development

community.

To address these limitations, we created and introduce here

Nanocall, a basecaller for MinION sequencing data. Nanocall
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provides an offline alternative to Metrichor. In this sense, Nanocall

has one important shortcoming compared to Metrichor, in that it

performs strand-specific basecalls (‘1D’, in Metrichor terminology),

but it does not attempt to integrate the information from comple-

mentary strands (‘2D’). Still, we envisage multiple use cases for

Nanocall: (i) as part of event-level pile-up analysis pipelines that

only require approximate mapping locations; (ii) in situations where

internet access is limited, such as remote sequencing; (iii) as a rapid

quality assessment check (e.g. that the correct sample was

sequenced) prior to basecalling with Metrichor, allowing for real-

time quality control; and (iv) as an open source platform for testing

new basecalling ideas and models.

ONT has recently introduced a new sequencing pore, R9. All

data used in this paper is based on the previously available R7.3

sequencing pore using SQK-MAP006 sequencing kits.

2 Background

2.1 Sequencing overview
Informally, the MinION sequencer works as follows. First, DNA is

sheared into fragments of 8–20 kbp and adapters are ligated to ei-

ther end of the fragments. The resulting DNA fragments pass

through a protein embedded in a membrane via a nanometre-sized

channel (this protein is the ‘nanopore’). A single strand of DNA

passes through the pore; the optional use of a hairpin adapter at one

end of the fragment allows the two strands of DNA to serially pass

through nanopore, allowing two measurements of the fragment. In

ONT terminology, the first strand going through the nanopore is the

template, and the second is the complement. As a DNA strand

passes through the pore it partially blocks the flow of electric cur-

rent through the pore. The flow of current is sampled over time

which is the observable output of the system. The central idea is that

the single-stranded DNA product present in the nanopore affects the

current in a way that is strong enough to enable decoding the electric

signal data into a DNA sequence. This process, called basecalling,

takes as input a list of current measurements, and produces as out-

put a list of DNA bases most likely to have generated those currents.

2.2 Segmentation
The first part of the decoding process is to segment the sampled cur-

rent measurements into blocks. The nanopore current measurements

are taken at regular time intervals, but the threading of the single-

stranded DNA product through the nanopore is a stochastic process

controlled by biological enzymes. The segmentation process takes as

input the list of current measurements and produces a list of events,

each consisting of: start starti, length lengthi, mean meani and

standard deviation stdvi. Ideally, each event corresponds to a dif-

ferent DNA context found inside the nanopore, and consecutive

events correspond contexts differing by exactly one base. In practice,

the segmentation process is noisy, so the event sequence will inevit-

ably contain ‘stays’ (consecutive events corresponding to the same

context) and ‘skips’ (consecutive events corresponding to contexts

different by more than one base). The segmentation process is per-

formed locally by the MinKNOW software running on the host

computer.

2.3 Pore models
ONT provide pore models describing the events that are expected to

be observed for various DNA contexts. For the SQK-MAP006 data

used in this paper, the models use DNA sequences of length 6

(‘6-mers’) as context, and for each 6-mer, they contain the mean lk

and standard deviation rk of a Gaussian distribution modelling the

event mean, and the mean gk and standard deviation ck of an Inverse

Gaussian modelling the event standard deviation. These pore models

are included in the basecalled FAST5 files produced by Metrichor,

and they depend only on the chemistry being used, not on the spe-

cific sample. There are currently three models in use, one for the

template strand and two for the complement strand.

2.4 Scaling parameters
As a further complication, the current measurements have slightly

different characteristics between nanopores, and between the times

when they are taken by the same nanopore. To account for these

variations, Metrichor uses a set of read- and strand-specific scaling

parameters: shift, scale, drift, var, scale’ and var’. Using

these parameters, if event i corresponds to context k, then:

meani�Nðscale � lk þ shiftþ drift � starti;

ðvar � rkÞ2Þ;
(1)

stdvi�IGðscale0 � gk;var
0 � ckÞ: (2)

2.5 Basecalling
The core of the decoding process is the basecalling step, performed

in the cloud by Metrichor, which infers the DNA sequence most

likely to have produced the observed event sequence. Metrichor uses

a Hidden Markov Model (HMM) for basecalling data, where the

hidden state corresponds to the DNA context present in the nano-

pore, and where the pore models are used to compute emission

probabilities. HMMs have been used before to model Oxford

Nanopore data (Loman et al., 2015; Schreiber and Karplus, 2015;

Szalay and Golovchenko, 2015; Timp et al., 2012). We describe our

approach to basecalling in the following section.

3 Methods

Our motivation behind Nanocall is to offer an offline alternative to

Metrichor, and since the initial signal segmentation step is per-

formed locally, we do not seek to replace it. As such, the input to

Nanocall consists of a set of segmented event sequences, stored in

ONT-specific FAST5 files. Nanocall processes each input file separ-

ately as follows. It begins by splitting the template and complemen-

tary strands into separate event sequences when a hairpin is found.

Next, it estimates the pore model scaling parameters. Optionally,

Nanocall can perform several rounds of training to update the scal-

ing parameters using the Expectation Maximization algorithm, and

also to update the state transition parameters using the standard

Baum–Welch algorithm (Baum, 1972). Finally, Nanocall performs

standard Viterbi decoding of the path through the hidden states,

where the state is the 6-mer in the nanopore. Nanocall can also be

given a set of state transition probabilities and a set of pore models,

but these are optional, and if they are not specified, sensible defaults

are used. The details of the individual steps are given below. For a

reference on standard HMM algorithms, see Durbin et al. (1998).

3.1 State transitions
The state transitions are prior probabilities of moving from one state

to another state. The default state transitions are computed based

on two parameters: the ‘stay’ probability pstay and the ‘skip’ prob-

ability pskip. The former, pstay, is the probability that two consecu-

tive events are emitted from the same context/state. This
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corresponds to a segmentation error where an erroneous event break

was introduced. The latter, pskip, is the probability that two consecu-

tive events are emitted from states that differ by more than one kmer

shift. This corresponds to either a segmentation error or a sequenc-

ing error (i.e. the DNA moved too quickly through the pore to regis-

ter a detectable event) where one or more events were lost. A slight

complication is that, by increasing the number of skips, there is al-

ways more than one way of going from any one state to any other.

For example, ACGTGT can be followed by GTGTAC using either one

or three skips. Our computation of the state transitions takes this

into account:

sðk1;k2Þ ¼ dk1¼k2
� pstay

þdsuffixðk1 ;5Þ¼prefixðk2 ;5Þ � pstep �
1

4

þ
X5

i¼2

dsuffixðk1 ;6�iÞ¼prefixðk2 ;6�iÞ � pskip1
i�1 � 1

4i

þ
X

i>5

pskip1
i�1 � 1

46
:

(3)

Here, d is the standard indicator function; prefixðk; iÞ/suffixðk; iÞ
are the prefix/suffix of k of length i; pstep :¼ ð1� pstay � pskipÞ; and

pskip1 ¼ pskip=ð1þ pskipÞ corresponds to the probability of exactly

one skip.

To speed up computation, for both Forward-Backward (used

during training) and Viterbi (used during basecalling) algorithms,

we disregard transitions between states corresponding to more than

one skip. Thus, each state has at most 21 neighbours: itself, 4 at dis-

tance 1, and 16 at distance 2. The downside of this heuristic is that a

real 2-step skip will probably be mislabelled, leading to basecalling

errors.

By default, Nanocall uses pstay ¼ :1 and pskip ¼ :3. When transi-

tion parameter training is enabled (see Supplement), the values of

pstay and pskip are updated individually for each strand of each read,

using the Baum-Welch algorithm.

3.2 Pore models
Nanocall is designed to work by default with the (6-mer based) pore

models provided by Metrichor. These are three pore models, one for

the template strand and two for the complement strand. Emission

probabilities are calculated by multiplying the probability density

from the Gaussian and Inverse Gaussian distributions that model

the event mean and event standard deviation, respectively. This is

done after the models are scaled (see Scaling below.) Nanocall can

also run with user-provided pore models, though changing the kmer

size requires recompilation.

3.3 Strand separation
The segmented list of events available in pre-Metrichor FAST5 files

does not always contain markers delimiting the template and com-

plement strands. To deal with this, Nanocall implements a simple

heuristic for separating the strands. The core idea here is that the

‘hairpin’ adapter connecting the strands (in the single-stranded

DNA product being threaded through the nanopore) contains abasic

DNA, that is, DNA backbone lacking DNA bases. This abasic DNA

generates a specific signal in the event sequence.

In the first step, we use a heuristic to detect the abasic current

level. In general, the currents corresponding to regular DNA are in

the range 50–90 pA, and those corresponding to abasic DNA are

higher than 100 pA. However, the exact levels are affected by the

shift and scale parameters, which are not known a priori. For

that reason, Nanocall uses a heuristic to estimate abasic current

level. Specifically we take the current level larger than 99% of all

event levels in the read, and add 5 pA.

In the second step, Nanocall looks for islands of 5 or more con-

secutive abasic current measurements. Then, islands within 50 bp of

each other are merged. Next, Nanocall selects the island closest to

the middle of the event sequence. If this island is within the middle

third of the entire event sequence it is used to separate the events

corresponding to the two strands. If on the other hand this island is

outside of the middle third of the event sequence, Nanocall gives up

trying to separate the strands and attempts to basecall the entire

event sequence as a template strand.

3.4 Scaling
Pore model scaling parameter estimation is a crucial part of the

basecalling process. Since accurate scaling dominates the running

time, Nanocall presents the user with several scaling options.

In all cases, Nanocall initializes the scaling parameters using a

crude ‘Method of Moments’ approach, that matches the first two

moments of the distribution of pore model kmer means to the first

two moments of the distribution of (a subset of) sequenced event

means. This approach relies on the assumption that the states pro-

ducing the observed events are sampled uniformly at random, which

is clearly not the case. However, for event sequences that are long

enough, this method provides a reasonable base setting. This

method only estimates 2 of the 6 scaling parameters discussed in the

Background section: shift and scale. The remaining 4 are left

with default values (0 for additive terms, 1 for multiplicative fac-

tors). The MoM scaling is the fastest, but also the least accurate.

Since the other available scaling options dominate the total runtime,

Nanocall can be instructed to use only MoM scaling, which will re-

sult in the fastest operation (command line option --no-train).

Beyond MoM, Nanocall offers the option to train the pore

model scaling parameters by performing several rounds of an

Expectation Maximization (EM) algorithm. The training stops ei-

ther when the maximum allowed number of rounds is reached (by

default 10 for single-strand scaling/20 for double-strand scaling, see

below), or when the improvement in likelihood drops below a cer-

tain threshold (by default, a multiplicative factor, e). Each training

round proceeds as follows. First, the ‘E’ step consists of running the

Forward-Backward algorithm to compute state posterior probabil-

ities on 2 subsets of the event sequence, extracted from the start and

end of each strand. Next, the ‘M’ step updates all 6 scaling param-

eters with values that maximize the likelihood of the observed emis-

sions given the probabilistic state assignments. More details about

this update process are given in the Supplement.

Nanocall provides the user with the option of performing ei-

ther single- or double-strand scaling. With single-strand scaling (op-

tion --single-strand-scaling), the 2 strands of each read are

processed independently of each other. The motivation for double-

strand scaling (option --double-strand-scaling, on by default)

is to avoid potential overfitting of the two strands separately by con-

straining the scaling parameters to be the same across the read.

3.5 Viterbi decoding
After any optional training, Nanocall runs the Viterbi decoding al-

gorithm to compute the most likely state sequence to have generated

the observed event sequence. Then, the final base sequence is con-

structed by iteratively adding the minimum number of bases

required to transition between consecutive states. Thus, for instance,

if 2 consecutive states are ACTCTC and CTCTCA, the base sequence
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produced will be ACTCTCA, not ACTCTCTCA. In particular, the base-

called sequence will never contain a homopolymer repeat longer

than the kmer size (6 bp) because of this heuristic and the fact that

the state does not vary while such a sequence is being thread through

the pore. However, repeats of sequences of length greater than 1 are

still detectable. As a result of this heuristic, Nanocall reads will have

systematic (non-random) errors around size-1 repeats.

When several pore models are applicable to the same strand, as

is the case with the default models and the complement strand,

Nanocall will select which model to use during training if (training

is performed, and) the Forward-Backward computed likelihood

using one model is better than all other applicable models by a

multiplicative factor of e20. If a model is not selected during training,

the read strand is basecalled using all applicable models. Then, the

model used for output will be the one with a higher joint probability

of the most probable path through the HMM and the observations,

found in the last cell of the Viterbi matrix Durbin et al. (1998).

3.6 Quality values
Nanocall does not produce base quality value estimates primarily

because the individual base error rate is too high for base qualities

to be informative. For this reason, the output is in fasta format,

not fastq.

3.7 Evaluations
In our evaluations, we use BWA MEM with options ‘-x ont2d’ for map-

ping ONT reads to the reference (Li, 2013). A 1D read (Metrichor or

Nanocall) is considered mapped if its BWA MEM mapping overlaps

the mapping of the corresponding Metrichor 2D read. Otherwise, the

1D read is mismapped (i.e. it is not mapped, or mapped elsewhere). The

identity of a mapped read is defined as the percentage of match columns

in the alignment (i.e. matches divided by read bases aligned plus refer-

ence bases deleted). In our results, we only measure identity for reads

where all 4 1D reads (2�Nanocall, 2�Metrichor 1D) are mapped.

3.8 Source code
Nanocall is written in Cþþ11 and its source code is available at

github.com/mateidavid/nanocall, along with instructions for how to

build it either in a standard UNIX environment, or as a Docker con-

tainer. The analysis scripts used to generate the data presented in this

paper are available at github.com/mateidavid/nanocall-analysis.

3.9 Data availability
The datasets used in this paper are available in the European

Nucleotide Archive under accession numbers ERR1147227 (E.coli

native), ERR1147229 (E.coli PCR), ERR1309550 (human native)

and ERR1309553 (human PCR). The E.coli datasets were described

at lab.loman.net/2015/09/24/first-sqk-map-006-experiment, as a

follow-up to earlier work (Quick et al., 2014).

4 Results

We ran Nanocall on four ONT datasets consisting of E.coli, PCR-

amplified E.coli, human, and PCR-amplified human DNA. For each

dataset, we used the first 10 000 reads labelled as ‘passing’

by Metrichor. A summary of the key dataset statistics is given in

Table 1. This includes the efficiency of the Nanocall hairpin

Table 1. Dataset summary

Dataset Reads Avg

Events

Hairpin Avg Length Identity Insertions Deletions

N MN M2 M0 M1 N0 N1 M2 M N M0 M1 N0 N1 M0 M1 N0 N1

E.coli 10000 19160 .994 .904 9803 9701 9135 9173 8741 .861 .699 .681 .071 .055 .058 .044 .07 .097 .09 .121

E.coli PCR 10000 13448 .991 .929 6861 6837 6419 6458 6152 .874 .706 .688 .071 .053 .058 .042 .069 .095 .089 .118

Human 10000 11145 .892 .863 5977 5816 5538 5594 5780 .857 .688 .673 .051 .041 .042 .031 .09 .11 .107 .133

Human PCR 10000 8604 .961 .937 4377 4265 4083 4074 3993 .858 .69 .676 .057 .045 .047 .038 .085 .104 .103 .122

Reads: number of ONT reads for which the Metrichor 2D read was mapped to the reference. Avg Events: average number of events. Hairpin N: fraction of

reads for which Nanocall detects a hairpin. Hairpin MN: fraction of reads for which the Metrichor and Nanocall hairpins are within 100 events of each other.

Avg Length: average basecalled read length for each read type: Metrichor 2D (M2), Metrichor template/complement (M0/M1), and Nanocall template/comple-

ment (N0/N1). Identity: alignment identity for Metrichor 2D, Metrichor 1D and Nanocall 1D reads. Insertions/Deletions: fraction of insertion/deletions for each

1D read type. The Nanocall runs in this table use the default options (double-strand scaling, 2ss).

Table 2. Performance of Nanocall

Dataset Opts Hpin MCorr NCorr MIdn NIdn Speed*

E.coli 2ss-nott .904 .962 .942 .699 .682 1106

2ss .941 .681 763

1ss-nott .941 .682 1655

1ss .938 .683 1217

fast .929 .673 2834

E.coli PCR 2ss-nott .929 .978 .959 .706 .69 909

2ss .957 .688 614

1ss-nott .957 .689 1378

1ss .955 .69 974

fast .936 .68 2858

Human 2ss-nott .863 .763 .72 .688 .677 747

2ss .703 .673 515

1ss .647 .672 839

1ss-nott .642 .675 1209

fast .441 .652 3004

Human PCR 2ss-nott .937 .868 .827 .69 .679 569

2ss .823 .676 397

1ss-nott .785 .675 928

1ss .785 .675 647

fast .543 .655 2888

Options: fast: no training; 1ss/2ss: single/double strand scaling; nott:

no transition parameter training. Hpin: fraction of reads where Metrichor

and Nanocall hairpins are within 100 events of each other. M/N Corr: frac-

tion of Metrichor 1D/Nanocall reads where the mapping of both strands over-

laps the mapping of the Metrichor 2D read. M/N Idn: Metrichor 1D/

Nanocall identity, for reads where all 5 mappings (1�Metrichor 2D,

2�Metrichor 1D, 2�Nanocall) are overlapping. Speed: Kbp per core-hour

(*: measured separately for 1000 reads only, on a desktop computer with a 4-

core Intel(R) Core(TM) i5-3570 CPU and 12GB of RAM). In bold face: best

value in column, among options for that dataset
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detection heuristic, as well as alignment characteristics for the vari-

ous read types considered. The Nanocall runs in this table use the

default parameters (double strand scaling, 2ss). Interestingly, both

Metrichor and Nanocall show a small bias for insertion errors in

template reads and for deletion errors in complement reads.

For each dataset, we ran Nanocall using 5 different option sets: no

training (option --no-train, labelled fast); single/double strand

scaling (options --single-strand-scaling and --double-

strand-scaling, labelled 1ss/2ss); with (default) and without tran-

sition parameter training (option --no-train-transitions,

labelled nott). The results are given in Table 2. One conclusion sup-

ported by these runs is that the fast mode, with no training at all,

seems very adequate for E.coli data, but much less so for human data.

The difference between the two is the size and complexity of the gen-

ome, with E.coli eads being much easier to map.

Another conclusion we were able to draw is that double strand

scaling (2ss) performs better than single strand scaling (1ss). While

the effect is minimal on E.coli data, it becomes quite pronounced on

human data, where single strand scaling leads to an additional 4–

6% reads being mismapped. When it comes to transition param-

eters, surprisingly, no training performs slightly better than training

on human data: 2% on human native data, <1% on human PCR

data. However, not training transition parameters makes the per-

formance of a run much more dependent on the default transition

parameters. For this reason, and in spite of the slight increase in mis-

mapping rate, we decided on using double strand scaling with transi-

tion parameter training (2ss) as the Nanocall default.

Overall, Table 2 shows that the reads produced by Nanocall

(2ss) are directly comparable to Metrichor 1D reads: Nanocall in-

creases the mismapping rate by an additional �3% for E.coli data,

and �6% on human data. Furthermore, Nanocall reads have simi-

lar, yet slightly smaller (�1%), percent identity compared to

Metrichor 1D reads.

The similarity between Nanocall and Metrichor 1D reads is fur-

ther demonstrated in Figure 1, where we compare identity and frac-

tion aligned, separately for all datasets and all read types, and

Figure 2, where we compare identity, read length, and read fraction

aligned between Nanocall template reads and Metrichor template

and 2D reads from the human PCR dataset. The figures correspond-

ing to complement reads, and to the other three datasets are very

similar, and they are given in the Supplement.

In Figure 3, we compare pore model scaling parameters scale

and shift between Nanocall and Metrichor, separately for template

and complement reads from the human PCR dataset, for reads where

Fig. 1. Fraction aligned versus identity using a base-10 logarithmic density plot, for all datasets (rows) and all read types (columns). Only showing reads where all

1D basecalls are mapped (Color version of this figure is available at Bioinformatics online.)
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Nanocall detected a hairpin. In general, we see that Nanocall obtains

very similar values to Metrichor. The figures corresponding to the re-

maining datasets are similar, and they are given in the Supplement.

In Figure 4, we compare the hairpin positions detected by

Metrichor and Nanocall in each dataset, for reads where Nanocall

indeed detects a hairpin. We see that the simple heuristic employed

by Nanocall works well enough in practice, generally producing re-

sults similar to Metrichor.

Fig. 2. Comparison of Metrichor and Nanocall (2ss) mapped reads using a base-

10 logarithmic density plot, for template reads from the human PCR dataset. We

show Metrichor versus Nanocall: identity (row 1), read length (row 2) and fraction

aligned (row 3). We compare Nanocall template reads with Metrichor template

reads (column 1) and Metrichor 2D reads (column 2) (Color version of this figure

is available at Bioinformatics online.)

Fig. 3. Nanocall (2ss) versus Metrichor scaling parameters for mapped reads

using a base-10 logarithmic density plot, for the human PCR dataset. We show

Metrichor vs Nanocall scale (row 1) and shift (row 2), for template reads

(col 1) and complement reads (col 2). Only showing reads where both Metrichor

and Nanocall detected a hairpin and picked the same complement model (Color

version of this figure is available at Bioinformatics online.)

Fig. 4. Nanocall versus Metrichor hairpin position using a base-10 logarithmic

density plot, for reads where Nanocall detected a hairpin, for each dataset

(Color version of this figure is available at Bioinformatics online.)

Table 3. Influence of default transition parameters

pstay and pskip

pstay pskip MCorr NCorr MIdn NIdn

.10 .24 .852 .822 .689 .679

.12 .28 .818 .679

.12 .24 .818 .679

.11 .22 .818 .679

.12 .22 .817 .679

.11 .24 .817 .679

.12 .30 .815 .679

.12 .26 .815 .679

.11 .26 .815 .68

.09 .26 .815 .679

.09 .24 .815 .679

.12 .32 .814 .679

.10 .30 .814 .679

.10 .22 .814 .679

.09 .22 .814 .679

.11 .28 .813 .679

.11 .32 .812 .679

.10 .32 .812 .679

.09 .28 .812 .679

.10 .28 .811 .679

.10 .26 .811 .68

.11 .30 .81 .679

.09 .32 .805 .679

.09 .30 .804 .679

All runs on 1000 human pcr reads, with double strand scal-

ing with no transition parameter training (2ss-nott). Other

columns: see Table 2.

54 M.David et al.



To quantify the effects of the default transition parameters, we

used 1000 human PCR reads, and ran Nanocall in double strand

scaling mode without transition parameter training (2ss-nott),

using several parameter values: pstay 2 f:09; :1�; :11; :12g and pskip

2 f:22; :24; :26; :28; :3�; :32g (* denotes the default). The results of

these runs are given in Table 3, showing that, while pstay and pskip

do affect mappability, their influence is quite limited: a difference of

<2% in mappability between all runs. Note: we expect pstay and

pskip to have even smaller effect when transition parameter training

is enabled (2ss).

We also studied the effects of perturbing the parameters that

control training: the number of events used (default 100), the max-

imum number of rounds per strand (default: 10), and the minimum

improvement in fit (default: additive term of 1.0 in log space, corres-

ponding to multiplicative term e). The results are given in Table 4.

Clearly, increasing the number of events used per strand (nume) dir-

ectly improves mappability, but also decreases speed. Increasing the

maximum number of training rounds (maxr) has the same effect,

but improvements in mappability are lost beyond 10 rounds. The ef-

fect of the minimum fit improvement (minp) on mappability and

even speed is harder to quantify.

5 Conclusion

In this work we presented Nanocall, an open source, MIT licensed

basecaller for data produced by Oxford Nanopore MinION instru-

ments. Nanocall uses some simple heuristics for splitting the se-

quence of events (current levels) into strands, it models the events

using a hidden Markov model where the states are the kmers being

sequenced, it optionally scales the pore model emissions using sev-

eral rounds of Expectation Maximization based on posteriors com-

puted with Forward–Backward, and it produces basecalls by

running Viterbi.

Overall, Nanocall produces reads comparable in mappability

and quality to Metrichor 1D reads with �68% identity. As an im-

portant technical difference from Metrichor, with Nanocall we

found that double-strand pore model scaling seems to work better

than single-strand scaling, suggesting that the latter might lead to

model overfitting.
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