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Abstract

Genomic variations are associated with gene expression levels, which are called expression

quantitative trait loci (eQTL). Most eQTL may affect the total gene expression levels by regu-

lating transcriptional activities of a specific promoter. However, the direct exploration of

genomic loci associated with promoter activities using RNA-seq data has been challenging

because eQTL analyses treat the total expression levels estimated by summing those of all

isoforms transcribed from distinct promoters. Here we propose a new method for identifying

genomic loci associated with promoter activities, called promoter usage quantitative trait loci

(puQTL), using conventional RNA-seq data. By leveraging public RNA-seq datasets from

the lymphoblastoid cell lines of 438 individuals from the GEUVADIS project, we obtained

promoter activity estimates and mapped 2,592 puQTL at the 10% FDR level. The results of

puQTL mapping enabled us to interpret the manner in which genomic variations regulate

gene expression. We found that 310 puQTL genes (16.1%) were not detected by eQTL

analysis, suggesting that our pipeline can identify novel variant–gene associations. Further-

more, we identified genomic loci associated with the activity of “hidden” promoters, which

the standard eQTL studies have ignored. We found that most puQTL signals were concor-

dant with at least one genome-wide association study (GWAS) signal, enabling novel inter-

pretations of the molecular mechanisms of complex traits. Our results emphasize the

importance of the re-analysis of public RNA-seq datasets to obtain novel insights into gene

regulation by genomic variations and their contributions to complex traits.

Author summary

Many variations exist in the human genome, creating phenotypic diversity among indi-

viduals. It is well known that they are associated with the risk of disease development by

affecting the expression levels of genes. Genes are transcribed from regulatory elements

called promoters. Although some genes are transcribed from multiple promoters and

translated into proteins with different functions, the relationship between genomic varia-

tions and promoter activities has not been investigated in depth compared to the relation-

ship between genomic variations and gene expression levels. In this study, we proposed a
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new method to detect the association between genomic variations and promoter activities.

Our method identified the associations between many variations and promoters using

genomic and promoter activity data from blood cells of 438 individuals. This study

allowed us to identify new functional associations between genomic variations and genes.

Furthermore, we identified previously undiscovered variation-gene-disease associations.

Our results will help to elucidate the molecular mechanisms of diseases in which genetic

factors are involved.

Introduction

Variations in the human genome generate a variety of transcriptomes across individuals.

Many previous studies have identified single-nucleotide polymorphisms (SNPs) and short

insertions and deletions (indels) associated with gene expression levels, which are called

expression quantitative trait loci (eQTL) [1]. eQTL are significantly enriched in genomic loci

associated with complex traits identified by genome-wide association studies (GWASs), sug-

gesting the importance of the differences in gene regulation caused by genomic variations in

the context of various traits and disease risk [2]. In conventional eQTL studies, the expression

levels of all isoforms of each gene are quantified, and they are then merged into the total gene

expression levels and used as dependent variables in linear regression analyses [1]. If a gene

has multiple promoters, it is impossible to directly assess the effects of genomic variations on

the activity of each promoter using eQTL analyses. Isoforms transcribed from distinct promot-

ers can have distinct functions even if they have the same gene name; for example TP53 (which

encodes p53) [3], TP73 (p73) [4,5], SHC1 (p52/p46/p66) [6,7], INK4a/ARF [8,9], and

CDKN1A (p21) [10]. Therefore, it is essential to map the genomic variations associated with

promoter activity to better understand how they affect the expression levels of specific tran-

scripts and confer risk for complex traits.

Recently, several studies mapped the genomic variations associated with promoter activity

based on cap analysis of gene expression (CAGE) technology, which captures the 50 end cap

structure of transcripts and is termed promoter usage QTL (puQTL) [11,12] or transcription

start site QTL (tssQTL) [13]. Those studies have shown that puQTL or tssQTL analysis enables

the detection of SNPs associated with promoter usage, which conventional eQTL analysis

could not discover. However, this strategy has a high cost because it requires the generation of

promoter usage data for hundreds of individuals. Thus, for mapping additional puQTL at a

lower cost, it is necessary to develop a new method that can leverage extensive RNA-seq data

from public databases.

Several RNA-seq-based studies have been performed to map transcript usage QTL (tuQTL)

[14–18]. Most of those studies were based on transcript annotations; thus, promoters not

described in standard annotation files could not be analyzed. Notably, a recent study [14]

reported a computational method to map tuQTL by splitting data into independent events

(promoter usage, splicing, and 30 end usage), and employed Salmon [19] for quantifying full-

length transcripts. Alignment-free methods, such as Salmon and kallisto [20], have been

reported to have a low performance in transcript-level quantification [21] and to overestimate

lowly expressed transcripts [22], which might lead to the mapping of false-positive puQTL.

Therefore, a method that focuses on promoter activity estimates and overcomes the problems

caused by the alignment-free methods is essential for accurately mapping puQTL using RNA-

seq data.
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This study aimed to develop a new method to map puQTL by quantifying genome-wide

promoter activities using publicly available RNA-seq data. In our pipeline, we employed an

alignment-based method, proActiv, which has shown high performance in promoter activity

estimates, as well as higher levels of agreement with H3K4me3 ChIP-seq signals compared

with other methods, such as Salmon and kallisto [23]. By newly constructing transcript anno-

tations based on mapped reads, we tried to comprehensively capture the activities of promot-

ers, including those not described in standard annotation files. Moreover, in addition to short

variants (SNPs and indels), we explored associations between long variants (structural variants

(SVs)) and promoter usage. We successfully mapped puQTL and found that most of them had

genomic and epigenetic features that were similar to those of eQTL, in agreement with a previ-

ous report [12]. We also found that our methodology was able to detect hidden promoters

associated with genomic variations, which may have been overlooked by annotation-based

puQTL analyses. Some puQTL were colocalized with GWAS signals, which enabled new inter-

pretations of complex trait associations. Overall, this study provided a successful way to iden-

tify genetic factors that regulate promoter activity by leveraging publicly available RNA-seq

data. We can expand this strategy to extensive RNA-seq datasets from various tissues and cells,

thus advancing our understanding of the context-specific perturbation of transcription by

genomic variations.

Methods

Preparation of genotype and RNA-seq data

We obtained metadata and genotype data of SNPs and indels for 438 individuals from the

1000 Genomes Project [24] in variant call format (vcf) (hg19). Subsequently, we transformed

these coordinates into hg38 coordinates using UCSC liftOver. As for SVs, we downloaded the

genotype data reported by Yan et al. in vcf (hg38) [25]. Then, we combined them and used the

genotype data of biallelic variants with a minor allele frequency >0.01 in the samples, for

downstream analysis. We obtained corresponding RNA-seq data of Epstein–Barr virus-trans-

formed lymphoblastoid cell lines (LCLs) from the GEUVADIS project [17].

RNA-seq data processing

We performed the quality control of RNA-seq data using fastp (version 0.20.1) [26] with “-3 -q

30” options, to discard reads with low quality. We aligned the remaining reads to the human

reference genome (GRCh38) and the Ensembl 104 transcript annotations using STAR (version

2.7.9a) [27] in the two-pass mode. In the first mapping step, we used the “--outFilterMulti-

mapNmax 1” option to allow uniquely mapped reads exclusively. In the second mapping step,

we used the “--outFilterMultimapNmax 1--sjdbFileChrStartEnd /path/to/1_SJ.out.tab /path/

to/2_SJ.out.tab . . .. /path/to/438_SJ.out.tab--limitSjdbInsertNsj 10000000” option to use the

junctions files of the first mapping as “annotated” junctions for the second mapping step.

These steps allowed us to detect more spliced reads mapped to novel junctions. Using the

mapped reads, we performed reference-guided transcript assembly using StringTie2 (version

2.1.7) [28] with the “-G /path/to/Ensembl_104_annotations.gtf--conservative” option for each

sample, and merged them with the “-G /path/to/Ensembl_104_annotations.gtf--merge”

option. Using the transcript annotations file and junction counts files produced by STAR, we

quantified and normalized the promoter activities for each sample using proActiv (version

1.1.18) [23]. The proActiv software is based on the concept of weighted splicing graphs to

define unique identifiable promoters. It performs normalization of total junction reads using

DESeq2, which is well used software for normalization of gene expression, and log2 transfor-

mation to obtain absolute promoter activity. We executed functions in the proActiv software
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in a docker container (naotokubota/proactiv:1.1.18 in Docker Hub). The promoters of single-

exon genes and those that overlapped with internal exons were excluded. All promoters with

promoter activity greater than zero in at least 25% of the samples were used for puQTL analy-

sis. For the quantification of gene-level expressions, we counted reads for each transcript using

featureCounts (version 1.6.4) [29] with the “-p -B -t exon -g gene_id -a /path/to/transcript_an-

notations_assembled_by_StringTie2.gtf” option. In accordance with the methods employed in

the GTEx project [2], all genes with a transcripts per million (TPM) value >0.1 and raw read

counts greater than six in at least 20% of the samples were used for eQTL analysis. The read

counts of the remaining genes were normalized across samples via the trimmed mean of M

values method implemented in edgeR (version 3.12.1) [30] in a docker container (broadinsti-

tute/gtex_eqtl:V8 in Docker Hub).

We downloaded the gene quantification data of the GM12878 cell line generated by CAGE

data processing from the ENCODE project (Accession ID: ENCFF006DIB) to compare the

promoter activities estimated by proActiv [23] and kallisto [20]. We downloaded GM12878

RNA-seq data from the ENCODE project (Accession ID: ENCFF000EWJ, ENCFF000EWX).

After quality control using fastp with the “-3 -q 30” option, we performed a random sampling

of 50 million reads using SeqKit (version 0.13.2) [31] with the “sample -n 50000000 -s 20”

option. We obtained the TPM value for each transcript based on the remaining reads using

kallisto (version 0.44.0) and summed those of transcripts sharing the same promoter. We also

obtained promoter activity scores using proActiv, as well as GEUVADIS RNA-seq data pro-

cessing. We excluded promoters with zero activity in all methods (CAGE, kallisto, and proAc-

tiv) and calculated Spearman’s ρ for each pair of promoter activity sets.

QTL mapping

We calculated probabilistic estimation of expression residuals (PEER) factors [32] based on

the promoter activity and gene expression matrix for the puQTL and eQTL analysis using the

PEER package (version 1.0) in a docker container (broadinstitute/gtex_eqtl:V8 in Docker

Hub). For QTL discovery, we used QTLtools [33] (version 1.3.1) in a docker container (naoto-

kubota/qtltools:1.3.1 in Docker Hub). We calculated genetic principal components (PCs) from

the genotype matrix using QTLtools pca with the “--scale--center--maf 0.01--distance 50000”

option. First, we used the nominal pass using QTLtools cis with the “--nominal 0.00001--nor-

mal” option, to check the suitable number of PEER factors (as covariates) that were necessary

to improve sensitivity. We checked the number of QTL with nominal P-values <1.0 × 10−5

using varying numbers of PEER factors (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45,

and 50). Next, we performed a permutation pass using QTLtools cis with the “--permute

1000--normal--std-err” option. We included the top five genetic PCs, sex, and the suitable

number of PEER factors for each category (25 for puQTL and 50 for eQTL) as covariates in

the QTL analysis. Subsequently, using the output of the permutation pass, we performed a

false discovery rate (FDR) correction on the permutation P-values at the 10% FDR level using

“Rscript /qtltools/scripts/qtltools_runFDR_cis.R.” Finally, we performed a conditional pass to

obtain the significant QTL at the 10% FDR level using QTLtools cis with the “--mapping

/path/to/thresholds.txt--normal--std-err” option. We also performed a nominal pass using

QTLtools cis with the “--nominal 1.0--normal--std-err” option, to obtain the statistics of all

associations in a ±1 Mb cis window. To estimate causal variants for puQTL, we performed

fine-mapping using SuSiE (version 0.11.42) [34,35] in a docker container (naotokubota/coloc-

locuscomparer:1.0 in Docker Hub). We obtained the posterior inclusion probability (PIP) for

each variant–phenotype pair using the “susie_rss()” function. We used the UCSC Genome

Browser [36] to visualize the genomic positions around the QTL.
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HiChIP data processing

We downloaded the published data of H3K27ac HiChIP of the GM12878 cell line (GEO acces-

sion number: GSM2705041) [37] and performed quality control using fastp (version 0.20.1)

[26] with the “-3 -q 30” option, to discard reads with low quality, as well as RNA-seq data pro-

cessing. We aligned the remaining reads to the human reference genome (GRCh38) using the

HiC-Pro pipeline (version 3.0.0) [38] in a docker container (nservant/hicpro:3.0.0 in Docker

Hub). We used the default settings to remove duplicate reads, assign reads to MboI restriction

fragments, and filter valid interactions. We performed peak calling using MACS2 [39] with the

“callpeak -f BAM -g hs -q 0.01” option and obtained sets of high-confidence loops (5 kb bin,

1% FDR level) using FitHiChIP (version 7.0) [40] with the configfile_BiasCorrection_Covera-

geBias file and default settings in a docker container (aylab/fithichip:latest in Docker Hub).

Genomic and epigenetic enrichment analysis

We downloaded the peak and signal files of ChIP-seq of histone marks and ATAC-seq of the

GM12878 cell line from the ENCODE project [41] (Accession ID: H3K4me3, ENCFF587DVA;

H3K4me1, ENCFF321BVG; H3K27ac, ENCFF023LTU; H3K9ac, ENCFF069KAG;

H3K27me3, ENCFF291DHI; ATAC-seq, ENCFF748UZH), transcription factor (TF) foot-

printing data based on DNase-seq of the GM12865 and GM06990 cell lines [42], and the chro-

matin states data of the GM12878 cell line defined by ChromHMM [43] from the Roadmap

Epigenomics Project [44]. The chromatin states fell into 25 categories: 1_TssA (Active TSS),

2_PromU (Promoter Upstream TSS), 3_PromD1 (Promoter Downstream TSS 1), 4_PromD2

(Promoter Downstream TSS 2), 5_Tx5´’ (Transcribed--5’ preferential) 6_Tx (Strong transcrip-

tion), 7_Tx3´’ (Transcribed--3’ preferential), 8_TxWk (Weak transcription), 9_TxReg (Tran-

scribed & regulatory (Prom/Enh)), 10_TxEnh5´’ (Transcribed 5’ preferential and Enh),

11_TxEnh3´’ (Transcribed 3’ preferential and Enh), 12_TxEnhW (Transcribed and Weak

Enhancer), 13_EnhA1 (Active Enhancer 1), 14_EnhA2 (Active Enhancer 2), 15_EnhAF

(Active Enhancer Flank), 16_EnhW1 (Weak Enhancer 1), 17_EnhW2 (Weak Enhancer 2),

18_EnhAc (Primary H3K27ac possible Enhancer), 19_DNase (Primary DNase), 20_ZNF/Rpts

(ZNF genes & repeats), 21_Het (Heterochromatin), 22_PromP (Poised Promoter), 23_Prom-

Biv (Bivalent Promoter), 24_ReprPC (Repressed Polycomb), and 25_Quies (Quiescent/Low).

Moreover, we tested whether a set of QTL is significantly enriched in the functional annota-

tions using QTLtools fenrich with the “--permute 1000” option. We used the positions of best

hit variants for each QTL and those of all promoters (n = 12,957) and all genes (n = 12,275) for

the QTLtools fenrich analysis. We generated aggregation plots of the ChIP-seq and ATAC-seq

profiles of the GM12878 cell line (Accession ID: H3K4me3, ENCFF927KAJ; H3K4me1,

ENCFF564KBE; H3K27ac, ENCFF469WVA; H3K9ac, ENCFF028KBY; H3K27me3,

ENCFF919DOR; ATAC-seq, ENCFF603BJO) using deepTools (version 3.5.1) [45] in a docker

container (quay.io/biocontainers/deeptools:3.5.1--py_0 in Quay.io) with the positional infor-

mation of the significant QTL in the bed format.

GWAS hit enrichment and colocalization analysis

We tested whether the QTL variants are concordant with GWAS lead variants using QTLtools

rtc with the “--hotspots /path/to/hotspots.bed--normal--gwas-cis” option. We downloaded

the recombination hotspot data from the 1000 Genomes Project and GWAS lead variant data

from the GWAS Catalog [46] for the QTLtools rtc analysis. We also performed a colocalization

analysis using coloc (version 5.1.0) [47] in a docker container (naotokubota/coloc-locuscom-

parer:1.0 in Docker Hub) with the GWAS summary statistics obtained from the GWAS Cata-

log. We calculated r-squared values (r2) between variants of interest and variants around them
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using PLINK (version 1.90b6.21) [48] with the “--r2--ld-window-kb 1000--ld-window

99999--ld-window-r2 0” option in a docker container (quay.io/biocontainers/

plink:1.90b6.21--h779adbc_1 in a Quay.io).

Comparison of multiple protein sequences

We downloaded the protein sequences of interest from UniProt (https://www.uniprot.org)

and performed multiple alignments of protein sequences using MUSCLE (https://www.ebi.ac.

uk/Tools/msa/muscle/) [49]. We searched for protein domains in the sequences using InterPro

(https://www.ebi.ac.uk/interpro/) [50]. To predict protein structures from the sequences, we

used ColabFold [51], which is a free platform of AlphaFold2 coupled with Google

Colaboratory.

Computational environments

The computational pipeline was developed in the GNU Bash 3.2 environment. We generated

all graphs using the pandas (version 1.1.3), matplotlib (version 3.3.1), and seaborn (version

0.11.0) packages in the Python environment (version 3.8.5). Furthermore, we used the scipy

(version 1.6.2) package for all statistical tests, and docker (version 20.10.7) for the stable execu-

tion of various software.

Results

Systematic identification of puQTL using RNA-seq data

We aimed to identify genomic variations associated with promoter activities (puQTL) and

total gene expression levels (eQTL) using RNA-seq data (Fig 1A). First, we checked whether it

is possible to estimate promoter activity accurately from RNA-seq data. We compared the pro-

moter activity of the GM12878 cell line measured by CAGE with those estimated by proActiv

[23] and kallisto [20], which can accept RNA-seq data as input. Our results also showed that

the promoter activity estimated by proActiv was correlated more strongly with that measured

by CAGE vs. kallisto (Spearman’s ρ = 0.647 and 0.432 for proActiv and kallisto, respectively)

(S1 Fig). The proActiv software has been reported to exhibit high performance in promoter

usage inference compared with other methods, and to capture changes in alternative promoter

usage in cancer transcriptomes [23]. Although proActiv is limited in that it cannot estimate

the activities of promoters that overlap with internal exons, we obtained a considerable advan-

tage in accuracy and confirmed that it is possible to utilize publicly available RNA-seq data

from various resources; thus, we employed proActiv for the estimation of promoter activity in

this study. Next, we developed computational pipelines for puQTL and eQTL identification

using the RNA-seq dataset of LCLs from 438 individuals provided by the GEUVADIS project

[17] (Figs 1B and S2 and S1 Table). After quality control, we aligned the RNA-seq reads to the

human reference genome in the two-pass mode implemented in STAR to obtain as many junc-

tion reads as possible, because the estimation of promoter activity by proActiv depends on the

number of junction reads mapped on the first and second exon. Using the mapped reads of

438 individuals and the Ensembl gene annotation file, which describes the structure of all

genes including coding and non-coding, we re-constructed gene annotations using StringTie2

as an input file of proActiv. These steps allowed us to gain additional promoters to be analyzed,

because proActiv can only detect the promoters described in the input GTF file. Using datasets

of normalized promoter activities, gene expression levels, and genotypes, we mapped puQTL

and eQTL using QTLtools. The numbers of input phenotypes for puQTL (promoters) and

eQTL (genes) mapping were 12,957 and 12,275, respectively. To maximize the number of
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https://doi.org/10.1371/journal.pcbi.1010436.g001
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significant puQTL signals, we used the top five genetic PCs, sex, and PEER factors [32] calcu-

lated based on phenotype tables as covariates in the regression analysis (S3 Fig). To conduct a

comprehensive survey of the genetic factors associated with gene regulation, here we used

genotypes of not only short variants, such as SNPs and indels, but also SVs recently discovered

by combined analysis of short-read and long-read sequencing data [25]. As a result, we suc-

cessfully mapped 2,592 puQTL and 18,205 eQTL at the 10% FDR level. One reason for the dif-

ference in total number of signals between puQTL and eQTL is probably the limited power to

estimate promoter activity. While all reads mapped to exons are used to quantify gene expres-

sion levels (eQTL), only junction reads spanning the first and second exons are used to esti-

mate promoter activity (puQTL). This reduces the number of reads that can be used to

quantify, reducing the accuracy of the promoter activity estimation and the power of mapping

QTL. We observed substantial deviations of the resulting P-values from the null expectation

for both puQTL and eQTL, indicating that our analysis was well calibrated (Figs 1C and S4A).

We found that puQTL and eQTL were likely to be located near target promoters (Figs 1D and

S4B), in concordance with previous reports [12]. Moreover, although we encountered a limita-

tion in that internal promoters were excluded from our analysis, we confirmed that our results

were consistent with those of the CAGE-based puQTL analysis [12]; i.e., an intergenic variant,

rs8028374 (A/G), was mapped as puQTL associated with the most external promoters of the

TTC23 gene, prmtr.35339 (P = 6.99 × 10−18, β = −0.56) (S5A and S5B Fig), and an exonic vari-

ant, rs35430374 (C/A), was not mapped as puQTL associated with external promoters of the

DENND2D gene (P = 7.78 × 10−5, β = −0.41 for prmtr.53803; P = 0.22, β = −0.13 for

prmtr.53804) (S5C and S5D Fig). Although the number of puQTL was smaller than those of

the previous CAGE-based puQTL analysis because of the limited power of RNA-seq-based

estimates of promoter activities, these results demonstrated that our pipeline provides promis-

ing results. We found that 16.1% of the genes associated with puQTL (puQTL genes) (310/

1,927) did not overlap with those associated with eQTL (eQTL genes) (Fig 1E) and 42.2% best

hit puQTL variants (1,095/2,592) and 40.9% LD-expanded puQTL variants (r2 > 0.8) (1,061/

2592) were not mapped as eQTL variants (S6 Fig), suggesting that puQTL mapping enables

the identification of overlooked variant–gene associations. The difference in gene level match-

ing and variant level matching indicates that a proportion of puQTL genes are associated with

distinct loci from eQTL genes. The 16.1% unique puQTL genes included 23.5% single-pro-

moter genes (73/310), indicating that the puQTL signals identified in this study might include

false positive signals. As mentioned above, only junction reads spanning the first and second

exons are used to estimate promoter activity, reducing the accuracy of the promoter activity

estimation and the power of mapping QTL. Indeed, we found that 16.1% of puQTL genes not

overlapping with eQTL genes have lower promoter activities than those overlapping with

eQTL genes (S7 Fig). Thus, this result suggests that we have a limitation in mapping puQTL

associated with lowly expressed promoters.

We also performed fine-mapping of puQTL to estimate candidate causal variants using the

SuSiE software [34,35]. We identified 424 variants with a high causality (PIP > 0.9) and found

that two of the credible causal variants were SVs (967_HG00733_ins and

28764_HG02059_ins), suggesting their independent roles in the perturbation of promoter

usage.

Unlike eQTL, the puQTL analysis has the advantage of predicting associations between

promoters and genomic variations. We expected that puQTL associated with multi-promoter

genes would target the nearest promoter. However, the proportion of puQTL targeting the

nearest promoters in all puQTL associated with multi-promoter genes was 29.1% (677/2,325)

(Fig 1F). This result suggests that the effects of genetic factors on promoter usage are not easy
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to dissect by simply focusing on genomic distances, which emphasizes the importance of

puQTL mapping.

puQTL are enriched in active promoters and enhancers

Next, we sought to examine the epigenetic contexts of puQTL to understand their functional

mechanisms in gene regulation. We found that active histone marks for transcription

(H3K4me3, H3K27ac, and H3K9ac) and ATAC-seq signals, which represent the open chroma-

tin structure, were concentrated around puQTL, as well as eQTL (Fig 2A). Focusing on the

16.1% unique puQTL variants, they show relatively weaker enrichment of active epigenetic

marks (H3K4me3, H3K27ac, and H3K9ac) than eQTL-overlapping puQTL variants (S8 Fig).

This result indicates a possibility that unique puQTL variants tend to be located in lowly acti-

vated regulatory regions, or include false positive signals probably caused by limited power for

the detection of lowly-expressed promoters. We assessed the statistical significance of the

enrichment in epigenetic features based on permutation tests using the QTLtools fenrich mod-

ule. The results of this analysis showed that puQTL and eQTL were significantly enriched in

active histone marks, open chromatin regions detected by ATAC-seq, and TF footprints (Fig

2B and 2C). We confirmed that puQTL that were discovered without PEER factors as covari-

ates were not enriched in transcriptionally active regions (S9 Fig), whereas those discovered

using 25 PEER factors were enriched in those regions (Fig 2B). This result suggests that,

although the greatest number of puQTL was detected when we used no PEER factors (S3B

Fig), the puQTL discovered using 25 PEER factors were more credible than those identified

without PEER factors. We also tested if the sets of QTL are enriched in regulatory elements

using the chromatin states data of the GM12878 cell line defined by ChromHMM [43]. We

found that both puQTL and eQTL were significantly enriched in upstream promoter regions

(2_PromU) and active enhancer elements (13_EnhA1) at the 5% FDR level, implying the func-

tional roles of the genomic variations in gene regulation via cis-regulatory elements, such as

promoters and enhancers (Fig 2D and 2E). These results showed that the general features of

chromatin states are similar between puQTL and eQTL.

puQTL-associated gene classification

Next, we classified genes associated with puQTL into four groups in a similar way as that

described by a previous study [12] (Fig 3A). Group-1 included 212 genes with a single pro-

moter. We found that 65.6% puQTL genes having a single promoter (139/212) are also eQTL

genes, but 34.4% (73/212) genes are not. This is probably due to the limited power to estimate

promoter activity. Among the multi-promoter genes, 1,626 genes harboring only one pro-

moter associated with puQTL were classified into group-2. Considering effect direction, which

is a slope in the linear regression analysis (β), group-3 included 32 genes associated with

puQTL with opposite effects on distinct promoters, and group-4 included 57 genes associated

with puQTL with concordant effects on distinct promoters (Fig 3B). We also performed the

same classification for 310 puQTL genes not overlapping eQTL genes. We found that 237

puQTL genes harbor multiple promoters and 225 puQTL genes have only one promoter asso-

ciated with puQTL, while only 12 genes have multi-promoters associated with puQTL. This

result indicates that a possible reason why 16.1% puQTL genes did not overlap with eQTL

genes is that the genes have lowly-expressed puQTL-associated promoters that do not account

for a large proportion of total gene expression. Based on this classification, we unveiled the

detailed mechanisms of gene regulation by genomic variations.

We found an illustrative puQTL that was overlooked by annotation-based QTL analyses.

Among the puQTL genes in group-4, the TMEM200A gene (Fig 3C) encodes a member of the
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Figure 2 (Kubota and Suyama)
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Fig 2. Enrichment of epigenetic features. (A) Aggregation plots of histone mark ChIP-seq and ATAC-seq signals for

the 100 kb regions flanking puQTL best hit variants. (B–E) Enrichment of the peaks of histone mark ChIP-seq and

transcription factor footprints at puQTL (B) and eQTL (C), and enrichment of the chromatin states defined by
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https://doi.org/10.1371/journal.pcbi.1010436.g002
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Fig 3. puQTL-associated gene classification. (A) The procedure used for puQTL gene classification. (B) Count of each group

of puQTL genes. (C) The TMEM200A gene locus. The structures of the TMEM200A gene in the Ensembl 104 annotation and

assembled in this study are presented in black and red, respectively, with ENCODE GM12878 H3K4me3 and H3K27ac ChIP-

seq signals. The vertical blue bars indicate the location of active promoters. The black bar indicates the location of the

rs11154537 variant. (D, E) Comparison of the promoter activities (D) and total expression levels (E) of the TMEM200A gene
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transmembrane (TMEM) protein family. This gene has three active promoters (prmtr.94867,

prmtr.94868, and prmtr.94870). Notably, isoforms transcribed from prmtr.94867 were not

described in the Ensembl gene annotation file and were newly added by transcript assembly in

our pipeline; therefore, the previous annotation-based analysis could not detect this promoter.

The H3K4me3 and H3K27ac ChIP-seq signals also supported the contention that prmtr.94867

is transcriptionally active in the GM12878 cell line (Fig 3C). We found that rs11154537 (A/G),

which is a variant located in the first exon of the isoform transcribed by prmtr.94867, was

mapped as puQTL associated with the activity of prmtr.94867 (P = 1.96 × 10−54, β = −0.99)

and prmtr.94870 (P = 8.88 × 10−8, β = −0.38), but not with prmtr.94868 (P = 5.40 × 10−4, β =

−0.25) (Fig 3D). This variant was also mapped as eQTL associated with the total expression

level of the TMEM200A gene (P = 1.93 × 10−53, β = −0.99) (Fig 3E). In addition, the result of

the puQTL fine-mapping showed that the PIP of rs11154537, which represents the estimated

causality in the perturbation of the promoter activity, was 1.00 for prmtr.94867 (Fig 3F),

strongly suggesting that this variant is causal of the perturbation of prmtr.94867 usage. Taken

together, these results indicate that an alternative allele of rs11154537 somehow leads to the

downregulation of the “hidden” major promoter activity (prmtr.94867), resulting in a decrease

in the total expression level of the TMEM200A mRNA. This is an example of the successful

interpretation of how genomic variations alter total gene expression levels. Moreover, this

example supports the conclusion that our computational pipeline is sufficiently powerful for

detecting hidden active promoters associated with genomic variations, which were not

included in eQTL and puQTL analyses based on standard annotation files.

Two puQTL genes associated with fine-mapped SVs were included in group-2. One of

them is the IVNS1ABP gene, which encodes the influenza virus NS1A-binding protein. This

gene was actively transcribed from one promoter, prmtr.86427 (S10A Fig). We found that

967_HG00733_ins, a genomic insertion of 34 bp, was located in the 90 kb upstream region of

the gene and mapped as puQTL associated with the activity of prmtr.86427 (P = 1.71 × 10−12, β
= 0.48) (S10B Fig). This SV was also mapped as eQTL associated with the total expression level

of the IVNS1ABP gene (P = 4.61 × 10−56, β = 0.96) (S10C Fig). The chromatin interactions

detected using H3K27ac HiChIP data of the GM12878 cell line [37] also support the functional

connections between the SV and prmtr.86427 (S10A Fig). The PIP of 967_HG00733_ins was

0.99 for prmtr.86427 (S10D Fig). These results demonstrated that the intergenic 34 bp inser-

tion upregulates the activity of one promoter via a 90 kb-range enhancer, thus increasing the

total expression level of the IVNS1ABP mRNA. RSPH1 was another puQTL gene associated

with a fine-mapped SV. This gene encodes a radial-spoke-head protein and is transcribed

from two distinct promoters (prmtr.70068 and prmtr.70069) (S10E Fig). Notably, the isoforms

transcribed from prmtr.70068 were newly detected by transcript assembly in our pipeline, as

in the case of the TMEM200A gene (Fig 3C). A 166 bp insertion located within the first exon

of the isoform transcribed from prmtr.70068, 28764_HG02059_ins, was mapped as puQTL

associated with the activity of prmtr.70068 (P = 2.75 × 10−45, β = −0.92), but not with

prmtr.70069 (P = 0.091, β = −0.12) (S10F Fig). This SV was also mapped as eQTL associated

with the total expression level of the RSPH1 gene (P = 6.77 × 10−44, β = −0.91) (S10G Fig).

Moreover, the PIP of 28764_HG02059_ins was 1.00 for prmtr.70068 (S10H Fig), strongly

among the rs11154537 genotypes. The numbers in parentheses indicate sample size. (F) The associations of puQTL, fine-

mapped puQTL for prmtr.94867, and eQTL for TMEM200A are shown in the top, middle, and bottom panels. rs11154537 is

plotted in a red diamond, and the colors indicate the r-squared values between rs11154537 and other variants. (G) The

SYNJ2BP-COX16 gene locus. (H, I) The promoter activities (H) and total expression levels (I) of the SYNJ2BP-COX16 gene

were compared among the rs145415365 genotypes. (J) Associations of puQTL, fine-mapped puQTL for prmtr.136781, and

eQTL for SYNJ2BP-COX16 are shown in the top, middle, and bottom panels.

https://doi.org/10.1371/journal.pcbi.1010436.g003
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suggesting that this exonic SV somehow leads to the downregulation of the promoter activity

and a decrease in total RSPH1 expression. These examples showed that our pipeline could

identify cases in which SVs drive the dysregulation of promoter activities.

We also found several interesting examples of promoter usage changes without a gene

expression change in group-3. One example was associated with the SYNJ2BP-COX16 gene,

which harbors three active promoters (prmtr.136780, prmtr.136781, and prmtr.136782) (Fig

3G). rs145415365 (A/G), a variant located in the downstream intergenic region of this gene,

was mapped as puQTL associated with the activity of two promoters with opposite effects

(P = 1.67 × 10−10, β = 0.44 for prmtr.136780; P = 7.02 × 10−9, β = −0.40 for prmtr.136781), but

not with another promoter (P = 0.52, β = 0.045 for prmtr.136782) (Fig 3H). Notably, this vari-

ant was not associated with the total expression level of the SYNJ2BP-COX16 gene (P = 0.21, β
= −0.087) (Fig 3I), and the results of fine-mapping revealed a PIP of 0.93 for prmtr.136781 (Fig

3J), indicating the causality of this variant in the perturbation of promoter usage. We found

another example of puQTL that was not mapped as eQTL in the MUC12-AS1 gene. This gene

harbors three active promoters (prmtr.99696, prmtr.99698, and prmtr.99699), two of which

(prmtr.99696 and prmtr.99699) were not described in the Ensembl gene annotation file and

were newly detected by our computational pipeline (S11A Fig). rs10229453 (T/C), a variant

located in the intronic region of this gene, was mapped as puQTL associated with all promot-

ers, but their effect directions were opposite (P = 2.25 × 10−56, β = −0.95 for prmtr.99696;

P = 5.02 × 10−20, β = 0.60 for prmtr.99698; P = 4.02 × 10−9, β = 0.40 for prmtr.99699) (S11B

Fig). This variant was not associated with the total expression level of the MUC12-AS1 gene

(P = 0.21, β = −0.087) (S11C Fig). These associations had not been detected by standard eQTL

studies, which emphasizes the importance of our puQTL analysis for the discovery of new vari-

ant–gene associations.

puQTL analyses enable novel interpretations of GWAS associations

To assess the involvement of puQTL in complex traits, we performed a comparative analysis of

puQTL and GWAS lead variants. First, we applied the regulatory trait concordance (RTC)

[52] method implemented in QTLtools to the set of puQTL and all GWAS lead variants

curated by the GWAS Catalog. We found 1,690 puQTL, including 61 variants not mapped as

eQTL, with a high-confidence concordance threshold (RTC > 0.9) for at least one trait. The

set of puQTL included 166 credible causal variants (PIP > 0.9), implying the functional con-

nections between promoter usage and traits. We found that a fine-mapped variant, rs2382817

(A/C) (PIP = 0.96), can be causal regarding the risk of inflammatory bowel diseases (IBDs),

including ulcerative colitis and Crohn’s disease. Previous studies have reported that the alter-

native allele of rs2382817 (rs2382817-C) is protective against IBD risk [53–55]. The variant

was mapped as puQTL associated with two active promoters of the TMBIM1 gene

(P = 3.50 × 10−68, β = 1.03 for prmtr.64998; P = 1.71 × 10−9, β = 0.41 for prmtr.65000) (Fig 4A

and 4B), and was also mapped as eQTL associated with the total gene expression

(P = 1.62 × 10−41, β = 0.85) (Fig 4C). In addition, we performed the colocalization analysis

implemented in the coloc software [47] to test if a causal variant can drive both puQTL and

GWAS association. We found that a GWAS association for IBD [53] showed a high colocaliza-

tion probability with the puQTL association for prmtr.64998 (PP4 = 0.90) and with the eQTL

association for the TMBIM1 gene (PP4 = 0.90) (Fig 4D). Taken together, these results demon-

strate that an alternative allele of rs2382817 (rs2382817-C) might upregulate the minor pro-

moter activity (prmtr.64998) and lead to a total increase in TMBIM1 gene expression,

resulting in a reduction of IBD risk. The TMBIM1 protein, which is also known as RECS1, is

located in membranous compartments, including lysosomes, endosomes [56], and the Golgi
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Fig 4. puQTL and GWAS associations. (A) The TMBIM1 gene locus. Structures of the TMBIM1 assembled in this study are presented

in black with ENCODE GM12878 H3K4me3 and H3K27ac ChIP-seq signals. The isoforms transcribed from prmtr.64998 are shown in

red. The vertical blue bars indicate the location of active promoters. The black bar indicates the location of the rs2382817 variant. (B, C)

Comparison of the promoter activities (B) and total expression levels (C) of the TMBIM1 gene among the rs2382817 genotypes. The

numbers in parentheses indicate sample size. (D) The associations of puQTL, fine-mapped puQTL for prmtr.64998, eQTL for

TMBIM1, and GWAS of inflammatory bowel disease (IBD) are shown from the top to bottom panels. rs2382817 is plotted in a red

diamond, and the colors indicate r-squared values between rs2382817 and other variants. (E) The MAPKAP1 gene locus. The structures

of the MAPKAP1 gene assembled in this study are presented in black, and the isoforms transcribed from prmtr.109751 are shown in

red. (F, G) Comparison of the promoter activities (F) and total expression levels (G) of the MAPKAP1 gene among the rs631287

genotypes. (H) The associations of puQTL, fine-mapped puQTL for prmtr.109751, eQTL for MAPKAP1, and GWAS of diverticular

disease are shown from the top to bottom panels.

https://doi.org/10.1371/journal.pcbi.1010436.g004
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apparatus [57], and plays a protective role in Fas-mediated apoptosis by reducing Fas expres-

sion at the plasma membrane [58]. This is an illustrative example that we can clearly interpret

the perturbed promoter in the context of disease risk.

Importantly, our pipeline was able to demonstrate that puQTL enables novel findings of

variant–gene–trait associations. We found that the rs631287 (G/A) variant mapped as puQTL

associated with one promoter (prmtr.109751) of the MAPKAP1 gene (P = 1.64 × 10−38, β = −-

0.80), but not associated with other promoters (P = 0.012, β = −0.17 for prmtr.109748;

P = 0.54, β = 0.042 for prmtr.109750; P = 0.57, β = −0.039 for prmtr.109757; and P = 0.015, β =

0.16 for prmtr.109758) (Fig 4E and 4F). The prmtr.109751 is one of the minor promoters of

the MAPKAP1 gene and does not account for a large portion of the total expression; therefore,

rs631287 was not mapped as eQTL for the gene (P = 0.046, β = 0.14) (Fig 4G). We found that a

GWAS association of diverticular disease [59], which is a condition that involves small pockets

called diverticula that form from the wall of the colon, showed high colocalization probability

with the puQTL association for prmtr.109751 (PP4 = 0.90); however, we observed no colocali-

zation with the eQTL association for the MAPKAP1 gene (PP4 = 0.091) (Fig 4H), indicating

that standard eQTL studies cannot detect this variant–gene–trait association. The MAPKAP1
gene, also known as SIN1, encodes the evolutionarily conserved protein Sin1, which is an

essential component of the mammalian TOR complex 2 (mTORC2) [60,61]. The full-length

MAPKAP1 mRNA is translated into a protein that contains three domains; i.e., N-terminal

domain (NTD), conserved region in middle domain, and Pleckstrin-homology domain

(SIN1_HUMAN) (S12A and S12B Fig). However, we found that one isoform transcribed by

prmtr.109751 (ENST00000420643) was predicted to be translated into an N-terminally trun-

cated protein lacking the NTD sequence (BIAMA5_HUMAN) (S12A and S12C Fig). Previous

studies have shown that the NTD of the Sin1 protein is important for its interaction with com-

ponents of mTORC2, such as Rictor or MEKK2 [62,63]. The NTD-lacking isoform of Sin1,

called Sin1δ, has been reported as not being responsible for the mTORC2 assembly and most

of the mTORC2 functions [64]. Taken together, these results suggest that, although the precise

function of NTD-lacking Sin1 is unclear, the variation of NTD-lacking Sin1 expression associ-

ated with the rs631287 genotype may underlie the risk of diverticular disease via mTORC2-in-

dependent mechanisms. Overall, these results emphasize that our puQTL analysis could

provide new insights into associations between variants and complex traits, which were over-

looked by previous eQTL analyses.

Discussion

Here, we report a new computational method for discovering genomic loci associated with

promoter usage that was constructed by leveraging conventional RNA-seq datasets without

additional costs. Our analysis provided insights into the regulation of promoter activity by

short and long genomic variations. The combined analysis of transcript assembly and pro-

moter activity estimates enabled us to identify the perturbation of “hidden” promoters, which

were overlooked by most annotation-based analyses. We performed eQTL mapping using the

improved promoter annotations as well as puQTL mapping (S2 Fig), thus we can claim that

the improved sensitivity is due to puQTL mapping itself. In addition, our integrated analysis

of puQTL with GWAS led to novel interpretations of the molecular mechanisms of complex

traits. This study emphasizes the importance of puQTL analysis in understanding gene regula-

tion and common disease pathogenesis. Although we have a limitation in estimating activities

of lowly expressed promoters, we believe that our pipeline is robust when mapping QTL asso-

ciated with moderately or highly expressed promoters. Our method requires only genotype

and RNA-seq data and, thus, can be applied to other extensive datasets provided by
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international consortia, such as the GTEx project [2]. Identifying puQTL in various tissues

using the GTEx datasets will help elucidate the tissue-specific regulation of promoter activities

by genomic variations and promoter-usage-associated disease mechanisms in clinically rele-

vant tissues. In this study, we mapped 2,592 puQTL associations and 1,927 puQTL genes using

438 samples. As for GTEx tissues with>100 sample size, assuming that the power of puQTL

mapping increases with increasing sample size, we expect that 674 ~ 4,177 puQTL associations

and 501 ~ 3,106 puQTL genes per tissue would be mapped by our pipeline. Assuming that new

associations would be identified at the same ratio with this study (16.1%), we expect that 80 ~

500 genes per tissue would be identified as new associations.

Changes in promoter usage can lead to changes in the relative abundance of transcripts har-

boring distinct 50 untranslated regions (50 UTR), which can affect mRNA translation rates

[65]. In fact, the 50 UTR includes various functional structures and elements, such as internal

ribosome entry sites, binding sites for non-coding RNAs and RNA-binding proteins, RNA

modification sites, hairpins, pseudo-knots, and RNA G-quadruplexes. These structures and

elements regulate the recruitment of eukaryotic initiation factors to the 50 end of mRNAs, and

affect the mRNA translation rates, indicating the possibility that perturbation of promoter

activity associated with genomic variations may result in changes in protein abundance. How-

ever, our analysis had a limitation: we focused exclusively on mRNA expression levels, rather

than protein expression; therefore, we were unable to assess how promoter changes affect

translation regulation. Previous studies have reported the association between genomic loci

and protein expression levels (protein QTL: pQTL) [66–68]; thus, by integrating the puQTL

and pQTL data obtained from matched samples, we were able to discover promoter-change-

associated protein expression changes. It is well known that protein expression levels are often

uncorrelated with corresponding mRNA expression levels [69–72], suggesting that it may

become possible to interpret why protein levels change in the absence of a total mRNA expres-

sion change by focusing on promoter perturbation.

Promoter usage and splicing are closely interrelated. A recent study reported that splicing

of internal exons promotes the activation of cryptic promoters, which is called exon-mediated

activation of transcription starts (EMATS) [73]. Splicing factors interact with general TFs and

recruit them to nearby weak promoters, resulting in promoter activation and an increase in

transcriptional output [73]; however, the genetic factors that drive EMATS remain unex-

plored. In addition to gene expression, genomic variations also affect alternative splicing

(splicing QTL: sQTL), thus implying that genomic variations affect the inclusion level of inter-

nal exons and lead to differential usage of nearby promoters in some genes. Although our anal-

ysis focused on the enrichment of genomic variations associated with promoter usage in

promoters, enhancers, and TF binding sites (Fig 2), the combined analysis of puQTL and

sQTL has the potential to identify genetic factors underlying splicing-mediated promoter acti-

vation. Our approach, which was developed to map puQTL using RNA-seq data, is valuable

for exploring novel gene regulatory programs.

In this study, reference-guided transcript assembly using StringTie2 [28] and short-read

RNA-seq reads of 438 samples enabled us to find “hidden” active promoters (Figs 3C, S7E, and

S8A), highlighting the fact that the standard gene annotations provided by Ensembl are incom-

plete. It is because promoters expressed in a small proportion of the human population, which

may be regulated by genomic variations, are likely to be overlooked when annotation files are

constructed based on limited RNA-seq data. However, some major promoters, like the

TMEM200A example, somehow have been missing. We are not exactly sure why some highly

expressed promoters are not described in the Ensembl annotation file (probably this reflects

limitations of the Ensembl pipeline and manual curation by humans), but in general, we

believe that we can improve sensitivity of isoform prediction by incorporating mapped reads

PLOS COMPUTATIONAL BIOLOGY Mapping of promoter usage QTL using RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010436 August 29, 2022 16 / 23

https://doi.org/10.1371/journal.pcbi.1010436


from as many samples as possible. The precise construction of gene annotations is essential to

explore the regulatory mechanism of promoter activity. However, the construction of tran-

script structures using only short-reads has been challenging. Notably, the StringTie2 software

also works with long-read RNA sequencing reads and shows high performance in transcript

assembly [28]. A recent study generated a long-read RNA-seq dataset using the Oxford Nano-

pore Technologies platform from 88 samples from the GTEx project [74]. The leveraging of

the GTEx short- and long-read RNA-seq dataset would improve our pipeline for mapping

additional puQTL.

Taken together, the findings of this study suggest that our pipeline may be the current best

practice for accurate RNA-seq-based puQTL mapping. Moving forward, by expanding this

pipeline to extensive datasets in public databases, our strategy can help us further elucidate the

genetic factors underlying transcriptional regulation and promote the novel discovery of the

molecular mechanisms responsible for complex trait associations.

Supporting information

S1 Fig. Correlation of estimated promoter activities among three different methods. Activ-

ity scores of each promoter of the GM12878 cell line are plotted with regression lines.

(PDF)

S2 Fig. Pipeline for eQTL mapping. 1KGP, the 1000 Genomes Project; MAF, Minor Allele

Frequency; GTF, Gene Transfer Format.

(PDF)

S3 Fig. Covariates for QTL analysis. (A) Projection on the first two principal components of

the normalized genotype data, labelled for populations. GBR, British in England and Scotland;

FIN, Finnish in Finland; CEU, Utah residents (CEPH) with Northern and Western European

ancestry; YRI, Yoruba in Ibadan, Nigeria; TSI, Toscani in Italia. (B, C) The number of puQTL

(B) and eQTL (C) (nominal P< 1.0 × 10–5) identified (y-axis) versus the number of PEER fac-

tors used (x-axis). Red circles represent the number of PEER factors used for the following

analysis.

(PDF)

S4 Fig. eQTL analysis results. (A) Quantile–quantile plot of P-values. The nominal pass

results of chromosome 22 are plotted and a red line indicates expected P-values under the null

hypothesis. (B) Distribution of the distance of eQTL best hit variants from the target promot-

ers.

(PDF)

S5 Fig. Examples of puQTL. (A) The TTC23 gene locus. Structures of the TTC23 assembled

in this study are shown with ENCODE GM12878 H3K4me3 and H3K27ac ChIP-seq signals.

A vertical blue bar indicate the location of an active promoter, prmtr.35339. A black bar indi-

cates the location of a variant rs8028374. (B) Comparison of the promoter activities of the

TTC23 gene among rs8028374 genotypes. The numbers in parentheses indicate sample size.

(C) The DENND2D gene locus. (D) Comparison of the promoter activities of the DENND2D
gene among rs35430374 genotypes.

(PDF)

S6 Fig. Overlaps of puQTL and eQTL associations at the variant level. (A) Propotion of

puQTL associations mapped as eQTL. (B) Propotion of puQTL associations mapped as eQTL

when expanding linkage disequilibrium (r2 > 0.8).

(PDF)
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S7 Fig. Promoter activity of puQTL genes. The y-axis represents median values of promoter

activity of puQTL genes mapped as eQTL genes (green) and not mapped as eQTL genes

(orange) in 438 individuals.

(PDF)

S8 Fig. Enrichment of epigenetic features of puQTL variants. Aggregation plots of histone

mark ChIP-seq and ATAC-seq signals for 100 kb regions flanking puQTL best hit variants.

Green and blue lines represent aggregated signals for puQTL variants mapped as eQTL and

those not mapped as eQTL, respectively.

(PDF)

S9 Fig. Enrichment of puQTL identified without PEER factors in epigenetic features.

Enrichment of peaks of histone mark ChIP-seq and transcription factor footprints. Red dots

represent significant enrichment at the 5% FDR level and bars show 95% confidence intervals.

(PDF)

S10 Fig. Structural variants associated with promoter usage. (A) The IVNS1ABP gene locus.

Structures of the IVNS1ABP assembled in this study are represented in black with ENCODE

GM12878 H3K4me3, H3K4me1, and H3K27ac ChIP-seq signals and H3K27ac HiChIP chro-

matin interactions. Vertical blue bar indicates the location of an active promoter prmtr.86427.

A black bar indicates the location of a structural variant 967_HG00773_ins. (B, C) Comparison

of the promoter activities (B) and total expression levels (C) of the IVNS1ABP gene among

967_HG00773_ins genotypes. The numbers in parentheses indicate sample size. (D) Associa-

tions of puQTL, fine-mapped puQTL for prmtr.86427, and eQTL for IVNS1ABP are shown in

the top, middle, and bottom panel. 967_HG00773_ins is plotted in a red diamond and colors

indicate r-squared values between 967_HG00773_ins and other variants. (E) The RSPH1 gene

locus. Structures of the RSPH1 in the Ensembl 104 annotation and assembled in this study are

represented in black and red, respectively with ENCODE GM12878 H3K4me3 and H3K27ac

ChIP-seq signals. Vertical blue bars indicate the location of an active promoters. A black bar

indicates the location of a structural variant 28764_HG02059_ins. (F, G) Comparison of the

promoter activities (F) and total expression levels (G) of the RSPH1 gene among

28764_HG02059_ins genotypes. (H) Associations of puQTL, fine-mapped puQTL for

prmtr.70068, and eQTL for RSPH1 are shown in the top, middle, and bottom panel.

28764_HG02059_ins is plotted in a red diamond and colors indicate r-squared values between

28764_HG02059_ins and other variants.

(PDF)

S11 Fig. puQTL associated with distinct promoters of the MUC12-AS1 gene with opposite

effects. (A) The MUC12-AS1 gene locus. Structures of the MUC12-AS1 in the Ensembl 104

annotation and assembled in this study are represented in black and red, respectively, with

ENCODE GM12878 H3K4me3 and H3K27ac ChIP-seq signals. Vertical blue bars indicate the

location of active promoters. A black bar indicates the location of a variant rs10229453. (B, C)

Comparison of the promoter activities (B) and total expression levels (C) of the MUC12-AS1
gene among rs10229453 genotypes. The numbers in parentheses indicate sample size. (D)

Associations of puQTL, fine-mapped puQTL for prmtr.99696, and eQTL for MUC12-AS1 are

shown in the top, middle, and bottom panel. rs10229453 is plotted in a red diamond and colors

indicate r-squared values between rs10229453 and other variants.

(PDF)
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S12 Fig. Comparison of the Sin1 proteins translated from distinct transcripts. (A) Multiple

sequence alignment of two isoforms of the Sin1 (MAPKAP1) protein. Protein sequences of

full-length Sin1 (SIN1_HUMAN) and NTD-lacking Sin1 (BIAMA5_HUMAN) are aligned in

top and bottom rows, respectively. Asterisks (�) indicate positions of matched residues. Red,

black, and blue rectangles indicate sequences of N-terminal domain, conserved region in mid-

dle domain, and Preckstrin-homology domain, respectively. (B, C) Protein structures of full-

length Sin1 (SIN1_HUMAN) (B) and NTD-lacking Sin1 (BIAMA5_HUMAN) (C) predicted

by AlphaFold2 with colors representing per-residue confidence score. Dotted circles indicate

N-terminal domain.

(PDF)

S1 Table. Samples from the GEUVADIS Project analyzed in this study.

(XLSX)
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